Articles | Volume 16, issue 10
https://doi.org/10.5194/gmd-16-2737-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-2737-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CLGAN: a generative adversarial network (GAN)-based video prediction model for precipitation nowcasting
Yan Ji
Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Michael Langguth
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Amirpasha Mozaffari
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Xiefei Zhi
Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Related authors
No articles found.
Ramiyou Karim Mache, Sabine Schröder, Michael Langguth, Ankit Patnala, and Martin G. Schultz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1399, https://doi.org/10.5194/egusphere-2025-1399, 2025
Short summary
Short summary
The TOAR-classifier model is a data-driven tool that allows for an objective classification of air quality measuring stations as urban, rural, or suburban. Such classification is important in the analysis of air pollutant trends and regional signatures. The model is employed in the second Tropospheric Ozone Assessment Report but can also be used in other research work.
Chenliang Tao, Yanbo Peng, Qingzhu Zhang, Yuqiang Zhang, Bing Gong, Qiao Wang, and Wenxing Wang
Atmos. Chem. Phys., 24, 4177–4192, https://doi.org/10.5194/acp-24-4177-2024, https://doi.org/10.5194/acp-24-4177-2024, 2024
Short summary
Short summary
We developed a novel transformer framework to bridge the sparse surface monitoring for inferring ozone–NOx–VOC–aerosol sensitivity and their urban–nonurban discrepancies at a finer scale with implications for improving our understanding of ozone variations. The change in urban–rural disparities in ozone was dominated by PM2.5 from 2019 to 2020. An aerosol-inhibited regime on top of the two traditional NOx- and VOC-limited regimes was identified in Jiaodong Peninsula, Shandong, China.
Adrian Rojas-Campos, Michael Langguth, Martin Wittenbrink, and Gordon Pipa
Geosci. Model Dev., 16, 1467–1480, https://doi.org/10.5194/gmd-16-1467-2023, https://doi.org/10.5194/gmd-16-1467-2023, 2023
Short summary
Short summary
Our paper presents an alternative approach for generating high-resolution precipitation maps based on the nonlinear combination of the complete set of variables of the numerical weather predictions. This process combines the super-resolution task with the bias correction in a single step, generating high-resolution corrected precipitation maps with a lead time of 3 h. We used using deep learning algorithms to combine the input information and increase the accuracy of the precipitation maps.
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022, https://doi.org/10.5194/gmd-15-8931-2022, 2022
Short summary
Short summary
Inspired by the success of deep learning in various domains, we test the applicability of video prediction methods by generative adversarial network (GAN)-based deep learning to predict the 2 m temperature over Europe. Our video prediction models have skill in predicting the diurnal cycle of 2 m temperature up to 12 h ahead. Complemented by probing the relevance of several model parameters, this study confirms the potential of deep learning in meteorological forecasting applications.
Ling Zou, Sabine Griessbach, Lars Hoffmann, Bing Gong, and Lunche Wang
Atmos. Chem. Phys., 20, 9939–9959, https://doi.org/10.5194/acp-20-9939-2020, https://doi.org/10.5194/acp-20-9939-2020, 2020
Short summary
Short summary
Cirrus clouds appearing in the upper troposphere and lower stratosphere have important impacts on the radiation budget and climate change. We revisited global stratospheric cirrus clouds with CALIPSO and for the first time with MIPAS satellite observations. Stratospheric cirrus clouds related to deep convection are frequently detected in the tropics. At middle latitudes, MIPAS detects more than twice as many stratospheric cirrus clouds due to higher detection sensitivity.
Cited articles
Austin, G. and Bellon, A.: The use of digital weather radar records for
short-term precipitation forecasting, Q. J. Roy.
Meteor. Soc., 100, 658–664,
https://doi.org/10.1002/qj.49710042612, 1974. a
Ayzel, G., Heistermann, M., and Winterrath, T.: Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1), Geosci. Model Dev., 12, 1387–1402, https://doi.org/10.5194/gmd-12-1387-2019, 2019. a, b
Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. a, b, c, d
Bowler, N. E., Pierce, C. E., and Seed, A.: Development of a precipitation
nowcasting algorithm based upon optical flow techniques, J. Hydrol., 288, 74–91,
https://doi.org/10.1016/j.jhydrol.2003.11.011, 2004. a
Bowler, N. E., Pierce, C. E., and Seed, A. W.: STEPS: A probabilistic
precipitation forecasting scheme which merges an extrapolation nowcast with
downscaled NWP, Q. J. Roy. Meteor. Soc., 132, 2127–2155, https://doi.org/10.1256/qj.04.100,
2006. a, b
Davis, C., Brown, B., and Bullock, R.: Object-based verification of
precipitation forecasts. Part I: Methodology and application to mesoscale
rain areas, Mon. Weather Rev., 134, 1772–1784,
https://doi.org/10.1175/MWR3145.1, 2006. a
Daw, A., Karpatne, A., Watkins, W. D., Read, J. S., and Kumar, V.:
Physics-guided neural networks (pgnn): An application in lake temperature
modeling, in: Knowledge-Guided Machine Learning, 353–372, Chapman and
Hall/CRC, https://doi.org/10.1201/9781003143376-15, 2017. a
Dixon, M. and Wiener, G.: TITAN: Thunderstorm identification, tracking,
analysis, and nowcasting – A radar-based methodology, J. Atmos. Ocean. Tech., 10, 785–797,
https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2,
1993. a, b
Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., and Pal, C.: The
importance of skip connections in biomedical image segmentation, in: Deep
learning and data labeling for medical applications, 179–187, Springer,
https://doi.org/10.1007/978-3-319-46976-8_19, 2016. a
Ebert, E. E.: Fuzzy verification of high-resolution gridded forecasts: a review
and proposed framework, Meteorol. Appl., 15,
51–64, https://doi.org/10.1002/met.25, 2008. a
Ebert, F., Finn, C., Lee, A. X., and Levine, S.: Self-Supervised Visual Planning with Temporal Skip Connections, in: CoRL, arXiv preprint arXiv:1710.05268, 344–356, 2017. a
Efron, B. and Tibshirani, R. J.: An introduction to the bootstrap, CRC press,
https://doi.org/10.1201/9780429246593, 1994. a
Ganguly, A. R. and Bras, R. L.: Distributed quantitative precipitation
forecasting using information from radar and numerical weather prediction
models, J. Hydrometeorol., 4, 1168–1180,
https://doi.org/10.1175/1525-7541(2003)004<1168:DQPFUI>2.0.CO;2,
2003. a
Garcia-Garcia, A., Martinez-Gonzalez, P., Oprea, S., Castro-Vargas, J. A.,
Orts-Escolano, S., Garcia-Rodriguez, J., and Jover-Alvarez, A.: The robotrix:
An extremely photorealistic and very-large-scale indoor dataset of sequences
with robot trajectories and interactions, in: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 6790–6797, IEEE,
https://doi.org/10.1109/IROS.2018.8594495, 2018. a
Germann, U. and Zawadzki, I.: Scale-dependence of the predictability of
precipitation from continental radar images. Part I: Description of the
methodology, Mon. Weather Rev., 130, 2859–2873,
https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2,
2002. a, b
Gong, B., Langguth, M., Ji, Y., Mozaffari, A., Stadtler, S., Mache, K., and Schultz, M. G.: Temperature forecasting by deep learning methods, Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022, 2022. a, b
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y.: Generative adversarial networks,
Communications of the ACM, 63, 139–144,
https://doi.org/10.1145/3422622, 2020. a, b
Grecu, M. and Krajewski, W.: A large-sample investigation of statistical
procedures for radar-based short-term quantitative precipitation forecasting,
J. Hydrol., 239, 69–84,
https://doi.org/10.1016/S0022-1694(00)00360-7, 2000. a
Harris, L., McRae, A. T., Chantry, M., Dueben, P. D., and Palmer, T. N.: A
Generative Deep Learning Approach to Stochastic Downscaling of Precipitation
Forecasts, arXiv preprint arXiv:2204.02028,
https://doi.org/10.1029/2022MS003120, 2022. a
Hu, A., Cotter, F., Mohan, N., Gurau, C., and Kendall, A.: Probabilistic future
prediction for video scene understanding, in: European Conference on Computer
Vision, 767–785, Springer,
https://doi.org/10.1007/978-3-030-58517-4_45, 2020. a
Ji, L., Zhi, X., Simmer, C., Zhu, S., and Ji, Y.: Multimodel ensemble forecasts
of precipitation based on an object-based diagnostic evaluation, Mon. Weather Rev., 148, 2591–2606,
https://doi.org/10.1175/MWR-D-19-0266.1, 2020. a
Ji, Y., Gong, B., Langguth, M., Mozaffari, A., and Kong, D.: CLGAN: Guizhou ML-AWS precipitation dataset (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7278016, 2022. a
Johnson, A. and Wang, X.: Object-based evaluation of a storm-scale ensemble
during the 2009 NOAA Hazardous Weather Testbed Spring Experiment, Mon. Weather Rev., 141, 1079–1098,
https://doi.org/10.1175/MWR-D-12-00140.1, 2012. a, b
Johnson, A., Wang, X., Kong, F., and Xue, M.: Object-based evaluation of the
impact of horizontal grid spacing on convection-allowing forecasts, Mon. Weather Rev., 141, 3413–3425,
https://doi.org/10.1175/MWR-D-13-00027.1, 2013. a
Johnson, J., MacKeen, P. L., Witt, A., Mitchell, E. D. W., Stumpf, G. J.,
Eilts, M. D., and Thomas, K. W.: The storm cell identification and tracking
algorithm: An enhanced WSR-88D algorithm, Weather Forecast., 13,
263–276,
https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2,
1998. a, b
Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980, https://doi.org/10.48550/arXiv.1412.6980,
2014. a
Kroeger, T., Timofte, R., Dai, D., and Van Gool, L.: Fast optical flow using
dense inverse search, in: European Conference on Computer Vision,
471–488, Springer, https://doi.org/10.1007/978-3-319-46493-0_29,
2016. a
Leinonen, J., Nerini, D., and Berne, A.: Stochastic super-resolution for
downscaling time-evolving atmospheric fields with a generative adversarial
network, IEEE T. Geosci. Remote,
https://doi.org/10.1109/TGRS.2020.3032790, 2020. a
Li, D., Liu, Y., and Chen, C.: MSDM v1.0: A machine learning model for precipitation nowcasting over eastern China using multisource data, Geosci. Model Dev., 14, 4019–4034, https://doi.org/10.5194/gmd-14-4019-2021, 2021. a
Liu, W., Luo, W., Lian, D., and Gao, S.: Future frame prediction for anomaly
detection–a new baseline, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 6536–6545,
https://doi.org/10.1109/CVPR.2018.00684, 2018. a
Mathieu, M., Couprie, C., and LeCun, Y.: Deep multi-scale video prediction
beyond mean square error, arXiv preprint arXiv:1511.05440,
https://doi.org/10.48550/arXiv.1511.05440, 2015. a
Matsunobu, T., Keil, C., and Barthlott, C.: The impact of microphysical uncertainty conditional on initial and boundary condition uncertainty under varying synoptic control, Weather Clim. Dynam., 3, 1273–1289, https://doi.org/10.5194/wcd-3-1273-2022, 2022. a
Mordido, G., Yang, H., and Meinel, C.: Dropout-gan: Learning from a dynamic
ensemble of discriminators, arXiv preprint arXiv:1807.11346,
https://doi.org/10.48550/arXiv.1807.11346, 2018. a
Murphy, A. H. and Winkler, R. L.: A general framework for forecast
verification, Mon. Weather Rev., 115, 1330–1338,
https://doi.org/10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2,
1987. a
Oprea, S., Martinez-Gonzalez, P., Garcia-Garcia, A., Castro-Vargas, J. A.,
Orts-Escolano, S., Garcia-Rodriguez, J., and Argyros, A.: A review on deep
learning techniques for video prediction, IEEE T. Pattern
Anal., 44, 2806–2826,
https://doi.org/10.1109/TPAMI.2020.3045007, 2020. a
Price, I. and Rasp, S.: Increasing the accuracy and resolution of precipitation
forecasts using deep generative models, arXiv preprint arXiv:2203.12297,
https://doi.org/10.48550/arXiv.2203.12297, 2022. a
Ravuri, S. V., Lenc, K., Willson, M., Kangin, D., Lam, R. R., Mirowski, P. W., Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., Brock, A., Simonyan, K., Hadsell, R., Robinson, N. H., Clancy, E., Arribas, A., and Mohamed, S.: Skillful Precipitation Nowcasting using Deep Generative Models of Radar, arXiv preprint arXiv:2104.00954, https://doi.org/10.1038/s41586-021-03854-z, 2021. a, b, c, d, e, f, g, h
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019. a
Rinehart, R. and Garvey, E.: Three-dimensional storm motion detection by
conventional weather radar, Nature, 273, 287–289,
https://doi.org/10.1038/273287a0, 1978. a
Roberts, N.: Assessing the spatial and temporal variation in the skill of
precipitation forecasts from an NWP model, Meteorol. Appl., 15, 163–169, https://doi.org/10.1002/met.57, 2008. a, b
Roberts, N. M. and Lean, H. W.: Scale-selective verification of rainfall
accumulations from high-resolution forecasts of convective events, Mon. Weather Rev., 136, 78–97, https://doi.org/10.1175/2007MWR2123.1,
2008. a
Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional networks for
biomedical image segmentation, in: International Conference on Medical image
computing and computer-assisted intervention, 234–241, Springer,
https://doi.org/10.1007/978-3-319-24574-4_28, 2015. a, b, c
Schultz, M., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.,
Mozaffari, A., and Stadtler, S.: Can deep learning beat numerical weather
prediction?, Philos. T. Roy. Soc. A, 379,
20200097, https://doi.org/10.1098/rsta.2020.0097, 2021. a, b
Sha, Y., Gagne II, D. J., West, G., and Stull, R.: Deep-learning-based gridded
downscaling of surface meteorological variables in complex terrain. Part II:
Daily precipitation, Appl. Meteorol. Climatol., 59,
2075–2092, https://doi.org/10.1175/JAMC-D-20-0058.1, 2020. a
Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.-Y., Wong, W.-k., and Woo,
W.-C.: Deep learning for precipitation nowcasting: A benchmark and a new
model, arXiv preprint arXiv:1706.03458,
https://doi.org/10.48550/arXiv.1706.03458, 2017. a, b
Sønderby, C. K., Espeholt, L., Heek, J., Dehghani, M., Oliver, A., Salimans,
T., Agrawal, S., Hickey, J., and Kalchbrenner, N.: Metnet: A neural weather
model for precipitation forecasting, arXiv preprint arXiv:2003.12140,
https://doi.org/10.48550/arXiv.2003.12140, 2020. a
Sun, J., Xue, M., Wilson, J. W., Zawadzki, I., Ballard, S. P., onvlee hooiMeyer, J., Joe, P. I., Barker, D. M., Li, P.-W., Golding, B., Xu, M., and Pinto, J. O.: Use of NWP for nowcasting convective precipitation: Recent progress and challenges, B. Am. Meteorol. Soc., 95, 409–426, https://doi.org/10.1175/BAMS-D-11-00263.1, 2014. a
Vasiloff, S. V., Seo, D.-J., Howard, K. W., Zhang, J., Kitzmiller, D., Mullusky, M. G., Krajewski, W. F., Brandes, E., Rabin, R. M., Berkowitz, D. S., Brooks, H., McGinley, J. A., Kuligowski, R. J., and Brown, B: Improving QPE and very short term QPF: An initiative for a community-wide integrated approach, B. Am. Meteorol. Soc., 88, 1899–1911, https://doi.org/10.1175/BAMS-88-12-1899, 2007.
a
Wang, Y., Long, M., Wang, J., Gao, Z., and Philip, S. Y.: Predrnn: Recurrent neural networks for predictive learning using
spatiotemporal lstms, in: Advances in Neural Information Processing Systems, 879–888, https://proceedings.neurips.cc/paper/2017/hash/e5f6ad6ce374177eef023bf5d0c018b6-Abstract.html
(last access: 12 December 2021), 2017. a
Wang, Y., Wu, H., Zhang, J., Gao, Z., Wang, J., Yu, P. S., and Long, M.:
PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning,
arXiv preprint arXiv:2103.09504,
https://doi.org/10.1109/TPAMI.2022.3165153, 2021. a, b, c
Wilson, J. W., Feng, Y., Chen, M., and Roberts, R. D.: Nowcasting challenges
during the Beijing Olympics: Successes, failures, and implications for future
nowcasting systems, Weather Forecast., 25, 1691–1714,
https://doi.org/10.1175/2010WAF2222417.1, 2010. a
Wolberg, G.: Digital image warping, vol. 10662, IEEE computer society press Los
Alamitos, CA, 1990. a
Woo, W.-C. and Wong, W.-K.: Operational application of optical flow techniques
to radar-based rainfall nowcasting, Atmosphere, 8, 48,
https://doi.org/10.3390/atmos8030048, 2017. a
Xie, S., Wang, Y.-C., Lin, W., Ma, H.-Y., Tang, Q., Tang, S., Zheng, X., Golaz,
J.-C., Zhang, G. J., and Zhang, M.: Improved diurnal cycle of precipitation
in E3SM with a revised convective triggering function, J. Adv.
Model. Earth Sy., 11, 2290–2310,
https://doi.org/10.1029/2019MS001702, 2019. a
Zahraei, A., Hsu, K.-l., Sorooshian, S., Gourley, J., Lakshmanan, V., Hong, Y.,
and Bellerby, T.: Quantitative precipitation nowcasting: A Lagrangian
pixel-based approach, Atmos. Res., 118, 418–434,
https://doi.org/10.1016/j.atmosres.2012.07.001, 2012. a
Zahraei, A., Hsu, K.-l., Sorooshian, S., Gourley, J. J., Hong, Y., and
Behrangi, A.: Short-term quantitative precipitation forecasting using an
object-based approach, J. Hydrol., 483, 1–15,
https://doi.org/10.1016/j.jhydrol.2012.09.052, 2013. a
Short summary
Formulating short-term precipitation forecasting as a video prediction task, a novel deep learning architecture (convolutional long short-term memory generative adversarial network, CLGAN) is proposed. A benchmark dataset is built on minute-level precipitation measurements. Results show that with the GAN component the model generates predictions sharing statistical properties with observations, resulting in it outperforming the baseline in dichotomous and spatial scores for heavy precipitation.
Formulating short-term precipitation forecasting as a video prediction task, a novel deep...