Articles | Volume 16, issue 10
https://doi.org/10.5194/gmd-16-2975-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-2975-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intercomparison of the weather and climate physics suites of a unified forecast–climate model system (GRIST-A22.7.28) based on single-column modeling
Xiaohan Li
2035 Future Laboratory, PIESAT Information Technology Co Ltd., Beijing, China
State Key Laboratory of Severe Weather, Chinese Academy of
Meteorological Sciences, Beijing 100081, China
2035 Future Laboratory, PIESAT Information Technology Co Ltd., Beijing, China
State Key Laboratory of Severe Weather, Chinese Academy of
Meteorological Sciences, Beijing 100081, China
Beijing Research Institute, Nanjing University of Information Science
and Technology, Beijing, China
Xindong Peng
State Key Laboratory of Severe Weather, Chinese Academy of
Meteorological Sciences, Beijing 100081, China
Division of Numerical Model Techniques, CMA Earth System Modeling and Prediction Center, Beijing, China
Baiquan Zhou
State Key Laboratory of Severe Weather, Chinese Academy of
Meteorological Sciences, Beijing 100081, China
Jian Li
State Key Laboratory of Severe Weather, Chinese Academy of
Meteorological Sciences, Beijing 100081, China
Yiming Wang
2035 Future Laboratory, PIESAT Information Technology Co Ltd., Beijing, China
Related authors
No articles found.
Yiming Wang, Yi Zhang, Yilun Han, Wei Xue, Yihui Zhou, Xiaohan Li, and Haishan Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2790, https://doi.org/10.5194/egusphere-2025-2790, 2025
Short summary
Short summary
This work explores the use of global storm-resolving model (GSRM) simulation data to enhance global climate modeling (GCM) through a machine learning–based model physics suite. Stable multiyear climate simulations with improved precipitation characteristics are achieved by using 80-day GSRM data.
Qing Zheng, Wei Sun, Zhiquan Liu, Jiajia Mao, Jieying He, Jian Li, and Xingwen Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2025-12, https://doi.org/10.5194/egusphere-2025-12, 2025
Short summary
Short summary
Ground-based microwave radiometers (MWRs) offer high temporal resolution observations with strong sensitivity to the lower atmosphere, making them valuable for data assimilation. However, their assimilation has traditionally focused on retrieved profiles. This study implemented the direct assimilation of brightness temperatures from MWRs with a machine learning-based bias correction scheme. The results show improvements in the low-level atmospheric structure and precipitation predictions.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Yihui Zhou, Yi Zhang, Jian Li, Rucong Yu, and Zhuang Liu
Geosci. Model Dev., 13, 6325–6348, https://doi.org/10.5194/gmd-13-6325-2020, https://doi.org/10.5194/gmd-13-6325-2020, 2020
Short summary
Short summary
This paper explores the configuration of a global atmospheric model (global-to-regional integrated forecast system-atmosphere; GRIST-A) with various multiresolution grids. The model performance is evaluated from dry dynamics to simple physics and full physics. The model is able to resolve the fine-scale structures in the grid-refinement region, and the adverse impact due to the mesh transition and the coarse-resolution area can be controlled well.
Cited articles
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J. P., Beljaars, A., and
Bormann, N.: The role of shallow convection in ECMWF's Integrated
Forecasting System, ECMWF Technical Memoranda, 2014.
Bretherton, C. S. and Park, S.: The University of Washington Shallow
Convection and Moist Turbulence Schemes and Their Impact on Climate
Simulations with the Community Atmosphere Model, J. Climate, 22,
3449–3469, https://doi.org/10.1175/2008jcli2557.1, 2009.
Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Schanen, D. P., Meyer, N. R., and Craig, C.: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model: single-column experiments, Geosci. Model Dev., 5, 1407–1423, https://doi.org/10.5194/gmd-5-1407-2012, 2012.
Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelly,
A.: Unified Modeling and Prediction of Weather and Climate: A 25-Year
Journey, B. Am. Meteorol. Soc., 93, 1865–1877,
https://doi.org/10.1175/BAMS-D-12-00018.1, 2012.
Chepfer, H., Bony, S., Winker, D., Cesana, G., Dufresne, J. L., Minnis, P.,
Stubenrauch, C. J., and Zeng, S.: The GCM-oriented CALIPSO cloud product (CALIPSO-GOCCP), J.
Geophys. Res., 115, D00H16,
https://doi.org/10.1029/2009JD012251, 2010.
Davies, L., Jakob, C., Cheung, K., Genio, A. D., Hill, A., Hume, T., Keane,
R. J., Komori, T., Larson, V. E., Lin, Y., Liu, X., Nielsen, B. J., Petch,
J., Plant, R. S., Singh, M. S., Shi, X., Song, X., Wang, W., Whitall, M. A.,
Wolf, A., Xie, S., and Zhang, G.: A single-column model ensemble approach
applied to the TWP-ICE experiment, J. Geophys. Res.-Atmos., 118, 6544–6563, https://doi.org/10.1002/jgrd.50450, 2013.
Gettelman, A., Liu, X., Ghan, S. J., Morrison, H., Park, S., Conley, A. J.,
Klein, S. A., Boyle, J., Mitchell, D. L., and Li, J. L. F.: Global
simulations of ice nucleation and ice supersaturation with an improved cloud
scheme in the Community Atmosphere Model, J. Geophys. Res.,
115, D18216, https://doi.org/10.1029/2009jd013797, 2010.
Gettelman, A., Truesdale, J. E., Bacmeister, J. T., Caldwell, P. M., Neale,
R. B., Bogenschutz, P. A., and Simpson, I. R.: The Single Column Atmosphere
Model version 6 (SCAM6): Not a scam but a tool for model evaluation and
development, J. Adv. Model. Earth Sy., 11, 1381–1401,
https://doi.org/10.1029/2018MS001578, 2019.
Guo, Z., Wang, M., Qian, Y., Larson, V. E., Ghan, S., Ovchinnikov, M.,
Bogenschutz, P. A., Zhao, C., Lin, G., and Zhou, T.: A sensitivity analysis
of cloud properties to CLUBB parameters in the single-column Community
Atmosphere Model (SCAM5), J. Adv. Model. Earth Sy., 6,
829–858, https://doi.org/10.1002/2014MS000315, 2014.
Hong, S.-Y. and Lim, J.-O. J.: The WRF Single-Moment 6-Class Microphysics
Scheme (WSM6), J. Korean Meteor. Soc., 42, 129–151,
2006.
Hong, S. Y. and Pan, H. L.: Nonlocal boundary layer vertical diffusion in a
medium-range forecast model, Mon. Weather Rev., 124, 2322–2339, 1996.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases
Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Kain, J. S. and Fritsch, J. M.: A one-dimensional entrainingdetraining plume
model and its application in convective parameterization, J.
Atmos. Sci., 47, 2784–2802, 1990.
Li, J. and Zhang, Y.: Enhancing the stability of a global model by using an
adaptively implicit vertical moist transport scheme, Meteorol.
Atmos. Phys., 134, 55, https://doi.org/10.1007/s00703-022-00895-5, 2022.
Li, X.: Code and data availability, Zenodo [code], https://doi.org/10.5281/zenodo.7350131, 2022.
Li, X., Peng, X., and Zhang, Y.: Investigation of the effect of the time
step on the physics–dynamics interaction in CAM5 using an idealized
tropical cyclone experiment, Clim. Dynam., 55, 665–680,
https://doi.org/10.1007/s00382-020-05284-5, 2020.
Li, X., Zhang, Y., Peng, X., Chu, W., Lin, Y., and Li, J.: Improved Climate
Simulation by Using a Double-Plume Convection Scheme in a Global Model,
J. Geophys. Res.-Atmos., 127, e2021JD036069, https://doi.org/10.1029/2021jd036069,
2022a.
Li, X., Zhang, Y., Lin, Y. L., Peng, X. D., Zhou, B. Q., Zhai, P. M., and
Li, J.: Impact of a revised trigger-closure of the double-plume convective
parameterization on precipitation simulation over East Asia, Adv.
Atmos. Sci., 40, 1225–1243, https://doi.org/10.1007/s00376-022-2225-9, 2023.
Lin, Y., Zhao, M., Ming, Y., Golaz, J. C., Donner, L. J., Klein, S. A.,
Ramaswamy, V., and Xie, S.: Precipitation Partitioning, Tropical Clouds, and
Intraseasonal Variability in GFDL AM2, J. Climate, 26, 5453–5466,
https://doi.org/10.1175/jcli-d-12-00442.1, 2013.
Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F.,
Kato, S., Smith, N. M., and Wong, T.: Toward optimal closure of the Earth's top-of-at- mosphere
radiation budget, J. Climate, 22, 748–766,
https://doi.org/10.1175/2008JCLI2637.1, 2009.
Morrison, H. and Gettelman, A.: A New Two-Moment Bulk Stratiform Cloud
Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3).
Part I: Description and Numerical Tests, J. Climate, 21, 3642–3659,
https://doi.org/10.1175/2008jcli2105.1, 2008.
Neale, R. B., Richter, J. H., and Jochum, M.: The Impact of Convection on
ENSO: From a Delayed Oscillator to a Series of Events, J. Climate,
21, 5904–5924, https://doi.org/10.1175/2008jcli2244.1, 2008.
Park, S. and Bretherton, C. S.: A New Moist Turbulence Parameterization in
the Community Atmosphere Model, J. Climate, 22, 3422–3448,
https://doi.org/10.1175/2008jcli2556.1, 2009.
Park, S., Bretherton, C. S., and Rasch, P. J.: Integrating Cloud Processes
in the Community Atmosphere Model, Version 5, J. Climate, 27,
6821–6856, https://doi.org/10.1175/jcli-d-14-00087.1, 2014.
Randall, D. A., Bitz, C. M., Danabasoglu, G., Denning, A. S., Gent, P. R.,
Gettelman, A., Griffies, S. M., Lynch, P., Morrison, H., Pincus, R., and
Thuburn, J.: 100 Years of Earth System Model Development, Meteorol.
Monogr., 59, 12.11–12.66, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0018.1, 2018.
Rasch, P. J. and Kristjansson, J. E.: A Comparison of the CCM3 Model Climate
Using Diagnosed and Predicted Condensate Parameterizations, J.
Climate, 11, 1587–1614, https://doi.org/10.1175/1520-0442(1998)011<1587:acotcm>2.0.co;2, 1998.
Richter, J. H. and Rasch, P. J.: Effects of Convective Momentum Transport on
the Atmospheric Circulation in the Community Atmosphere Model, Version 3,
J. Climate, 21, 1487–1499, https://doi.org/10.1175/2007jcli1789.1, 2008.
Santos, S. P., Caldwell, P. M., and Bretherton, C. S.: Cloud Process
Coupling and Time Integration in the E3SM Atmosphere Model, J.
Adv. Model. Earth Sy., 13, e2020MS002359, https://doi.org/10.1029/2020ms002359, 2021.
Stevens, B., Moeng, C-H, Ackerman, A. S., Bretherton, C. S., Chlond, A., Roode, S., Edwards, J., Golaz, J.-C., Jiang, H. L., Khairoutdinov, M., Kirkpatrick, M. P., Lewellen, D. C., Lock, A., Muller, F., Stevens, D. E., Whelan, E., and Zhu, P.: Evaluation of Large-Eddy
Simulations via Observations of Nocturnal Marine Stratocumulus, Mon.
Weather Rev., 133, 1443–1462, 2005 (data available at: https://gcss-dime.giss.nasa.gov/pub/DYCOMS-II/GCSS7-RF01/gcss7.nc, last access: 30 May 2023).
Sundqvist, H.: A parameterization scheme for non-convective condensation
including prediction of cloud water content, Q. J. Roy.
Meteor. Soc., 104, 677–690, https://doi.org/10.1002/qj.49710444110, 1978.
Tang, S. Q., Xie, S. C., Guo, Z., Hong, S. Y., Khouider, B., Klocke, D., Köhler, M., Koo, M. S., Krishna, P. M., Larson, V. E., Park, S., Vaillancourt, P. A., Wang, Y. C., Yang, J., Daleu, C. L., Homeyer, C. R., Jones, T. R., Malap, N., Neggers, R., Prabhakaran, T., Ramirez, E., Schumacher, C., Tao, C., Bechtold, P., Ma, H. Y., Neelin, J. D., and Zeng, X. B.: Long-term single-column model intercomparison
ofdiurnal cycle ofprecipitation over midlatitude and tropical land,
Q. J. Roy.
Meteor. Soc., 148, 641–669, https://doi.org/10.1002/qj.4222, 2022.
Wan, H., Rasch, P. J., Zhang, K., Kazil, J., and Leung, L. R.: Numerical issues associated with compensating and competing processes in climate models: an example from ECHAM-HAM, Geosci. Model Dev., 6, 861–874, https://doi.org/10.5194/gmd-6-861-2013, 2013.
Wan, H., Rasch, P. J., Zhang, K., Qian, Y., Yan, H., and Zhao, C.: Short ensembles: an efficient method for discerning climate-relevant sensitivities in atmospheric general circulation models, Geosci. Model Dev., 7, 1961–1977, https://doi.org/10.5194/gmd-7-1961-2014, 2014.
Wan, H., Rasch, P. J., Taylor, M. A., and Jablonowski, C.: Short-term time
step convergence in a climate model, J. Adv. Model. Earth
Sy., 7, 215–225, https://doi.org/10.1002/2014MS000368, 2015.
Wan, H., Zhang, S., Rasch, P. J., Larson, V. E., Zeng, X., and Yan, H.: Quantifying and attributing time step sensitivities in present-day climate simulations conducted with EAMv1, Geosci. Model Dev., 14, 1921–1948, https://doi.org/10.5194/gmd-14-1921-2021, 2021.
Wang, L., Zhang, Y., Li, J., Liu, Z., and Zhou, Y.: Understanding the
Performance of an Unstructured-Mesh Global Shallow Water Model on Kinetic
Energy Spectra and Nonlinear Vorticity Dynamics,
J. Meteorol. Res., 33, 1075–1097, https://doi.org/10.1007/s13351-019-9004-2, 2019.
Wicker, L. J. and Skamarock, W. C.: Time-splitting methods for elastic models using forward time schemes, Mon. Weather Rev., 130, 2088–2097
https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2, 2002.
Williamson, D. L.: The effect of time steps and time-scales on
parametrization suites, Q. J. Roy. Meteor.
Soc., 139, 548–560, https://doi.org/10.1002/qj.1992, 2013.
Xu, K. and Randall, D. A.: A semiempirical cloudiness parameterization for
use in climate models, J. Atmos. Sci., 53,
3084–3102, 1996.
Yanai, M., Esbensen, S., and Chu, J.-H.: Determination of bulk properties of
tropical cloud clusters from large-scale heat and moisture budgets, J. Atmos. Sci., 30, 611–627, 1973.
Yao, M. and Austin, P. M.: A model for hydrometeor growth and evolution of
raindrop size spectra in cumulus cells, J. Atmos. Sci.,
36, 655–668, 1979.
Yu, R., Zhang, Y., Wang, J., Li, J., Chen, H., Gong, J., and Chen, J.:
Recent Progress in Numerical Atmospheric Modeling in China, Adv.
Atmos. Sci., 36, 938–960, https://doi.org/10.1007/s00376-019-8203-1, 2019.
Zhang, C. and Wang, Y.: Projected Future Changes of Tropical Cyclone
Activity over the Western North and South Pacific in a 20-km-Mesh Regional
Climate Model, J. Climate, 30, 5923–5941,
https://doi.org/10.1175/jcli-d-16-0597.1, 2017.
Zhang, G. J. and McFarlane, N. A.: Sensitivity of climate simulations to the
parameterization of cumulus convection in the Canadian climate centre
general circulation model, Atmos. Ocean, 33, 407–446,
https://doi.org/10.1080/07055900.1995.9649539, 1995.
Zhang, M., Lin, W., Bretherton, C. S., Hack, J. J., and Rasch, P. J.: A
modified formulation of fractional stratiform condensation rate in the NCAR
Community Atmospheric Model (CAM2), J. Geophys. Res., 108, 4035,
https://doi.org/10.1029/2002jd002523, 2003.
Zhang, M., Bretherton, C. S., Blossey, P. N., Austin, P. H., Bacmeister, J.
T., Bony, S., Brient, F., Cheedela, S. K., Cheng, A., Del Genio, A. D., De
Roode, S. R., Endo, S., Franklin, C. N., Golaz, J.-C., Hannay, C., Heus, T.,
Isotta, F. A., Dufresne, J.-L., Kang, I.-S., Kawai, H., Köhler, M.,
Larson, V. E., Liu, Y., Lock, A. P., Lohmann, U., Khairoutdinov, M. F.,
Molod, A. M., Neggers, R. A. J., Rasch, P., Sandu, I., Senkbeil, R.,
Siebesma, A. P., Siegenthaler-Le Drian, C., Stevens, B., Suarez, M. J., Xu,
K.-M., von Salzen, K., Webb, M. J., Wolf, A., and Zhao, M.: CGILS: Results
from the first phase of an international project to understand the physical
mechanisms of low cloud feedbacks in single column models, J.
Adv. Model. Earth Sy., 5, 826–842, https://doi.org/10.1002/2013ms000246,
2013.
Zhang, M., Somerville, R. C. J., and Xie, S.: The SCM Concept and Creation
of ARM Forcing Datasets, Meteorol. Monogr., 57, 24.21–24.12,
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0040.1, 2016.
Zhang, Y., Li, J., Yu, R., Zhang, S., Liu, Z., Huang, J., and Zhou, Y.: A
Layer-Averaged Nonhydrostatic Dynamical Framework on an Unstructured Mesh
for Global and Regional Atmospheric Modeling: Model Description, Baseline
Evaluation, and Sensitivity Exploration, J. Adv. Model.
Earth Sy., 11, 1685–1714, https://doi.org/10.1029/2018MS001539, 2019.
Zhang, Y., Yu, R., Li, J., Liu, Z., Zhou, Y., Li, X., and Huang, X.: A
Multiscale Dynamical Model in a Dry-Mass Coordinate for Weather and Climate
Modeling: Moist Dynamics and Its Coupling to Physics, Mon. Weather
Rev., 148, 2671–2699, https://doi.org/10.1175/mwr-d-19-0305.1, 2020.
Zhang, Y., Yu, R., Li, J., Li, X., Rong, X., Peng, X., and Zhou, Y.: AMIP
Simulations of a Global Model for Unified Weather-Climate Forecast:
Understanding Precipitation Characteristics and Sensitivity Over East Asia,
J. Adv. Model. Earth Sy., 13, e2021MS002592, https://doi.org/10.1029/2021ms002592,
2021.
Zhang, Y., Li, X., Liu, Z., Rong, X., Li, J., Zhou, Y., and Chen, S.:
Resolution Sensitivity of the GRIST Nonhydrostatic Model From 120 to 5 km
(3.75 km) During the DYAMOND Winter, Earth Space Sci., 9, e2022EA002401,
https://doi.org/10.1029/2022ea002401, 2022.
Zhou, Y., Zhang, Y., Li, J., Yu, R., and Liu, Z.: Configuration and evaluation of a global unstructured mesh atmospheric model (GRIST-A20.9) based on the variable-resolution approach, Geosci. Model Dev., 13, 6325–6348, https://doi.org/10.5194/gmd-13-6325-2020, 2020.
Short summary
The weather and climate physics suites used in GRIST-A22.7.28 are compared using single-column modeling. The source of their discrepancies in terms of modeling cloud and precipitation is explored. Convective parameterization is found to be a key factor responsible for the differences. The two suites also have intrinsic differences in the interaction between microphysics and other processes, resulting in different cloud features and time step sensitivities.
The weather and climate physics suites used in GRIST-A22.7.28 are compared using single-column...