Articles | Volume 16, issue 10
https://doi.org/10.5194/gmd-16-2737-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-2737-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CLGAN: a generative adversarial network (GAN)-based video prediction model for precipitation nowcasting
Yan Ji
Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Michael Langguth
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Amirpasha Mozaffari
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Xiefei Zhi
Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Related authors
No articles found.
Adrian Rojas-Campos, Michael Langguth, Martin Wittenbrink, and Gordon Pipa
Geosci. Model Dev., 16, 1467–1480, https://doi.org/10.5194/gmd-16-1467-2023, https://doi.org/10.5194/gmd-16-1467-2023, 2023
Short summary
Short summary
Our paper presents an alternative approach for generating high-resolution precipitation maps based on the nonlinear combination of the complete set of variables of the numerical weather predictions. This process combines the super-resolution task with the bias correction in a single step, generating high-resolution corrected precipitation maps with a lead time of 3 h. We used using deep learning algorithms to combine the input information and increase the accuracy of the precipitation maps.
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022, https://doi.org/10.5194/gmd-15-8931-2022, 2022
Short summary
Short summary
Inspired by the success of deep learning in various domains, we test the applicability of video prediction methods by generative adversarial network (GAN)-based deep learning to predict the 2 m temperature over Europe. Our video prediction models have skill in predicting the diurnal cycle of 2 m temperature up to 12 h ahead. Complemented by probing the relevance of several model parameters, this study confirms the potential of deep learning in meteorological forecasting applications.
Ling Zou, Sabine Griessbach, Lars Hoffmann, Bing Gong, and Lunche Wang
Atmos. Chem. Phys., 20, 9939–9959, https://doi.org/10.5194/acp-20-9939-2020, https://doi.org/10.5194/acp-20-9939-2020, 2020
Short summary
Short summary
Cirrus clouds appearing in the upper troposphere and lower stratosphere have important impacts on the radiation budget and climate change. We revisited global stratospheric cirrus clouds with CALIPSO and for the first time with MIPAS satellite observations. Stratospheric cirrus clouds related to deep convection are frequently detected in the tropics. At middle latitudes, MIPAS detects more than twice as many stratospheric cirrus clouds due to higher detection sensitivity.
Related subject area
Atmospheric sciences
Long-term evaluation of surface air pollution in CAMSRA and MERRA-2 global reanalyses over Europe (2003–2020)
Emulating aerosol optics with randomly generated neural networks
Development of an ecophysiology module in the GEOS-Chem chemical transport model version 12.2.0 to represent biosphere–atmosphere fluxes relevant for ozone air quality
Comparison of ozone formation attribution techniques in the northeastern United States
Improving trajectory calculations by FLEXPART 10.4+ using single-image super-resolution
Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona: a case study with CALIOPE-Urban v1.0
Forecasting tropical cyclone tracks in the northwestern Pacific based on a deep-learning model
Accelerating models for multiphase chemical kinetics through machine learning with polynomial chaos expansion and neural networks
A machine learning emulator for Lagrangian particle dispersion model footprints: a case study using NAME
Improving the representation of shallow cumulus convection with the simplified-higher-order-closure–mass-flux (SHOC+MF v1.0) approach
ISAT v2.0: an integrated tool for nested-domain configurations and model-ready emission inventories for WRF-AQM
Estimation of CH4 emission based on an advanced 4D-LETKF assimilation system
Accelerated estimation of sea-spray-mediated heat flux using Gaussian quadrature: case studies with a coupled CFSv2.0-WW3 system
AMORE-Isoprene v1.0: a new reduced mechanism for gas-phase isoprene oxidation
A method for generating a quasi-linear convective system suitable for observing system simulation experiments
The second Met Office Unified Model–JULES Regional Atmosphere and Land configuration, RAL2
A dynamic ammonia emission model and the online coupling with WRF–Chem (WRF–SoilN–Chem v1.0): development and regional evaluation in China
SCIATRAN software package (V4.6): update and further development of aerosol, clouds, surface reflectance databases and models
Deep learning models for generation of precipitation maps based on numerical weather prediction
An inconsistency in aviation emissions between CMIP5 and CMIP6 and the implications for short-lived species and their radiative forcing
On the use of Infrared Atmospheric Sounding Interferometer (IASI) spectrally resolved radiances to test the EC-Earth climate model (v3.3.3) in clear-sky conditions
Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
The impact of altering emission data precision on compression efficiency and accuracy of simulations of the community multiscale air quality model
AerSett v1.0: a simple and straightforward model for the settling speed of big spherical atmospheric aerosols
How Does Cloud-Radiative Heating over the North Atlantic Change with Grid Spacing, Convective Parameterization, and Microphysics Scheme?
Optimization of weather forecasting for cloud cover over the European domain using the meteorological component of the Ensemble for Stochastic Integration of Atmospheric Simulations version 1.0
Bayesian transdimensional inverse reconstruction of the Fukushima Daiichi caesium 137 release
Intercomparison of the weather and climate physics suites of a unified forecast/climate model system (GRIST-A22.7.28) based on single column modeling
Implementation of HONO into the chemistry–climate model CHASER (V4.0): roles in tropospheric chemistry
Isoprene and monoterpene simulations using the chemistry–climate model EMAC (v2.55) with interactive vegetation from LPJ-GUESS (v4.0)
A modern-day Mars climate in the Met Office Unified Model: dry simulations
The AirGAM 2022r1 air quality trend and prediction model
Evaluation of a cloudy cold-air pool in the Columbia River basin in different versions of the High-Resolution Rapid Refresh (HRRR) model
Assessment of WRF (v 4.2.1) dynamically downscaled precipitation on subdaily and daily timescales over CONUS
Comparing Sentinel-5P TROPOMI NO2 column observations with the CAMS regional air quality ensemble
Cross-evaluating WRF-Chem v4.1.2, TROPOMI, APEX, and in situ NO2 measurements over Antwerp, Belgium
Adapting a deep convolutional RNN model with imbalanced regression loss for improved spatio-temporal forecasting of extreme wind speed events in the short to medium range
Technical descriptions of the experimental dynamical downscaling simulations over North America by the CAM5.4-MPAS4.0 variable-resolution model
Convective Gusts Nowcasting Based on Radar Reflectivity and a Deep Learning Algorithm
ICLASS 1.1, a variational Inverse modelling framework for the Chemistry Land-surface Atmosphere Soil Slab model: description, validation, and application
Towards an improved representation of carbonaceous aerosols over the Indian monsoon region in a regional climate model: RegCM
The E3SM Diagnostics Package (E3SM Diags v2.7): a Python-based diagnostics package for Earth system model evaluation
A method for transporting cloud-resolving model variance in a multiscale modeling framework
The Mission Support System (MSS v7.0.4) and its use in planning for the SouthTRAC aircraft campaign
GENerator of reduced Organic Aerosol mechanism (GENOA v1.0): an automatic generation tool of semi-explicit mechanisms
Representing chemical history in ozone time-series predictions – a model experiment study building on the MLAir (v1.5) deep learning framework
Evaluation of high-resolution predictions of fine particulate matter and its composition in an urban area using PMCAMx-v2.0
A local data assimilation method (Local DA v1.0) and its application in a simulated typhoon case
Updated Isoprene and Terpene Emission Factors for the Interactive BVOC Emission Scheme (iBVOC) in the United Kingdom Earth System Model (UKESM1.0)
Improved advection, resolution, performance, and community access in the new generation (version 13) of the high-performance GEOS-Chem global atmospheric chemistry model (GCHP)
Aleksander Lacima, Hervé Petetin, Albert Soret, Dene Bowdalo, Oriol Jorba, Zhaoyue Chen, Raúl F. Méndez Turrubiates, Hicham Achebak, Joan Ballester, and Carlos Pérez García-Pando
Geosci. Model Dev., 16, 2689–2718, https://doi.org/10.5194/gmd-16-2689-2023, https://doi.org/10.5194/gmd-16-2689-2023, 2023
Short summary
Short summary
Understanding how air pollution varies across space and time is of key importance for the safeguarding of human health. This work arose in the context of the project EARLY-ADAPT, for which the Barcelona Supercomputing Center developed an air pollution database covering all of Europe. Through different statistical methods, we compared two global pollution models against measurements from ground stations and found significant discrepancies between the observed and the modeled surface pollution.
Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C. Hardin
Geosci. Model Dev., 16, 2355–2370, https://doi.org/10.5194/gmd-16-2355-2023, https://doi.org/10.5194/gmd-16-2355-2023, 2023
Short summary
Short summary
Atmospheric aerosols play a critical role in Earth's climate, but it is too computationally expensive to directly model their interaction with radiation in climate simulations. This work develops a new neural-network-based parameterization of aerosol optical properties for use in the Energy Exascale Earth System Model that is much more accurate than the current one; it also introduces a unique model optimization method that involves randomly generating neural network architectures.
Joey C. Y. Lam, Amos P. K. Tai, Jason A. Ducker, and Christopher D. Holmes
Geosci. Model Dev., 16, 2323–2342, https://doi.org/10.5194/gmd-16-2323-2023, https://doi.org/10.5194/gmd-16-2323-2023, 2023
Short summary
Short summary
We developed a new component within an atmospheric chemistry model to better simulate plant ecophysiological processes relevant for ozone air quality. We showed that it reduces simulated biases in plant uptake of ozone in prior models. The new model enables us to explore how future climatic changes affect air quality via affecting plants, examine ozone–vegetation interactions and feedbacks, and evaluate the impacts of changing atmospheric chemistry and climate on vegetation productivity.
Qian Shu, Sergey L. Napelenok, William T. Hutzell, Kirk R. Baker, Barron H. Henderson, Benjamin N. Murphy, and Christian Hogrefe
Geosci. Model Dev., 16, 2303–2322, https://doi.org/10.5194/gmd-16-2303-2023, https://doi.org/10.5194/gmd-16-2303-2023, 2023
Short summary
Short summary
Source attribution methods are generally used to determine culpability of precursor emission sources to ambient pollutant concentrations. However, source attribution of secondarily formed pollutants such as ozone and its precursors cannot be explicitly measured, making evaluation of source apportionment methods challenging. In this study, multiple apportionment approach comparisons show common features but still reveal wide variations in predicted sector contribution and species dependency.
Rüdiger Brecht, Lucie Bakels, Alex Bihlo, and Andreas Stohl
Geosci. Model Dev., 16, 2181–2192, https://doi.org/10.5194/gmd-16-2181-2023, https://doi.org/10.5194/gmd-16-2181-2023, 2023
Short summary
Short summary
We use neural-network-based single-image super-resolution to improve the upscaling of meteorological wind fields to be used for particle dispersion models. This deep-learning-based methodology improves the standard linear interpolation typically used in particle dispersion models. The improvement of wind fields leads to substantial improvement in the computed trajectories of the particles.
Alvaro Criado, Jan Mateu Armengol, Hervé Petetin, Daniel Rodriguez-Rey, Jaime Benavides, Marc Guevara, Carlos Pérez García-Pando, Albert Soret, and Oriol Jorba
Geosci. Model Dev., 16, 2193–2213, https://doi.org/10.5194/gmd-16-2193-2023, https://doi.org/10.5194/gmd-16-2193-2023, 2023
Short summary
Short summary
This work aims to derive and evaluate a general statistical post-processing tool specifically designed for the street scale that can be applied to any urban air quality system. Our data fusion methodology corrects NO2 fields based on continuous hourly observations and experimental campaigns. This study enables us to obtain exceedance probability maps of air quality standards. In 2019, 13 % of the Barcelona area had a 70 % or higher probability of exceeding the annual legal NO2 limit of 40 µg/m3.
Liang Wang, Bingcheng Wan, Shaohui Zhou, Haofei Sun, and Zhiqiu Gao
Geosci. Model Dev., 16, 2167–2179, https://doi.org/10.5194/gmd-16-2167-2023, https://doi.org/10.5194/gmd-16-2167-2023, 2023
Short summary
Short summary
The past 24 h TC trajectories and meteorological field data were used to forecast TC tracks in the northwestern Pacific from hours 6–72 based on GRU_CNN, which we proposed in this paper and which has better prediction results than traditional single deep-learning methods. The historical steering flow of cyclones has a significant effect on improving the accuracy of short-term forecasting, while, in long-term forecasting, the SST and geopotential height will have a particular impact.
Thomas Berkemeier, Matteo Krüger, Aryeh Feinberg, Marcel Müller, Ulrich Pöschl, and Ulrich K. Krieger
Geosci. Model Dev., 16, 2037–2054, https://doi.org/10.5194/gmd-16-2037-2023, https://doi.org/10.5194/gmd-16-2037-2023, 2023
Short summary
Short summary
Kinetic multi-layer models (KMs) successfully describe heterogeneous and multiphase atmospheric chemistry. In applications requiring repeated execution, however, these models can be too expensive. We trained machine learning surrogate models on output of the model KM-SUB and achieved high correlations. The surrogate models run orders of magnitude faster, which suggests potential applicability in global optimization tasks and as sub-modules in large-scale atmospheric models.
Elena Fillola, Raul Santos-Rodriguez, Alistair Manning, Simon O'Doherty, and Matt Rigby
Geosci. Model Dev., 16, 1997–2009, https://doi.org/10.5194/gmd-16-1997-2023, https://doi.org/10.5194/gmd-16-1997-2023, 2023
Short summary
Short summary
Lagrangian particle dispersion models are used extensively for the estimation of greenhouse gas (GHG) fluxes using atmospheric observations. However, these models do not scale well as data volumes increase. Here, we develop a proof-of-concept machine learning emulator that can produce outputs similar to those of the dispersion model, but 50 000 times faster, using only meteorological inputs. This works demonstrates the potential of machine learning to accelerate GHG estimations across the globe.
Maria J. Chinita, Mikael Witte, Marcin J. Kurowski, Joao Teixeira, Kay Suselj, Georgios Matheou, and Peter Bogenschutz
Geosci. Model Dev., 16, 1909–1924, https://doi.org/10.5194/gmd-16-1909-2023, https://doi.org/10.5194/gmd-16-1909-2023, 2023
Short summary
Short summary
Low clouds are one of the largest sources of uncertainty in climate prediction. In this paper, we introduce the first version of the unified turbulence and shallow convection parameterization named SHOC+MF developed to improve the representation of shallow cumulus clouds in the Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM). Here, we also show promising preliminary results in a single-column model framework for two benchmark cases of shallow cumulus convection.
Kun Wang, Chao Gao, Kai Wu, Kaiyun Liu, Haofan Wang, Mo Dan, Xiaohui Ji, and Qingqing Tong
Geosci. Model Dev., 16, 1961–1973, https://doi.org/10.5194/gmd-16-1961-2023, https://doi.org/10.5194/gmd-16-1961-2023, 2023
Short summary
Short summary
This study establishes an easy-to-use and integrated framework for a model-ready emission inventory for the Weather Research and Forecasting (WRF)–Air Quality Numerical Model (AQM). A free tool called the ISAT (Inventory Spatial Allocation Tool) was developed based on this framework. ISAT helps users complete the workflow from the WRF nested-domain configuration to a model-ready emission inventory for AQM with a regional emission inventory and a shapefile for the target region.
Jagat S. H. Bisht, Prabir K. Patra, Masayuki Takigawa, Takashi Sekiya, Yugo Kanaya, Naoko Saitoh, and Kazuyuki Miyazaki
Geosci. Model Dev., 16, 1823–1838, https://doi.org/10.5194/gmd-16-1823-2023, https://doi.org/10.5194/gmd-16-1823-2023, 2023
Short summary
Short summary
In this study, we estimated CH4 fluxes using an advanced 4D-LETKF method. The system was tested and optimized using observation system simulation experiments (OSSEs), where a known surface emission distribution is retrieved from synthetic observations. The availability of satellite measurements has increased, and there are still many missions focused on greenhouse gas observations that have not yet launched. The technique being referred to has the potential to improve estimates of CH4 fluxes.
Ruizi Shi and Fanghua Xu
Geosci. Model Dev., 16, 1839–1856, https://doi.org/10.5194/gmd-16-1839-2023, https://doi.org/10.5194/gmd-16-1839-2023, 2023
Short summary
Short summary
Based on the Gaussian quadrature method, a fast algorithm of sea-spray-mediated heat flux is developed. Compared with the widely used single-radius algorithm, the new fast algorithm shows a better agreement with the full spectrum integral of spray flux. The new fast algorithm is evaluated in a coupled modeling system, and the simulations of sea surface temperature, wind speed and wave height are improved. Thereby, the new fast algorithm has great potential to be used in coupled modeling systems.
Forwood Wiser, Bryan K. Place, Siddhartha Sen, Havala O. T. Pye, Benjamin Yang, Daniel M. Westervelt, Daven K. Henze, Arlene M. Fiore, and V. Faye McNeill
Geosci. Model Dev., 16, 1801–1821, https://doi.org/10.5194/gmd-16-1801-2023, https://doi.org/10.5194/gmd-16-1801-2023, 2023
Short summary
Short summary
We developed a reduced model of atmospheric isoprene oxidation, AMORE-Isoprene 1.0. It was created using a new Automated Model Reduction (AMORE) method designed to simplify complex chemical mechanisms with minimal manual adjustments to the output. AMORE-Isoprene 1.0 has improved accuracy and similar size to other reduced isoprene mechanisms. When included in the CRACMM mechanism, it improved the accuracy of EPA’s CMAQ model predictions for the northeastern USA compared to observations.
Jonathan D. Labriola, Jeremy A. Gibbs, and Louis J. Wicker
Geosci. Model Dev., 16, 1779–1799, https://doi.org/10.5194/gmd-16-1779-2023, https://doi.org/10.5194/gmd-16-1779-2023, 2023
Short summary
Short summary
Observing system simulation experiments (OSSEs) are simulated case studies used to understand how different assimilated weather observations impact forecast skill. This study introduces the methods used to create an OSSE for a tornadic quasi-linear convective system event. These steps provide an opportunity to simulate a realistic high-impact weather event and can be used to encourage a more diverse set of OSSEs.
Mike Bush, Ian Boutle, John Edwards, Anke Finnenkoetter, Charmaine Franklin, Kirsty Hanley, Aravindakshan Jayakumar, Huw Lewis, Adrian Lock, Marion Mittermaier, Saji Mohandas, Rachel North, Aurore Porson, Belinda Roux, Stuart Webster, and Mark Weeks
Geosci. Model Dev., 16, 1713–1734, https://doi.org/10.5194/gmd-16-1713-2023, https://doi.org/10.5194/gmd-16-1713-2023, 2023
Short summary
Short summary
Building on the baseline of RAL1, the RAL2 science configuration is used for regional modelling around the UM partnership and in operations at the Met Office. RAL2 has been tested in different parts of the world including Australia, India and the UK. RAL2 increases medium and low cloud amounts in the mid-latitudes compared to RAL1, leading to improved cloud forecasts and a reduced diurnal cycle of screen temperature. There is also a reduction in the frequency of heavier precipitation rates.
Chuanhua Ren, Xin Huang, Tengyu Liu, Yu Song, Zhang Wen, Xuejun Liu, Aijun Ding, and Tong Zhu
Geosci. Model Dev., 16, 1641–1659, https://doi.org/10.5194/gmd-16-1641-2023, https://doi.org/10.5194/gmd-16-1641-2023, 2023
Short summary
Short summary
Ammonia in the atmosphere has wide impacts on the ecological environment and air quality, and its emission from soil volatilization is highly sensitive to meteorology, making it challenging to be well captured in models. We developed a dynamic emission model capable of calculating ammonia emission interactively with meteorological and soil conditions. Such a coupling of soil emission with meteorology provides a better understanding of ammonia emission and its contribution to atmospheric aerosol.
Linlu Mei, Vladimir Rozanov, Alexei Rozanov, and John P. Burrows
Geosci. Model Dev., 16, 1511–1536, https://doi.org/10.5194/gmd-16-1511-2023, https://doi.org/10.5194/gmd-16-1511-2023, 2023
Short summary
Short summary
This paper summarizes recent developments of aerosol, cloud and surface reflectance databases and models in the framework of the software package SCIATRAN. These updates and developments extend the capabilities of the radiative transfer modeling, especially by accounting for different kinds of vertical inhomogeneties. Vertically inhomogeneous clouds and different aerosol types can be easily accounted for within SCIATRAN (V4.6). The widely used surface models and databases are now available.
Adrian Rojas-Campos, Michael Langguth, Martin Wittenbrink, and Gordon Pipa
Geosci. Model Dev., 16, 1467–1480, https://doi.org/10.5194/gmd-16-1467-2023, https://doi.org/10.5194/gmd-16-1467-2023, 2023
Short summary
Short summary
Our paper presents an alternative approach for generating high-resolution precipitation maps based on the nonlinear combination of the complete set of variables of the numerical weather predictions. This process combines the super-resolution task with the bias correction in a single step, generating high-resolution corrected precipitation maps with a lead time of 3 h. We used using deep learning algorithms to combine the input information and increase the accuracy of the precipitation maps.
Robin N. Thor, Mariano Mertens, Sigrun Matthes, Mattia Righi, Johannes Hendricks, Sabine Brinkop, Phoebe Graf, Volker Grewe, Patrick Jöckel, and Steven Smith
Geosci. Model Dev., 16, 1459–1466, https://doi.org/10.5194/gmd-16-1459-2023, https://doi.org/10.5194/gmd-16-1459-2023, 2023
Short summary
Short summary
We report on an inconsistency in the latitudinal distribution of aviation emissions between two versions of a data product which is widely used by researchers. From the available documentation, we do not expect such an inconsistency. We run a chemistry–climate model to compute the effect of the inconsistency in emissions on atmospheric chemistry and radiation and find that the radiative forcing associated with aviation ozone is 7.6 % higher when using the less recent version of the data.
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394, https://doi.org/10.5194/gmd-16-1379-2023, https://doi.org/10.5194/gmd-16-1379-2023, 2023
Short summary
Short summary
The long-term comparison between observed and simulated outgoing longwave radiances represents a strict test to evaluate climate model performance. In this work, 9 years of synthetic spectrally resolved radiances, simulated online on the basis of the atmospheric fields predicted by the EC-Earth global climate model (v3.3.3) in clear-sky conditions, are compared to IASI spectral radiance climatology in order to detect model biases in temperature and humidity at different atmospheric levels.
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023, https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary
Short summary
Aerosol has a large impact on climate. Using a lidar aerosol simulator ensures consistent comparisons between modeled and observed aerosol. We present a lidar aerosol simulator that applies a cloud masking and an aerosol detection threshold. We estimate the lidar signals that would be observed at 532 nm by the Cloud-Aerosol Lidar with Orthogonal Polarization overflying the atmosphere predicted by a climate model. Our comparison at the seasonal timescale shows a discrepancy in the Southern Ocean.
Michael S. Walters and David C. Wong
Geosci. Model Dev., 16, 1179–1190, https://doi.org/10.5194/gmd-16-1179-2023, https://doi.org/10.5194/gmd-16-1179-2023, 2023
Short summary
Short summary
A typical numerical simulation that associates with a large amount of input and output data, applying popular compression software, gzip or bzip2, on data is one good way to mitigate data storage burden. This article proposes a simple technique to alter input, output, or input and output by keeping a specific number of significant digits in data and demonstrates an enhancement in compression efficiency on the altered data but maintains similar statistical performance of the numerical simulation.
Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel
Geosci. Model Dev., 16, 1119–1127, https://doi.org/10.5194/gmd-16-1119-2023, https://doi.org/10.5194/gmd-16-1119-2023, 2023
Short summary
Short summary
Large or even
giantparticles of mineral dust exist in the atmosphere but, so far, solving an non-linear equation was needed to calculate the speed at which they fall in the atmosphere. The model we present, AerSett v1.0 (AERosol SETTling version 1.0), provides a new and simple way of calculating their free-fall velocity in the atmosphere, which will be useful to anyone trying to understand and represent adequately the transport of giant dust particles by the wind.
Sylvia Sullivan, Behrooz Keshtgar, Nicole Albern, Elzina Bala, Christoph Braun, Anubhav Choudhary, Johannes Hörner, Hilke Lentink, Georgios Papavasileiou, and Aiko Voigt
EGUsphere, https://doi.org/10.5194/egusphere-2023-109, https://doi.org/10.5194/egusphere-2023-109, 2023
Short summary
Short summary
Clouds absorb and reemit infrared radiation from Earth's surface and absorb and reflect incoming solar radiation. As a result, they change atmospheric temperature gradients that drive large-scale circulation. To better simulate this circulation, we study how the radiative heating and cooling from clouds depends on model settings like grid spacing, whether we describe convection approximately or exactly, and the level of detail used to describe small-scale processes, or microphysics, in clouds.
Yen-Sen Lu, Garrett H. Good, and Hendrik Elbern
Geosci. Model Dev., 16, 1083–1104, https://doi.org/10.5194/gmd-16-1083-2023, https://doi.org/10.5194/gmd-16-1083-2023, 2023
Short summary
Short summary
The Weather Forecasting and Research (WRF) model consists of many parameters and options that can be adapted to different conditions. This expansive sensitivity study uses a large-scale simulation system to determine the most suitable options for predicting cloud cover in Europe for deterministic and probabilistic weather predictions for day-ahead forecasting simulations.
Joffrey Dumont Le Brazidec, Marc Bocquet, Olivier Saunier, and Yelva Roustan
Geosci. Model Dev., 16, 1039–1052, https://doi.org/10.5194/gmd-16-1039-2023, https://doi.org/10.5194/gmd-16-1039-2023, 2023
Short summary
Short summary
When radionuclides are released into the atmosphere, the assessment of the consequences depends on the evaluation of the magnitude and temporal evolution of the release, which can be highly variable as in the case of Fukushima Daiichi.
Here, we propose Bayesian inverse modelling methods and the reversible-jump Markov chain Monte Carlo technique, which allows one to evaluate the temporal variability of the release and to integrate different types of information in the source reconstruction.
Xiaohan Li, Yi Zhang, Xindong Peng, Baiquan Zhou, Jian Li, and Yiming Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-283, https://doi.org/10.5194/gmd-2022-283, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
The weather and climate physics suites used in GRIST-A22.7.28 are compared using single column modeling. The source of their discrepancies in terms of modeling cloud and precipitation is explored. Convective parameterization is found to be a key factor responsible for the differences. The two suites also have intrinsic differences in the interaction between microphysics and other processes, resulting in different cloud features and time step sensitivities.
Phuc Thi Minh Ha, Yugo Kanaya, Fumikazu Taketani, Maria Dolores Andrés Hernández, Benjamin Schreiner, Klaus Pfeilsticker, and Kengo Sudo
Geosci. Model Dev., 16, 927–960, https://doi.org/10.5194/gmd-16-927-2023, https://doi.org/10.5194/gmd-16-927-2023, 2023
Short summary
Short summary
HONO affects tropospheric oxidizing capacity; thus, it is implemented into the chemistry–climate model CHASER. The model substantially underpredicts daytime HONO, while nitrate photolysis on surfaces can supplement the daytime HONO budget. Current HONO chemistry predicts reductions of 20.4 % for global tropospheric NOx, 40–67 % for OH, and 30–45 % for O3 in the summer North Pacific. In contrast, OH and O3 winter levels in China are greatly enhanced.
Ryan Vella, Matthew Forrest, Jos Lelieveld, and Holger Tost
Geosci. Model Dev., 16, 885–906, https://doi.org/10.5194/gmd-16-885-2023, https://doi.org/10.5194/gmd-16-885-2023, 2023
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) are released by vegetation and have a major impact on atmospheric chemistry and aerosol formation. Non-interacting vegetation constrains the majority of numerical models used to estimate global BVOC emissions, and thus, the effects of changing vegetation on emissions are not addressed. In this work, we replace the offline vegetation with dynamic vegetation states by linking a chemistry–climate model with a global dynamic vegetation model.
Danny McCulloch, Denis E. Sergeev, Nathan Mayne, Matthew Bate, James Manners, Ian Boutle, Benjamin Drummond, and Kristzian Kohary
Geosci. Model Dev., 16, 621–657, https://doi.org/10.5194/gmd-16-621-2023, https://doi.org/10.5194/gmd-16-621-2023, 2023
Short summary
Short summary
We present results from the Met Office Unified Model (UM) to study the dry Martian climate. We describe our model set-up conditions and run two scenarios, with radiatively active/inactive dust. We compare both scenarios to results from an existing Mars climate model, the planetary climate model. We find good agreement in winds and air temperatures, but dust amounts differ between models. This study highlights the importance of using the UM for future Mars research.
Sam-Erik Walker, Sverre Solberg, Philipp Schneider, and Cristina Guerreiro
Geosci. Model Dev., 16, 573–595, https://doi.org/10.5194/gmd-16-573-2023, https://doi.org/10.5194/gmd-16-573-2023, 2023
Short summary
Short summary
We have developed a statistical model for estimating trends in the daily air quality observations of NO2, O3, PM10 and PM2.5, adjusting for trends and short-term variations in meteorology. The model is general and may also be used for prediction purposes, including forecasting. It has been applied in a recent comprehensive study in Europe. Significant declines are shown for the pollutants from 2005 to 2019, mainly due to reductions in emissions not attributable to changes in meteorology.
Bianca Adler, James M. Wilczak, Jaymes Kenyon, Laura Bianco, Irina V. Djalalova, Joseph B. Olson, and David D. Turner
Geosci. Model Dev., 16, 597–619, https://doi.org/10.5194/gmd-16-597-2023, https://doi.org/10.5194/gmd-16-597-2023, 2023
Short summary
Short summary
Rapid changes in wind speed make the integration of wind energy produced during persistent orographic cold-air pools difficult to integrate into the electrical grid. By evaluating three versions of NOAA’s High-Resolution Rapid Refresh model, we demonstrate how model developments targeted during the second Wind Forecast Improvement Project improve the forecast of a persistent cold-air pool event.
Abhishekh Kumar Srivastava, Paul Aaron Ullrich, Deeksha Rastogi, Pouya Vahmani, Andrew Jones, and Richard Grotjahn
EGUsphere, https://doi.org/10.5194/egusphere-2022-1382, https://doi.org/10.5194/egusphere-2022-1382, 2023
Short summary
Short summary
Stakeholders need high-resolution regional climate data for applications such as assessing water availability, mountain snowpack, etc. This study examines 3- and 24-hr historical precipitation over the contiguous United States in the 12-km WRF version 4.2.1-based dynamical downscaling of the ERA5 reanalysis. WRF improves precipitation characteristics such as the annual cycle and distribution of the precipitation maxima, but it also displays regionally and seasonally varying precipitation biases.
John Douros, Henk Eskes, Jos van Geffen, K. Folkert Boersma, Steven Compernolle, Gaia Pinardi, Anne-Marlene Blechschmidt, Vincent-Henri Peuch, Augustin Colette, and Pepijn Veefkind
Geosci. Model Dev., 16, 509–534, https://doi.org/10.5194/gmd-16-509-2023, https://doi.org/10.5194/gmd-16-509-2023, 2023
Short summary
Short summary
We focus on the challenges associated with comparing atmospheric composition models with satellite products such as tropospheric NO2 columns. The aim is to highlight the methodological difficulties and propose sound ways of doing such comparisons. Building on the comparisons, a new satellite product is proposed and made available, which takes advantage of higher-resolution, regional atmospheric modelling to improve estimates of troposheric NO2 columns over Europe.
Catalina Poraicu, Jean-François Müller, Trissevgeni Stavrakou, Dominique Fonteyn, Frederik Tack, Felix Deutsch, Quentin Laffineur, Roeland Van Malderen, and Nele Veldeman
Geosci. Model Dev., 16, 479–508, https://doi.org/10.5194/gmd-16-479-2023, https://doi.org/10.5194/gmd-16-479-2023, 2023
Short summary
Short summary
High-resolution WRF-Chem simulations are conducted over Antwerp, Belgium, in June 2019 and evaluated using meteorological data and in situ, airborne, and spaceborne NO2 measurements. An intercomparison of model, aircraft, and TROPOMI NO2 columns is conducted to characterize biases in versions 1.3.1 and 2.3.1 of the satellite product. A mass balance method is implemented to provide improved emissions for simulating NO2 distribution over the study area.
Daan R. Scheepens, Irene Schicker, Kateřina Hlaváčková-Schindler, and Claudia Plant
Geosci. Model Dev., 16, 251–270, https://doi.org/10.5194/gmd-16-251-2023, https://doi.org/10.5194/gmd-16-251-2023, 2023
Short summary
Short summary
The production of wind energy is increasing rapidly and relies heavily on atmospheric conditions. To ensure power grid stability, accurate predictions of wind speed are needed, especially in the short range and for extreme wind speed ranges. In this work, we demonstrate the forecasting skills of a data-driven deep learning model with model adaptations to suit higher wind speed ranges. The resulting model can be applied to other data and parameters, too, to improve nowcasting predictions.
Koichi Sakaguchi, L. Ruby Leung, Colin M. Zarzycki, Jihyeon Jang, Seth McGinnis, Bryce E. Harrop, William C. Skamarock, Andrew Gettelman, Chun Zhao, William J. Gutowski, Stephen Leak, and Linda Mearns
EGUsphere, https://doi.org/10.5194/egusphere-2022-1199, https://doi.org/10.5194/egusphere-2022-1199, 2023
Short summary
Short summary
We document details of the regional climate downscaling dataset produced by a global variable-resolution model. The experiment is unique for its following a standard protocol designed for coordinated experiments of regional models. Negligible influence of post-processing on statistical analysis, importance of simulation quality outside of the target region, and computational challenges that our model code faced under rapidly changing super computer systems are illustrated.
Haixia Xiao, Yaqiang Wang, Yu Zheng, Yuanyuan Zheng, Xiaoran Zhuang, Hongyan Wang, and Mei Gao
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-272, https://doi.org/10.5194/gmd-2022-272, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Due to the small-scale and nonstationary nature of convective wind gusts (CGs), reliable CGs nowcasting has remained unattainable. Here, we developed a deep learning model – namely CGsNet – for 0–2 hours of quantitative CGs nowcasting, first achieving minute-kilometer-level forecasts. Based on CGsNet model, the average surface wind speed (ASWS) and peak wind gust speed (PWGS) predictions are obtained. Experiments indicate that CGsNet exhibits higher accuracy than the traditional method.
Peter J. M. Bosman and Maarten C. Krol
Geosci. Model Dev., 16, 47–74, https://doi.org/10.5194/gmd-16-47-2023, https://doi.org/10.5194/gmd-16-47-2023, 2023
Short summary
Short summary
We describe an inverse modelling framework constructed around a simple model for the atmospheric boundary layer. This framework can be fed with various observation types to study the boundary layer and land–atmosphere exchange. With this framework, it is possible to estimate model parameters and the associated uncertainties. Some of these parameters are difficult to obtain directly by observations. An example application for a grassland in the Netherlands is included.
Sudipta Ghosh, Sagnik Dey, Sushant Das, Nicole Riemer, Graziano Giuliani, Dilip Ganguly, Chandra Venkataraman, Filippo Giorgi, Sachchida Nand Tripathi, Srikanthan Ramachandran, Thazhathakal Ayyappen Rajesh, Harish Gadhavi, and Atul Kumar Srivastava
Geosci. Model Dev., 16, 1–15, https://doi.org/10.5194/gmd-16-1-2023, https://doi.org/10.5194/gmd-16-1-2023, 2023
Short summary
Short summary
Accurate representation of aerosols in climate models is critical for minimizing the uncertainty in climate projections. Here, we implement region-specific emission fluxes and a more accurate scheme for carbonaceous aerosol ageing processes in a regional climate model (RegCM4) and show that it improves model performance significantly against in situ, reanalysis, and satellite data over the Indian subcontinent. We recommend improving the model performance before using them for climate studies.
Chengzhu Zhang, Jean-Christophe Golaz, Ryan Forsyth, Tom Vo, Shaocheng Xie, Zeshawn Shaheen, Gerald L. Potter, Xylar S. Asay-Davis, Charles S. Zender, Wuyin Lin, Chih-Chieh Chen, Chris R. Terai, Salil Mahajan, Tian Zhou, Karthik Balaguru, Qi Tang, Cheng Tao, Yuying Zhang, Todd Emmenegger, Susannah Burrows, and Paul A. Ullrich
Geosci. Model Dev., 15, 9031–9056, https://doi.org/10.5194/gmd-15-9031-2022, https://doi.org/10.5194/gmd-15-9031-2022, 2022
Short summary
Short summary
Earth system model (ESM) developers run automated analysis tools on data from candidate models to inform model development. This paper introduces a new Python package, E3SM Diags, that has been developed to support ESM development and use routinely in the development of DOE's Energy Exascale Earth System Model. This tool covers a set of essential diagnostics to evaluate the mean physical climate from simulations, as well as several process-oriented and phenomenon-based evaluation diagnostics.
Walter Hannah and Kyle Pressel
Geosci. Model Dev., 15, 8999–9013, https://doi.org/10.5194/gmd-15-8999-2022, https://doi.org/10.5194/gmd-15-8999-2022, 2022
Short summary
Short summary
A multiscale modeling framework couples two models of the atmosphere that each cover different scale ranges. Traditionally, fluctuations in the small-scale model are not transported by the flow on the large-scale model grid, but this is hypothesized to be responsible for a persistent, unphysical checkerboard pattern. A method is presented to facilitate the transport of these small-scale fluctuations, analogous to how small-scale clouds and turbulence are transported in the real atmosphere.
Reimar Bauer, Jens-Uwe Grooß, Jörn Ungermann, May Bär, Markus Geldenhuys, and Lars Hoffmann
Geosci. Model Dev., 15, 8983–8997, https://doi.org/10.5194/gmd-15-8983-2022, https://doi.org/10.5194/gmd-15-8983-2022, 2022
Short summary
Short summary
The Mission Support System (MSS) is an open source software package that has been used for planning flight tracks of scientific aircraft in multiple measurement campaigns during the last decade. Here, we describe the MSS software and its use during the SouthTRAC measurement campaign in 2019. As an example for how the MSS software is used in conjunction with many datasets, we describe the planning of a single flight probing orographic gravity waves propagating up into the lower mesosphere.
Zhizhao Wang, Florian Couvidat, and Karine Sartelet
Geosci. Model Dev., 15, 8957–8982, https://doi.org/10.5194/gmd-15-8957-2022, https://doi.org/10.5194/gmd-15-8957-2022, 2022
Short summary
Short summary
Air quality models need to reliably predict secondary organic aerosols (SOAs) at a reasonable computational cost. Thus, we developed GENOA v1.0, a mechanism reduction algorithm that preserves the accuracy of detailed gas-phase chemical mechanisms for SOA formation, thereby improving the practical use of actual chemistry in SOA models. With GENOA, a near-explicit chemical scheme was reduced to 2 % of its original size and computational time, with an average error of less than 3 %.
Felix Kleinert, Lukas H. Leufen, Aurelia Lupascu, Tim Butler, and Martin G. Schultz
Geosci. Model Dev., 15, 8913–8930, https://doi.org/10.5194/gmd-15-8913-2022, https://doi.org/10.5194/gmd-15-8913-2022, 2022
Short summary
Short summary
We examine the effects of spatially aggregated upstream information as input for a deep learning model forecasting near-surface ozone levels. Using aggregated data from one upstream sector (45°) improves the forecast by ~ 10 % for 4 prediction days. Three upstream sectors improve the forecasts by ~ 14 % on the first 2 d only. Our results serve as an orientation for other researchers or environmental agencies focusing on pointwise time-series predictions, for example, due to regulatory purposes.
Brian T. Dinkelacker, Pablo Garcia Rivera, Ioannis Kioutsioukis, Peter J. Adams, and Spyros N. Pandis
Geosci. Model Dev., 15, 8899–8912, https://doi.org/10.5194/gmd-15-8899-2022, https://doi.org/10.5194/gmd-15-8899-2022, 2022
Short summary
Short summary
The performance of a chemical transport model in reproducing PM2.5 concentrations and composition was evaluated at the finest scale using measurements from regulatory sites as well as a network of low-cost monitors. Total PM2.5 mass is reproduced well by the model during the winter when compared to regulatory measurements, but in the summer PM2.5 is underpredicted, mainly due to difficulties in reproducing regional secondary organic aerosol levels.
Shizhang Wang and Xiaoshi Qiao
Geosci. Model Dev., 15, 8869–8897, https://doi.org/10.5194/gmd-15-8869-2022, https://doi.org/10.5194/gmd-15-8869-2022, 2022
Short summary
Short summary
A local data assimilation scheme (Local DA v1.0) was proposed to leverage the advantage of hybrid covariance, multiscale localization, and parallel computation. The Local DA can perform covariance localization in model space, observation space, or both spaces. The Local DA that used the hybrid covariance and double-space localization produced the lowest analysis and forecast errors among all observing system simulation experiments.
James Weber, James A. King, Katerina Sindelarova, and Maria Val Martin
EGUsphere, https://doi.org/10.5194/egusphere-2022-748, https://doi.org/10.5194/egusphere-2022-748, 2022
Short summary
Short summary
The emissions of volatile organic compounds from vegetation (BVOCs) influence atmospheric composition and the contribute to certain gases and aerosols (tiny airborne particles) which play a role in climate change. BVOC emissions are likely to change in the future due to changes in climate and land use. Therefore, accurate simulation of BVOC emission is important and this study describes an update to the simulation of BVOC emissions in the United Kingdom Earth System Model (UKESM).
Randall V. Martin, Sebastian D. Eastham, Liam Bindle, Elizabeth W. Lundgren, Thomas L. Clune, Christoph A. Keller, William Downs, Dandan Zhang, Robert A. Lucchesi, Melissa P. Sulprizio, Robert M. Yantosca, Yanshun Li, Lucas Estrada, William M. Putman, Benjamin M. Auer, Atanas L. Trayanov, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 15, 8731–8748, https://doi.org/10.5194/gmd-15-8731-2022, https://doi.org/10.5194/gmd-15-8731-2022, 2022
Short summary
Short summary
Atmospheric chemistry models must be able to operate both online as components of Earth system models and offline as standalone models. The widely used GEOS-Chem model operates both online and offline, but the classic offline version is not suitable for massively parallel simulations. We describe a new generation of the offline high-performance GEOS-Chem (GCHP) that enables high-resolution simulations on thousands of cores, including on the cloud, with improved access, performance, and accuracy.
Cited articles
Austin, G. and Bellon, A.: The use of digital weather radar records for
short-term precipitation forecasting, Q. J. Roy.
Meteor. Soc., 100, 658–664,
https://doi.org/10.1002/qj.49710042612, 1974. a
Ayzel, G., Heistermann, M., and Winterrath, T.: Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1), Geosci. Model Dev., 12, 1387–1402, https://doi.org/10.5194/gmd-12-1387-2019, 2019. a, b
Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. a, b, c, d
Bowler, N. E., Pierce, C. E., and Seed, A.: Development of a precipitation
nowcasting algorithm based upon optical flow techniques, J. Hydrol., 288, 74–91,
https://doi.org/10.1016/j.jhydrol.2003.11.011, 2004. a
Bowler, N. E., Pierce, C. E., and Seed, A. W.: STEPS: A probabilistic
precipitation forecasting scheme which merges an extrapolation nowcast with
downscaled NWP, Q. J. Roy. Meteor. Soc., 132, 2127–2155, https://doi.org/10.1256/qj.04.100,
2006. a, b
Davis, C., Brown, B., and Bullock, R.: Object-based verification of
precipitation forecasts. Part I: Methodology and application to mesoscale
rain areas, Mon. Weather Rev., 134, 1772–1784,
https://doi.org/10.1175/MWR3145.1, 2006. a
Daw, A., Karpatne, A., Watkins, W. D., Read, J. S., and Kumar, V.:
Physics-guided neural networks (pgnn): An application in lake temperature
modeling, in: Knowledge-Guided Machine Learning, 353–372, Chapman and
Hall/CRC, https://doi.org/10.1201/9781003143376-15, 2017. a
Dixon, M. and Wiener, G.: TITAN: Thunderstorm identification, tracking,
analysis, and nowcasting – A radar-based methodology, J. Atmos. Ocean. Tech., 10, 785–797,
https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2,
1993. a, b
Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., and Pal, C.: The
importance of skip connections in biomedical image segmentation, in: Deep
learning and data labeling for medical applications, 179–187, Springer,
https://doi.org/10.1007/978-3-319-46976-8_19, 2016. a
Ebert, E. E.: Fuzzy verification of high-resolution gridded forecasts: a review
and proposed framework, Meteorol. Appl., 15,
51–64, https://doi.org/10.1002/met.25, 2008. a
Ebert, F., Finn, C., Lee, A. X., and Levine, S.: Self-Supervised Visual Planning with Temporal Skip Connections, in: CoRL, arXiv preprint arXiv:1710.05268, 344–356, 2017. a
Efron, B. and Tibshirani, R. J.: An introduction to the bootstrap, CRC press,
https://doi.org/10.1201/9780429246593, 1994. a
Ganguly, A. R. and Bras, R. L.: Distributed quantitative precipitation
forecasting using information from radar and numerical weather prediction
models, J. Hydrometeorol., 4, 1168–1180,
https://doi.org/10.1175/1525-7541(2003)004<1168:DQPFUI>2.0.CO;2,
2003. a
Garcia-Garcia, A., Martinez-Gonzalez, P., Oprea, S., Castro-Vargas, J. A.,
Orts-Escolano, S., Garcia-Rodriguez, J., and Jover-Alvarez, A.: The robotrix:
An extremely photorealistic and very-large-scale indoor dataset of sequences
with robot trajectories and interactions, in: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 6790–6797, IEEE,
https://doi.org/10.1109/IROS.2018.8594495, 2018. a
Germann, U. and Zawadzki, I.: Scale-dependence of the predictability of
precipitation from continental radar images. Part I: Description of the
methodology, Mon. Weather Rev., 130, 2859–2873,
https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2,
2002. a, b
Gong, B., Langguth, M., Ji, Y., Mozaffari, A., Stadtler, S., Mache, K., and Schultz, M. G.: Temperature forecasting by deep learning methods, Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022, 2022. a, b
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y.: Generative adversarial networks,
Communications of the ACM, 63, 139–144,
https://doi.org/10.1145/3422622, 2020. a, b
Grecu, M. and Krajewski, W.: A large-sample investigation of statistical
procedures for radar-based short-term quantitative precipitation forecasting,
J. Hydrol., 239, 69–84,
https://doi.org/10.1016/S0022-1694(00)00360-7, 2000. a
Harris, L., McRae, A. T., Chantry, M., Dueben, P. D., and Palmer, T. N.: A
Generative Deep Learning Approach to Stochastic Downscaling of Precipitation
Forecasts, arXiv preprint arXiv:2204.02028,
https://doi.org/10.1029/2022MS003120, 2022. a
Hu, A., Cotter, F., Mohan, N., Gurau, C., and Kendall, A.: Probabilistic future
prediction for video scene understanding, in: European Conference on Computer
Vision, 767–785, Springer,
https://doi.org/10.1007/978-3-030-58517-4_45, 2020. a
Ji, L., Zhi, X., Simmer, C., Zhu, S., and Ji, Y.: Multimodel ensemble forecasts
of precipitation based on an object-based diagnostic evaluation, Mon. Weather Rev., 148, 2591–2606,
https://doi.org/10.1175/MWR-D-19-0266.1, 2020. a
Ji, Y., Gong, B., Langguth, M., Mozaffari, A., and Kong, D.: CLGAN: Guizhou ML-AWS precipitation dataset (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7278016, 2022. a
Johnson, A. and Wang, X.: Object-based evaluation of a storm-scale ensemble
during the 2009 NOAA Hazardous Weather Testbed Spring Experiment, Mon. Weather Rev., 141, 1079–1098,
https://doi.org/10.1175/MWR-D-12-00140.1, 2012. a, b
Johnson, A., Wang, X., Kong, F., and Xue, M.: Object-based evaluation of the
impact of horizontal grid spacing on convection-allowing forecasts, Mon. Weather Rev., 141, 3413–3425,
https://doi.org/10.1175/MWR-D-13-00027.1, 2013. a
Johnson, J., MacKeen, P. L., Witt, A., Mitchell, E. D. W., Stumpf, G. J.,
Eilts, M. D., and Thomas, K. W.: The storm cell identification and tracking
algorithm: An enhanced WSR-88D algorithm, Weather Forecast., 13,
263–276,
https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2,
1998. a, b
Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980, https://doi.org/10.48550/arXiv.1412.6980,
2014. a
Kroeger, T., Timofte, R., Dai, D., and Van Gool, L.: Fast optical flow using
dense inverse search, in: European Conference on Computer Vision,
471–488, Springer, https://doi.org/10.1007/978-3-319-46493-0_29,
2016. a
Leinonen, J., Nerini, D., and Berne, A.: Stochastic super-resolution for
downscaling time-evolving atmospheric fields with a generative adversarial
network, IEEE T. Geosci. Remote,
https://doi.org/10.1109/TGRS.2020.3032790, 2020. a
Li, D., Liu, Y., and Chen, C.: MSDM v1.0: A machine learning model for precipitation nowcasting over eastern China using multisource data, Geosci. Model Dev., 14, 4019–4034, https://doi.org/10.5194/gmd-14-4019-2021, 2021. a
Liu, W., Luo, W., Lian, D., and Gao, S.: Future frame prediction for anomaly
detection–a new baseline, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 6536–6545,
https://doi.org/10.1109/CVPR.2018.00684, 2018. a
Mathieu, M., Couprie, C., and LeCun, Y.: Deep multi-scale video prediction
beyond mean square error, arXiv preprint arXiv:1511.05440,
https://doi.org/10.48550/arXiv.1511.05440, 2015. a
Matsunobu, T., Keil, C., and Barthlott, C.: The impact of microphysical uncertainty conditional on initial and boundary condition uncertainty under varying synoptic control, Weather Clim. Dynam., 3, 1273–1289, https://doi.org/10.5194/wcd-3-1273-2022, 2022. a
Mordido, G., Yang, H., and Meinel, C.: Dropout-gan: Learning from a dynamic
ensemble of discriminators, arXiv preprint arXiv:1807.11346,
https://doi.org/10.48550/arXiv.1807.11346, 2018. a
Murphy, A. H. and Winkler, R. L.: A general framework for forecast
verification, Mon. Weather Rev., 115, 1330–1338,
https://doi.org/10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2,
1987. a
Oprea, S., Martinez-Gonzalez, P., Garcia-Garcia, A., Castro-Vargas, J. A.,
Orts-Escolano, S., Garcia-Rodriguez, J., and Argyros, A.: A review on deep
learning techniques for video prediction, IEEE T. Pattern
Anal., 44, 2806–2826,
https://doi.org/10.1109/TPAMI.2020.3045007, 2020. a
Price, I. and Rasp, S.: Increasing the accuracy and resolution of precipitation
forecasts using deep generative models, arXiv preprint arXiv:2203.12297,
https://doi.org/10.48550/arXiv.2203.12297, 2022. a
Ravuri, S. V., Lenc, K., Willson, M., Kangin, D., Lam, R. R., Mirowski, P. W., Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., Brock, A., Simonyan, K., Hadsell, R., Robinson, N. H., Clancy, E., Arribas, A., and Mohamed, S.: Skillful Precipitation Nowcasting using Deep Generative Models of Radar, arXiv preprint arXiv:2104.00954, https://doi.org/10.1038/s41586-021-03854-z, 2021. a, b, c, d, e, f, g, h
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019. a
Rinehart, R. and Garvey, E.: Three-dimensional storm motion detection by
conventional weather radar, Nature, 273, 287–289,
https://doi.org/10.1038/273287a0, 1978. a
Roberts, N.: Assessing the spatial and temporal variation in the skill of
precipitation forecasts from an NWP model, Meteorol. Appl., 15, 163–169, https://doi.org/10.1002/met.57, 2008. a, b
Roberts, N. M. and Lean, H. W.: Scale-selective verification of rainfall
accumulations from high-resolution forecasts of convective events, Mon. Weather Rev., 136, 78–97, https://doi.org/10.1175/2007MWR2123.1,
2008. a
Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional networks for
biomedical image segmentation, in: International Conference on Medical image
computing and computer-assisted intervention, 234–241, Springer,
https://doi.org/10.1007/978-3-319-24574-4_28, 2015. a, b, c
Schultz, M., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.,
Mozaffari, A., and Stadtler, S.: Can deep learning beat numerical weather
prediction?, Philos. T. Roy. Soc. A, 379,
20200097, https://doi.org/10.1098/rsta.2020.0097, 2021. a, b
Sha, Y., Gagne II, D. J., West, G., and Stull, R.: Deep-learning-based gridded
downscaling of surface meteorological variables in complex terrain. Part II:
Daily precipitation, Appl. Meteorol. Climatol., 59,
2075–2092, https://doi.org/10.1175/JAMC-D-20-0058.1, 2020. a
Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.-Y., Wong, W.-k., and Woo,
W.-C.: Deep learning for precipitation nowcasting: A benchmark and a new
model, arXiv preprint arXiv:1706.03458,
https://doi.org/10.48550/arXiv.1706.03458, 2017. a, b
Sønderby, C. K., Espeholt, L., Heek, J., Dehghani, M., Oliver, A., Salimans,
T., Agrawal, S., Hickey, J., and Kalchbrenner, N.: Metnet: A neural weather
model for precipitation forecasting, arXiv preprint arXiv:2003.12140,
https://doi.org/10.48550/arXiv.2003.12140, 2020. a
Sun, J., Xue, M., Wilson, J. W., Zawadzki, I., Ballard, S. P., onvlee hooiMeyer, J., Joe, P. I., Barker, D. M., Li, P.-W., Golding, B., Xu, M., and Pinto, J. O.: Use of NWP for nowcasting convective precipitation: Recent progress and challenges, B. Am. Meteorol. Soc., 95, 409–426, https://doi.org/10.1175/BAMS-D-11-00263.1, 2014. a
Vasiloff, S. V., Seo, D.-J., Howard, K. W., Zhang, J., Kitzmiller, D., Mullusky, M. G., Krajewski, W. F., Brandes, E., Rabin, R. M., Berkowitz, D. S., Brooks, H., McGinley, J. A., Kuligowski, R. J., and Brown, B: Improving QPE and very short term QPF: An initiative for a community-wide integrated approach, B. Am. Meteorol. Soc., 88, 1899–1911, https://doi.org/10.1175/BAMS-88-12-1899, 2007.
a
Wang, Y., Long, M., Wang, J., Gao, Z., and Philip, S. Y.: Predrnn: Recurrent neural networks for predictive learning using
spatiotemporal lstms, in: Advances in Neural Information Processing Systems, 879–888, https://proceedings.neurips.cc/paper/2017/hash/e5f6ad6ce374177eef023bf5d0c018b6-Abstract.html
(last access: 12 December 2021), 2017. a
Wang, Y., Wu, H., Zhang, J., Gao, Z., Wang, J., Yu, P. S., and Long, M.:
PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning,
arXiv preprint arXiv:2103.09504,
https://doi.org/10.1109/TPAMI.2022.3165153, 2021. a, b, c
Wilson, J. W., Feng, Y., Chen, M., and Roberts, R. D.: Nowcasting challenges
during the Beijing Olympics: Successes, failures, and implications for future
nowcasting systems, Weather Forecast., 25, 1691–1714,
https://doi.org/10.1175/2010WAF2222417.1, 2010. a
Wolberg, G.: Digital image warping, vol. 10662, IEEE computer society press Los
Alamitos, CA, 1990. a
Woo, W.-C. and Wong, W.-K.: Operational application of optical flow techniques
to radar-based rainfall nowcasting, Atmosphere, 8, 48,
https://doi.org/10.3390/atmos8030048, 2017. a
Xie, S., Wang, Y.-C., Lin, W., Ma, H.-Y., Tang, Q., Tang, S., Zheng, X., Golaz,
J.-C., Zhang, G. J., and Zhang, M.: Improved diurnal cycle of precipitation
in E3SM with a revised convective triggering function, J. Adv.
Model. Earth Sy., 11, 2290–2310,
https://doi.org/10.1029/2019MS001702, 2019. a
Zahraei, A., Hsu, K.-l., Sorooshian, S., Gourley, J., Lakshmanan, V., Hong, Y.,
and Bellerby, T.: Quantitative precipitation nowcasting: A Lagrangian
pixel-based approach, Atmos. Res., 118, 418–434,
https://doi.org/10.1016/j.atmosres.2012.07.001, 2012. a
Zahraei, A., Hsu, K.-l., Sorooshian, S., Gourley, J. J., Hong, Y., and
Behrangi, A.: Short-term quantitative precipitation forecasting using an
object-based approach, J. Hydrol., 483, 1–15,
https://doi.org/10.1016/j.jhydrol.2012.09.052, 2013. a
Short summary
Formulating short-term precipitation forecasting as a video prediction task, a novel deep learning architecture (convolutional long short-term memory generative adversarial network, CLGAN) is proposed. A benchmark dataset is built on minute-level precipitation measurements. Results show that with the GAN component the model generates predictions sharing statistical properties with observations, resulting in it outperforming the baseline in dichotomous and spatial scores for heavy precipitation.
Formulating short-term precipitation forecasting as a video prediction task, a novel deep...