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Abstract. The prediction of precipitation patterns up to 2 h
ahead, also known as precipitation nowcasting, at high spa-
tiotemporal resolutions is of great relevance in weather-
dependent decision-making and early warning systems. In
this study, we are aiming to provide an efficient and easy-
to-understand deep neural network – CLGAN (convolu-
tional long short-term memory generative adversarial net-
work) – to improve the nowcasting skills of heavy precipi-
tation events. The model constitutes a generative adversar-
ial network (GAN) architecture, whose generator is built
upon a u-shaped encoder–decoder network (U-Net) and is
equipped with recurrent long short-term memory (LSTM)
cells to capture spatiotemporal features. The optical flow
model DenseRotation and the competitive video prediction
models ConvLSTM (convolutional LSTM) and PredRNN-
v2 (predictive recurrent neural network version 2) are used
as the competitors. A series of evaluation metrics, includ-
ing the root mean square error, the critical success index, the
fractions skill score, and object-based diagnostic evaluation,
are utilized for a comprehensive comparison against com-
peting baseline models. We show that CLGAN outperforms
the competitors in terms of scores for dichotomous events
and object-based diagnostics. A sensitivity analysis on the
weight of the GAN component indicates that the GAN-based
architecture helps to capture heavy precipitation events. The
results encourage future work based on the proposed CL-
GAN architecture to improve the precipitation nowcasting
and early warning systems.

1 Introduction

Heavy precipitation can lead to numerous hazards, cause
damage to infrastructure, and even increase risk to human
life (Ganguly and Bras, 2003; Vasiloff et al., 2007; Li
et al., 2021). Accurate short-term predictions of precipita-
tion events at high spatiotemporal resolutions, also known as
precipitation nowcasting, are therefore critical in establishing
early warning systems. These warning systems can in turn
help authorities in weather-dependent decision-making and
enhance risk-governance capabilities (Dixon and Wiener,
1993; Johnson et al., 1998; Bowler et al., 2006).

Current precipitation nowcasting systems mainly rely on
convective-permitting numeric weather prediction (NWP) or
on extrapolation techniques of precipitation patterns with
the help of composite radar observations. However, NWP
models suffer from difficulties in capturing these patterns
in the nowcasting time range due to the spin-up effect and
the challenges of handling non-Gaussian data in assimilation
(Ravuri et al., 2021). Also, a quick model run cycle would be
required. For instance, ICON-D2 only initializes every 3 h
(Matsunobu et al., 2022), which makes it impossible to get
quick updates in light of rapidly growing precipitation pat-
terns. Observation-based extrapolation methods, such as op-
tical flow, are commonly superior to NWP models for precip-
itation nowcasting but also fail to capture the underlying non-
linear processes of precipitation formation, e.g., secondary
triggering and aggregation (Xie et al., 2019).

Deep neural networks have gained increasing attention in
the meteorological community over the last few years (Re-
ichstein et al., 2019; Schultz et al., 2021). The growing in-
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terest can be attributed to the success stories in other do-
mains where deep learning (DL) has been proven to leverage
high-level information from complex and highly nonlinear
data in several applications, such as autonomous driving (Hu
et al., 2020), anomaly detection (Liu et al., 2018), and se-
mantic segmentation (Garcia-Garcia et al., 2018). Recently,
video prediction models, developed in the computer vision
community, have been explored for precipitation nowcast-
ing. Contemporary studies mainly applied model architec-
tures based on u-shaped convolutional networks (U-Net; e.g.,
Ayzel et al., 2020; Ronneberger et al., 2015), convolutional
long short-term memory cells (ConvLSTM; e.g., Shi et al.,
2015), and generative (see, e.g., Ravuri et al., 2021) and at-
tention models (see, e.g., Sønderby et al., 2020). U-Nets are
thereby considered to be beneficial since they are capable of
extracting multi-scale features of the atmospheric processes
(Ronneberger et al., 2015). To also explicitly capture tem-
poral dependencies in the underlying formation process of
precipitation, recurrent ConvLSTM models are an appeal-
ing choice (Shi et al., 2015). Thus, combining convolutional
and recurrent networks with ConvLSTM layers is advanta-
geous in generating stable precipitation nowcasting by en-
coding the spatial and temporal dependencies from the his-
torical frames.

Nevertheless, these models have problems with handling
the statistical nature of precipitation, especially when a pixel-
wise loss function is applied for the optimization process dur-
ing training (Shi et al., 2017; Ayzel et al., 2020). Although
log transformation, importance sampling, and weighting to-
wards heavier precipitation targets are appropriate to govern
the right-skewed gamma distribution of precipitation rates
(e.g., Ravuri et al., 2021), the inherent uncertainty in quasi-
chaotic processes at mesoscale typically leads to unrealis-
tically smooth precipitation patterns in the forecasts. While
this issue is well known in many other video prediction tasks
(Mathieu et al., 2015; Ebert et al., 2017), it is of particular
relevance in precipitation nowcasting. The high spatiotem-
poral variability seen in the observational (real) data can-
not be maintained, and thus, heavy precipitation events are
barely captured by models applying a pixel-wise loss. Gen-
erative models, which train a generator and a discriminator
adversarially (generative adversarial network – GAN – mod-
els) are considered to be a potential solution for such appli-
cations (Goodfellow et al., 2020). By forcing the generator
to fool the discriminator, which aims to distinguish between
real and generated data, these models succeed in maintaining
the statistical properties of the underlying data (Oprea et al.,
2020).

Although great progress has been achieved in a series of
recent studies (e.g., Ravuri et al., 2021; Gong et al., 2022),
there is controversy regarding how different components of
sophisticated model architectures contribute to the predic-
tions. Motivated by this, we build a simple but efficient and
easy-to-understand video prediction model, CLGAN (convo-
lutional long short-term memory generative adversarial net-

work; see Fig. 1), for the nowcasting task. CLGAN is pro-
posed to leverage the advantages of different DL model ar-
chitectures. The generator combines the U-Net with a Con-
vLSTM cell to abstract spatial features on multiple scales,
while the temporal dependency of precipitation patterns is
also preserved. The generator network is then trained ad-
versarially to attain precipitation forecasts resembling ob-
served data. For our nowcasting application, we deploy a
gridded dataset with a temporal resolution of 10 min aggre-
gated from automatic weather station (AWS) gauges over
Guizhou, China. The predictive performance of the proposed
model architecture is then accessed in a comprehensive eval-
uation based on metrics designed for precipitation nowcast-
ing. The evaluation also involves a comparison against a
simplistic persistence forecast, the conventional optical flow
model DenseRotation (Ayzel et al., 2019), as well as two
baseline video prediction models, a standard ConvLSTM
(Shi et al., 2015) network and an up-to-date competing model
PredRNN-v2 (predictive recurrent neural network version 2)
(Wang et al., 2021).

With this, the main contributions of our study are as fol-
lows.

– An efficient and easy-to-understand architecture, CL-
GAN, leveraging the merits of U-Net, ConvLSTM, and
GAN models is proposed to generate perceptually real-
istic precipitation forecasts.

– A new 10 min level precipitation dataset based on AWS
gauges (Guizhou AWS_ML precipitation dataset) is
built for machine learning experiments.

– Nowcasting of heavy precipitation events is improved
with comprehensive verification.

– A sensitivity analysis is performed to assess the im-
portance of adversarial training for generating forecasts
with closer statistical properties of the observed precip-
itation.

2 Related work and baseline models

2.1 Conventional methods

The simplest approach to generate precipitation “forecasts”
is to deploy the Eulerian persistence. For this, the most re-
cent available observation, usually a radar composite, is used
and then replicated several times for the future steps. This
approach is quite accurate for very short lead times but ob-
viously fails to provide meaningful forecasts in a quickly
evolving system for timescales beyond several minutes such
as the atmosphere. Thus, the related forecast quality can be
considered as the minimum level for a prediction model to
be useful.

Conventional precipitation nowcasting systems typically
use a Lagrangian framework to predict the development of
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Figure 1. The details of the proposed CLGAN model. (a) Generator: the illustration is presented for a given forecast step i. If i = 1, the
inputs are observed sequences X1:t0 . Otherwise the inputs are combined sequences of observed ones Xi:t0 and predicted ones X̂t0+1:t0+i−1.
The output is the model prediction X̂t0+i , c is the number of channels of inputs and here is 1, and ngf denotes the number of filters in the first
layer of U-Net. (b) Discriminator: n is the length of output sequences. (c) CLGAN: the outputs of the generator are the predicted sequences
X̂t0+1:t . Y t0+1:t constitutes the corresponding ground truth. L2 and LGAN are the reconstruction loss and adversarial loss, respectively.

precipitation patterns. Although this framework often as-
sumes the persistence of the precipitation features’ inten-
sity and displacement, it is still capable of outperforming
mesoscale NWP models in precipitation nowcasting (Sun
et al., 2014). The Lagrangian method applies a two-step ap-
proach where the precipitation features are first tracked and

then extrapolated to future time steps (Austin and Bellon,
1974). Typically, the tracking step is accomplished with the
help of optical flow methods that infer the motion of patterns
from consecutive images. For precipitation nowcasting, radar
composite images are subject to a tracking algorithm such
as cross-correlation tracking (Rinehart and Garvey, 1978;
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Grecu and Krajewski, 2000; Zahraei et al., 2012) or cen-
troid tracking techniques (Zahraei et al., 2013). The tracked
objects are then applied to different extrapolation schemes,
e.g., image warping (Wolberg, 1990), constant-vector advec-
tion (Bowler et al., 2004), or semi-Lagrangian schemes (Ger-
mann and Zawadzki, 2002). With this two-step approach,
several operational precipitation nowcasting systems have
been established over the globe in the last 3 decades, such
as the Thunderstorm Identification Tracking Nowcasting (TI-
TAN; Dixon and Wiener, 1993), the Storm Cell Identification
and Tracking (SCIT; Johnson et al., 1998), and the Short-
Term Ensemble Prediction System (STEPS; Bowler et al.,
2006) (see Wilson et al., 2010, for a review on operational
systems).

Recently, Ayzel et al. (2019) implemented a set of ad-
vanced optical flow models into an open-source Python li-
brary called rainymotion. Two different groups of methods
are part of this library from which we select the DenseRo-
tation model that performs best in their study. The track-
ing algorithm of this model is based on the dense inverse
search algorithm proposed in Kroeger et al. (2016) providing
an estimate of the motion of each pixel based on two con-
secutive radar images. The extrapolation is then performed
with a semi-Lagrangian advection scheme (Germann and Za-
wadzki, 2002) capable of representing rotational motions.

In our study, the Eulerian persistence model and the
DenseRotation model are used to show how well the tradi-
tional methods can perform for the precipitation nowcasting
task and how much benefit can be further obtained by using
DL-based video prediction methods.

2.2 Video prediction method

As already mentioned, the application of deep learning tech-
niques in the meteorological community has gained momen-
tum over the recent years. In particular, several studies have
started to explore these techniques to tackle the precipitation
nowcasting problem. By formulating precipitation nowcast-
ing as a sequence prediction task, Shi et al. (2015) proposed
a network of ConvLSTM cells which apply a convolution
in the recurrent layers of the vanilla LSTM to capture spa-
tiotemporal features in the underlying data. Their two-layer
ConvLSTM network was able to outperform the Variational
Methods for Echoes of Radar (ROVER) by Woo and Wong
(2017), an operational precipitation nowcasting system based
on optical flow methods with a semi-Lagrangian advection
scheme. Shi et al. (2017) further extended the recurrent cells
of gated recurrent units (GRUs) with non-local neural con-
nections and proposed the Trajectory GRU (TrajGRU) model
which enables the learning of location-variant structures of
precipitation.

Besides, Wang et al. (2017) advanced the application of
ConvLSTM networks and proposed the predictive recurrent
neural network (PredRNN). They deployed a stack of recur-
rent layers that feature a “zigzag memory flow” and involve

an explicit spatiotemporal memory state. In this way, they
enable an explicit communication of abstracted spatiotempo-
ral features between different levels of the recurrent network
which yields improved precipitation predictions. While this
approach already provided promising results, the PredRNN
model was updated to PredRNN-v2 (Wang et al., 2021). The
updates comprise the implementation of a “decoupling loss”,
named ST-LSTM, to enhance the featuring of the spatiotem-
poral variations and a new, improved long-term modeling
strategy. The model attains remarkable improvements when
applied to multiple datasets including radar observations.

Meanwhile, other network architectures were explored
in the scope of precipitation nowcasting. One of them is
the fully convolutional U-Net architecture, which is a u-
shaped hierarchical encoder–decoder network with skip con-
nections. The architecture enables the abstraction of features
on different spatial scales. Notably, the RainNet architec-
ture proposed by Ayzel et al. (2020) proved to significantly
outperform optical-flow-based nowcasting methods for weak
precipitation events. However, their network tends to provide
too smooth precipitation fields and therefore fails to provide
added value for more intense precipitation events with a rain
rate above 10 mm h−1. Recently, a deep generative model
for the probabilistic precipitation nowcasting was proposed
and showed state-of-the-art performance for the task (Ravuri
et al., 2021).

All these studies demonstrate that deep neural networks
have the potential to provide added value for precipitation
nowcasting. In our study, we focus on further improving
the predictions of strong precipitation events and therefore
choose a simple ConvLSTM (Shi et al., 2015) and the ad-
vanced PredRNN-v2 (Wang et al., 2021) model for compet-
ing with our newly proposed model architecture.

3 Method and data

3.1 Our model CLGAN

In the following, we present our proposed CLGAN archi-
tecture in more detail. Since CLGAN aims to benefit from
ConvLSTM models, the U-Net architecture, and GAN mod-
els, we first introduce its components separately to provide a
deeper understanding of and reasoning for the chosen com-
ponents.

3.1.1 ConvLSTM

The ConvLSTM network was proposed as an extension of
LSTM layers which embedded the convolution operation to
explicitly encode complex spatiotemporal features in a data
sequence. The basic formulas of the ConvLSTM cell which
describe the gated update procedure for the hidden and cell
state are provided in Shi et al. (2015) and are therefore not
repeated here. The objective function of a ConvLSTM model
typically constitutes the classical L2 reconstruction loss. This
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loss measures the distance between the predicted and the tar-
get (ground truth) data on the grid-point (or pixel-wise) level
and can be written as

L2(G)=

∥∥∥Y t0+1:t − X̂t0+1:t

∥∥∥
2
, (1)

where Y and X̂ are 2D tensors for the ground truth and the
predicted data, respectively. t0 represents the end of the input
sequence, and t is the forecast time step, so the model is op-
timized on the loss over the prediction sequence from t0+ 1
to t . These tensors comprise w×h grid points in zonal and
meridional directions of the domain of interest.

3.1.2 U-Net

The U-Net model was originally applied for biomedical im-
age segmentation (Ronneberger et al., 2015) and is therefore
designed as a powerful feature extractor on various spatial
scales. As illustrated in Fig. 1a, it can be decomposed into a
compressing and an expansive path that are bridged by skip
connections. The contracting path can be seen as an encoder
which converts the highly resolved data into coarse-grained
features using convolutional and pooling layers. The expan-
sive path, acting as a decoder, applies deconvolutional layers
to convert back to the original spatial resolution, of which the
number of data points arew×h. Usually, several pooling and
deconvolutional layers are applied to allow feature extrac-
tion on different spatial scales. To avoid the so-called vanish-
ing gradients issue and to allow a direct information flow of
specific spatial features, skip connections are implemented at
every scale-specific feature extraction level (Drozdzal et al.,
2016).

In a video prediction application, the data at time step t en-
ter the encoder to produce a forecast at time step t+1 with the
decoder. By doing so, no long-term information is explicitly
conveyed as with the ConvLSTM model. Since heavy precip-
itation events are rare but of high relevance for nowcasting,
different techniques are usually applied to encourage deep
neural networks in predicting events on the right tail of the
underlying probability density function. Log transformation
converts the right-skewed gamma distribution of precipita-
tion data (e.g., RainNet in Ayzel et al., 2020) into a Gaussian-
like distribution which puts strong precipitation events closer
to the center of mass in probability space. Stronger weight-
ing on higher precipitation rates and importance sampling
can further support the optimization efficiency with respect
to heavy precipitation events (Ravuri et al., 2021). Nonethe-
less, U-Nets and ConvLSTM modes still tend to produce too
smooth precipitation patterns, thereby failing to capture the
relevant strong precipitation events.

3.1.3 Generative adversarial networks

To enforce a closer agreement of the generated data with the
ground truth, GAN models were proposed by Goodfellow
et al. (2020). A GAN model consists of a generative network
G (generator) and a discriminative network D (discrimina-
tor) which aims to assign a probability of 1 to real and a
probability of 0 to generated data. While the discriminator
is optimized to distinguish between both kinds of inputted
data, the generator is encouraged to fool the discriminator.
Thus, the GAN applies the binary cross-entropy loss as the
objective function which enters a minimax game:

G? = argmin
G

max
D

LGAN(G,D)

with LGAN(G,D)= EX1:t

[
logD(Xt0+1:t )

]
+EX1:t

[
log(1−D(G(X1:t0)))

]
. (2)

Here, the generator is conditioned on the input data sequence
X1:t0 . Since generator and discriminator are trained adversar-
ially, the generator is encouraged to create predictions that
share the same statistical properties as the ground truth data.
This is considered to be useful for generating realistic precip-
itation forecasts which should exhibit the high spatial vari-
ability in the observed data (Ravuri et al., 2021; Price and
Rasp, 2022; Harris et al., 2022).

3.1.4 Convolutional LSTM GAN (CLGAN)

To combine the merits of a GAN model with the strong spa-
tiotemporal feature extraction capacities of U-Nets and Con-
vLSTM models, we set up the generator G as follows (see
Fig. 1a). The generator constitutes a three-level U-Net fol-
lowing Sha et al. (2020). Each level of the encoder com-
prises two convolutional layers followed by max pooling
with a 2× 2 kernel to reduce the spatial dimensionality in
the next layer. The number of channels is thereby increased
by a factor of 2 in each level. A ConvLSTM cell with 64
filters is deployed to implement recurrency at the bridge be-
tween the encoder and decoder. The decoder then reverts the
encoded data to the input resolution with the help of decon-
volutional layers. Furthermore, skip connections among the
encoder and decoder are added at each level of the U-Net.
The discriminator D consists of 3D fully convolutional lay-
ers with batch normalization which allow us to encode both
the temporal and spatial dimensions of the data sequence.
Again, max pooling is used to compress the data which fi-
nally get concatenated to fully connected layers (see Fig. 1b).
The forecast sequence of G, X̂t0+1:t , and the corresponding
ground truth sequence, Y t0+1:t , are taken as the inputs for the
discriminator D (see Fig. 1c).

In this study, the generator is trained by combining the ad-
versarial loss LGAN with the reconstruction L2 loss:

G? = (1− λ)LGAN(G,D)+ λL2(G) with λ ∈ [0,1]. (3)
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This ensures that the prediction remains close to the ground
truth. The relative weight of the reconstruction loss λ is set
to 0.99, which proves to balance the contributions from both
loss components in the following experiments. Training of
the model is performed with the Adam optimizer (Kingma
and Ba, 2014) over eight epochs with a batch size of 32.

3.2 Guizhou AWS_ML precipitation dataset

In addition to the widely used remote sensing data, e.g., radar
composite images, measurements from densely distributed
automatic weather stations can serve as an alternative in
the data-driven weather forecasting task. In this study,
minute-level precipitation measurements by rain gauges of
AWSs over Guizhou, China (Guizhou AWS_ML precipita-
tion dataset), are collected for the precipitation nowcasting
task. Guizhou is a mountainous and rainy province located
in southwest China (see Fig. 2a) where mudslides happen
frequently during summertime. For instance, the region was
affected by a severe rainstorm in September 2020, in which
some regions experienced more than 1500 mm rainfall within
20 d. Accurate precipitation nowcasting, especially for heavy
precipitation, is crucial to reduce damage from these events.
Hence, the Guizhou AWS_ML precipitation dataset is es-
tablished for better simulation of precipitation with data-
driven approaches. The AWS locations comprise 93 basic
national stations and 1740 automatic weather stations (see
Fig. 2b). Among other meteorological quantities (2 m tem-
perature, 10 m wind, surface pressure, and relative humid-
ity), the AWSs measure precipitation at a high observation
frequency (every minute), and the data are provided between
1 January 2015 and 31 December 2019 by Guizhou Meteo-
rological Bureau.

Several preprocessing steps are conducted for preparing
the dataset of our experiment. First, the precipitation data are
accumulated over 10 min, which still constitutes a reason-
ably high temporal resolution. To obtain a gridded dataset,
the observations are then interpolated bilinearly onto a regu-
lar, spherical grid. The target grid comprises w×h= 48×
40 data points in zonal and meridional directions, respec-
tively, and covers a domain from 24.625 to 29.5◦ N and
103.625 to 109.5◦ E with 0.125◦ resolution. To obtain the
data needed for training our CLGAN and the baseline mod-
els (see Sects. 2 and 3.1.4), we generate sliding sequences
of 24 consecutive gridded data samples (frames) which com-
prise a temporal period of 240 min, and 120 min (12 frames)
of each sequence serves as input to predict the next 120 min
(12 frames). Since there are many periods with no or only
weak precipitation, we furthermore only select sequences
whose averaged precipitation rate exceeds the empirical 60 %
quantile of the complete dataset. This results in 35 054 se-
quences for the subsampled dataset. Finally, a log transfor-
mation is applied to each sequence to make the data more
Gaussian-like. The log transformation reads as follows: x′ =
ln(x+ε)− ln(ε), where ε is a small constant (here 0.01). We

use the data from 2015 to 2017 for training, the data of 2018
for validating, and the data of 2019 for testing.

3.3 Verification methods

As pointed out in Schultz et al. (2021) and more specifi-
cally for precipitation in Leinonen et al. (2020), precipita-
tion nowcasting should be evaluated in terms of application-
specific scores. This is due to the unique statistical properties
of precipitation rates, as well as the chaotic atmospheric pro-
cesses which underpin the formation of precipitation. Addi-
tionally, we would like to emphasize that a single score alone
can barely evaluate the model performance applied to high-
dimensional data (Wilks, 2011). Therefore, we take several
evaluation metrics into account to provide a comprehensive
overview.

The first considered family of evaluation metrics is estab-
lished for continuous quantities in the meteorological com-
munity. The root mean square error (RMSE) measures the
distance between the predicted and the observed field on a
grid-point level. The correlation coefficient (CC) measures
the association or the linear relationship between the two
fields. A perfect correlation would result in CC= 1, while
CC= 0 indicates no linear relationship between forecast and
observation on the grid-point level.

The second set of scores is built on dichotomous events
which are obtained by thresholding the gridded precipitation
fields. A 2× 2 contingency table is commonly used to show
the frequency of “yes” and “no” forecasts and occurrences
and give a joint distribution for events with a precipitation
rate exceeding a given threshold tpr. According to the ele-
ments in the contingency table, a variety of categorical statis-
tics can be computed to evaluate the dichotomous forecasts in
particular aspects. Critical success index (CSI), also known
as threat score, measures the fraction of hits with respect to
the number of occurrences where the events are either fore-
casted or observed. The frequently applied equitable threat
score (ETS) is a variant of the CSI and explicitly accounts for
random forecasts which perform well just by chance (Wilks,
2011).

However, due to the highly nonlinear and complex pro-
cesses causing precipitation formation, scores acting on grid-
point level are prone to penalize predictions which recover
the high spatial variability but fail to match exactly the
observed precipitation field. The issue leads to the double
penalty problem where the model gets penalized twice, once
for missing the exact placement of a precipitation event and
once for shifting it spatially (Ebert, 2008). To relax the
requirement for exact spatial matching, the fractions skill
score (FSS) is computed here as a fuzzy verification met-
ric (Roberts, 2008). Similar to the CSI and ETS, the FSS
operates on dichotomous events but allows for spatial shifts
by considering a local neighborhood around each grid point.
Within this neighborhood, the fractional coverage of the pre-
cipitation events is calculated for both the predictions and
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Figure 2. (a) Annual average cumulative precipitation in Guizhou from 2015 to 2019. (b) The spatial distribution of AWSs over Guizhou.

the observations. Let f (msi ) and f (osi ) denote the fraction
of event grid boxes within the local neighborhood of size s
around the grid point i in the model prediction and observa-
tion. The fractions Brier score (FBS) is given by

FBS=
1
N

N∑
i=1
(f (msi )− f (o

s
i ))

2, (4)

which quantifies the quadratic difference between the pre-
diction and the observation for all N grid points over the do-
main. The final FSS is then obtained with

FSS= 1−FBS/FBSworst, (5)

where FBSworst is the sum of the squared fractions of events
in the prediction and in the observation. Higher FSS values
indicate better forecast, while it can be shown that a fore-
cast becomes “useful” when FSS≥ 0.5 is attained for a given
neighborhood scale s (typically expressed in terms of squares
with an edge length of N grid points).

Nonetheless, FSS also does not capture the spatial precip-
itation patterns since each grid point in the neighborhood is
treated equally and no check for spatial coherence is under-
taken. Thus, we additionally perform an object-based diag-
nostic evaluation, called MODE (Johnson and Wang, 2012;
Johnson et al., 2013; Ji et al., 2020), to focus on pattern at-
tributes such as location, area, and shape. To obtain the de-
sired attributes, a convolutional filter of size k is first ap-
plied over the precipitation field. Afterwards, objects are de-
fined by applying a threshold on the precipitation rate tPr and
on the object area tA. A fuzzy logic scheme is then used
to merge and pair precipitation objects in the predicted and
observed precipitation field. Finally, the object-based threat
score (OTS; Johnson and Wang, 2012) is computed to ver-
ify how well the predicted precipitation patterns match the
observed ones. Here, we choose the object area, the centroid
location, and the object shape (aspect ratio and orientation
angle) as target attributes for computing the OTS.

All the mentioned verification methods are listed in Ta-
ble 1 with a brief description. The details can be found in the
corresponding references.

To ease the comparison between the baseline models and
the simplistic persistence forecast, we furthermore calculate
skill scores (except for the FSS). In general, a skill score (SS)
can be constructed by considering the target score Sm of the
model, the score obtained with the reference forecast Sref,
and the perfect score Sperf:

SS=
Sm− Sref

Sperf− Sref
. (6)

The higher the SS is, the better the model performs against
the reference score. Perfect models thereby obtain SS= 1,
while inferior models show up with−∞< SS< 0. Note that
Sperf = 0 holds for the RMSE, whereas the other scores under
consideration attain Sperf = 1. Since the size of our dataset
is not unlimited, we also apply a block bootstrapping pro-
cedure to estimate sampling uncertainty (Efron and Tibshi-
rani, 1994). The block bootstrapping procedure accounts for
autocorrelation between the sliding sequences and thus di-
vides the dataset into non-overlapping blocks before the re-
sampling of the blocks with replacement is performed. Here,
we set the block length to 10 h (60 frames) and perform 1000
block bootstrapping steps.

4 Results

4.1 Quantitative evaluation

4.1.1 Point-wise evaluation metrics

In Fig. 3a–d, our model is compared to the baseline models
in terms of the skill scores for the grid-point-level evalua-
tion metrics (CC, RMSE, CSI, and ETS). The skill scores are
calculated by defining the Eulerian persistence as reference
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Table 1. Summary of the verification methods used in the paper.

Verification method Description Formula or reference Notes

Root mean square error The average magnitude of the forecast
errors

√
1
N

∑N
i=1(Yi −Y

′
i
)2 [0, +∞)

Correlation coefficient The correspondence between the fore-
cast and observed values

∑N
i=1(Yi−Ȳi )(Y

′
i−Ȳ

′
i )√∑N

i=1(Yi−Ȳi )
2
√∑N

i=1(Y
′
i−Ȳ

′
i )

2
[−1, 1]

Critical success index The correspondence between the fore-
cast “yes” events and observed “yes”
events

hits
hits+misses+false alarms [0, 1], 0 means no skills

Equitable threat score The correspondence between the fore-
cast “yes” events and observed “yes”
events (accounting for hits due to
chance)

hits−hitsrandom
hits+false alarms hitsrandom =
(hits+misses)(hits+false alarms)

total

[−1/3, 1], 0 means no skills

Fractions skill score The spatial scales at which the forecast
resembles the observations

Roberts and Lean (2008) [0, 1], the smallest window size
for which FSS≥ 0.5 can be
considered as “skillful scale”

Object-based threat
score

The similarity between the forecast ob-
jects with the observed ones according
to a series of attributes

Davis et al. (2006) [0, 1], 0 means complete mis-
match and 1 means perfect
match

forecast. It is seen that the deep learning models (i.e., Con-
vLSTM, PredRNN-v2 and CLGAN), as well as the opti-
cal flow model DenseRotation, outperform the persistence
forecast after 20 min lead time in terms of the continuous
scores (CC and RMSE). Among the video prediction mod-
els, PredRNN-v2 is superior over the others after the first
20 min, while ConvLSTM performs best for the longer lead
times. CLGAN is not so competitive for RMSE and CC as
PredRNN-v2 and ConvLSTM, while it still outperforms the
traditional optical flow model DenseRotation. Note that the
Eulerian persistence performs well in the first 10 min. One
possible reason why these complex models can barely beat
the persistence forecast in the first lead step is that the precip-
itation systems are relatively invariant within this very short
time period. In our case, the Eulerian persistence forecast is
the latest of the observations available, which is hence highly
correlated to the ground truth at short lead times. With in-
creasing lead times, its performance degrades quickly.

The comparisons in terms of the dichotomous scores (CSI
and ETS) are given in Fig. 3c and d. They demonstrate that
CLGAN is superior to the other competitors at all the lead
times for simulating heavy precipitation events (the thresh-
old tPr is set to 8 mm h−1 here). The optical flow model
DenseRotation performs well in the first 40 lead minutes,
while its skill scores decrease rapidly afterwards. By con-
trast, the advanced deep learning model PredRNN-v2 shows
more potential for longer lead times. Although ConvLSTM
outperforms on the continuous scores, it can barely capture
the heavy precipitation events. A large performance degra-
dation for the ConvLSTM is diagnosed at a lead time of

20 min. One reason of the difference is that the model perfor-
mance is evaluated with the skill scores, which are affected
by the choice of the reference model (here the Eulerian per-
sistence). For the first time step (lead time of 10 min), both
ConvLSTM and Eulerian persistence can capture strong pre-
cipitation events, and ConvLSTM is even better. However,
ConvLSTM models are prone to produce blurry predictions
in an autoregressive prediction task, where the errors in the
prior forecasts are inherited to the later ones. Hence, the
ConvLSTM model gets less efficient in the next few lead
steps, while the Eulerian persistence performs fairly well.
For longer lead times, the performance of the Eulerian per-
sistence forecasts quickly degrades, and ConvLSTM again
outperforms the persistence model with positive skill scores.

The comparisons of the model performance show that CL-
GAN is superior in terms of scores for dichotomous fore-
casts (CSI and ETS), while it is less competitive in terms of
RMSE. This is due to the fact that our CLGAN encourages
the model to generate forecasts which have a similar distri-
bution as the ground truth data rather than just reducing the
averaged point-wise loss. Hence, more heavy precipitation
events are predicted by the CLGAN model, which improves
the dichotomous forecast scores. However, more predicted
high-value precipitation could cause larger biases, compared
to the models only generating low-value forecasts. The prob-
lem is magnified with the use of the point-by-point scores,
i.e., the RMSE, which suffers from the double penalty issue.
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Figure 3. Box–whisker plots for skill scores of (a) CC, (b) RMSE, (c) CSI, and (d) ETS averaged over the testing period with the Eulerian
persistence as the reference forecast. The boxes show the range of the first quartile (upper) to the third quartile (bottom) of the skill scores,
and the whiskers denote the 95th percentile (upper) and 5th percentile (bottom), respectively. The threshold tpr of CSI and ETS is 8 mm h−1.

4.1.2 Spatial verification scores

To further investigate the model performances, we now turn
our attention to the spatial verification scores, the FSS, and
the MODE framework. Figure 4a shows the model per-
formance in terms of the FSS for a lead time of 60 min
by the persistence model (used as the reference forecast).
The FSS is computed based on different neighborhood sizes
and thresholds of hourly precipitation rates. Specifically, the
neighborhood scale s in kilometers varies along the x axis.
The FSS values for s attaining values of approximately 41,
69, 96, 152, and 290 km (square boxes of 3, 5, 7, 11, and
21 grid points, respectively) are plotted and marked as box–
whisker plots for varying precipitation thresholds. The boxes
show the range of the first quartile (upper) to the third quar-
tile (bottom) of the scores, and the whiskers are, respec-
tively, the 95th percentile (upper) and 5th percentile (bot-
tom). As the threshold increases, FSS decreases, indicating
that the persistence forecasts become increasingly imprecise
for stronger precipitation events with a given spatial scale.

For precipitation events exceeding tPr = 8 mm h−1, the per-
sistence forecasts are considered useful (FSS≥ 0.5; see, e.g.,
Roberts, 2008) for a neighborhood scale of s ≈ 69 km. Thus,
the spatial accuracy of capturing these events is already fairly
degraded, and the neighborhood scale of s ≈ 69 km (five
grid points) is applied to compute the FSS for other mod-
els in the following. Figure 4b compares the models’ perfor-
mance in terms of the FSS for heavy precipitation forecasting
against the Eulerian persistence by illustrating the difference
1FSS= FSSi −FSSref. Here, FSSref denotes the reference
persistence model, whereas i is used to denote the other com-
peting models. It is seen that all baseline models except from
the ConvLSTM model can remarkably improve the spatial
forecasting of such events, especially for longer lead times.
Among them, CLGAN is superior to the others at all the lead
times. DenseRotation performs well in the first lead hour,
while PredRNN-v2 is promising for the further lead times.
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Figure 4. (a) FSS of persistence for different scales and intensity thresholds at 60 lead minutes for precipitation nowcasting. (b) Improve-
ments in different models compared with persistence in terms of FSS with a threshold tpr of 8 mm h−1 and a neighborhood size of five. The
boxes show the range of the first quartile (upper) to the third quartile (bottom) of the skill scores, and the whiskers denote the 95th percentile
(upper) and 5th percentile (bottom), respectively.

4.1.3 Object-based diagnostic evaluation

To fully access the performance of the models in predicting
spatial precipitation attributes, i.e., area, location, and shape,
the MODE verification framework is applied. In the follow-
ing, we present conditional quantile plots for the object area,
for the location of the object centroid in east–west and north–
south directions, for the aspect ratio, and for the orienta-
tion angle of the precipitation objects to show more details
of predicted and observed precipitation objects. These plots
visualize the joint distribution of the predictions and fore-
casts in a compact manner by applying a factorization into a
conditional and marginal distribution (Murphy and Winkler,
1987; Wilks, 2011). Figure 5 illustrates the joint distribution
in terms of the likelihood base-rate factorization. While the
solid lines illustrate the forecasts conditioned on the observa-
tions for all models, the marginal distribution of the observa-
tions is plotted as a histogram. Figure 5a shows the number
of grid points of the observed and predicted precipitation ob-
jects, which represents the area of precipitation objects. It
can be seen that CLGAN and PredRNN-v2 are able to cap-
ture object area fairly well. Only objects consisting of 90 to
130 grid points (∼ 16000 km2) are slightly underestimated
(see Fig. 5a). However, the other competing models perform
remarkably worse. Figure 5b and c show the distance be-
tween the centroid of the precipitation object and the western
boundary and the southern boundary, which is again mea-
sured by the number of grid points. It is seen that the location
of object centroids is generally well captured by all models.
Stronger deviations are visible near the lateral boundaries, es-
pecially in the east–west direction. The aspect ratio and the
orientation angle are used to assess the predicted precipita-
tion shape in Fig. 5d and e. Here, the aspect ratio is the ratio
of the shorter to the longer edge of the precipitation objects.

The orientation angle constitutes the angle between the pre-
cipitation objects and positive x axis. CLGAN shows slight
improvements over the other models in that the central parts
of the orientation angle and aspect ratio are well calibrated.
However, larger deviations from the 1 : 1 reference line are
obtained near the tails of the conditional distributions. This
indicates that further work on the simulation of precipitation
shape is required.

4.2 Case study

To gain further insight into the realism of our predictions, a
heavy precipitation event occurring on 12 June 2019 is vi-
sualized as an example (see Fig. 6) to compare the model
performance with an “eyeball” analysis. Figure 6a shows the
observed precipitation rates in millimeters per 10 min for ev-
ery 20 min over the forecast period starting at 06:50 CST. It
is seen that a fairly strong precipitation system moves from
west to east while it further intensifies. The predictions of the
different models are presented as difference plots in Fig. 6b–
f. For the first 60 min, persistence and DenseRotation show
up with the smallest discrepancies. However, for longer lead
times, clear dipole structures in the difference plots indicate
that the movement of the system is not captured. Thus, the
Lagrangian persistence framework is inaccurate for longer
lead times, and more advanced models are required to cap-
ture the long-term dependence.

While the deep learning models also show increasing dif-
ferences with longer lead times, they perform better in cap-
turing the movement and the intensification of the precipi-
tation system (see Fig. 6d–f). PredRNN-v2 tends to overes-
timate the precipitation intensity, which causes large coher-
ent areas of positive differences. The averaged RMSE over
the study area of the PredRNN-v2 forecasts at the lead time
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Figure 5. Conditional quantile plots in terms of the likelihood base-rate factorization for (a) area, (b) east–west centroid and (c) north–south
centroid locations, (d) aspect ratio, and (e) orientation angle at the lead time of 60 min. The solid black line is the 1 : 1 reference line. The
marginal distribution of the observations is presented as a histogram.

of 2 h is around 0.37 mm. ConvLSTM and CLGAN perform
even better with smaller discrepancies, with a lower RMSE
of 0.33 and 0.34 mm, respectively. Consistent with the quan-
titative evaluation results, ConvLSTM outperforms the CL-
GAN model in terms of RMSE in this given case, whereas
CLGAN obtains a higher CSI and ETS. The CSI of the CL-
GAN forecasts with a threshold of 8 mm h−1 at the 2 h lead
time is around 0.11, 0.01 higher than the ConvLSTM model.
The results demonstrate that the prediction by ConvLSTM
has a lower bias, while CLGAN can capture more heavy pre-
cipitation grid points. Compared to ConvLSTM, the differ-
ence plot of CLGAN contains more fine structures which in-
dicates that CLGAN can generate more details of the precip-
itation system.

4.3 Ablation study

As shown in Eq. (3), the loss function used in our CL-
GAN model consists of two terms: the adversarial loss LGAN

and the reconstruction loss L2. To assess the contribution of
each loss term on the forecasts’ performance, sensitivity ex-
periments on the weight of the reconstruction loss in CL-
GAN were carried out. Larger weight of the adversarial loss
(equals smaller weight of reconstruction loss) is equivalent
to a stronger contribution made by the GAN component. Fig-
ure 7 presents the results of the CLGAN model with different
weights λ assigned to the L2 loss. It is seen that the RMSE
is increased when reducing the weight of L2 loss (Fig. 7a).

However, the scores for dichotomous events and fuzzy ver-
ification framework reveal improvements for smaller λ. The
model using a pure reconstruction loss (λ= 1 in Eq. 3) per-
forms significantly worse than the model applying an adver-
sarial loss in terms of CSI and FSS (Fig. 7b and c). Similar
results are obtained in terms of the OTS (see Fig. 7d). The
results of sensitivity experiments indicate that the adversarial
training with the GAN component encourages the model to
generate forecasts which are more similar to the ground truth
data. Despite a slight increase in RMSE, a relatively stronger
contribution of the GAN component helps to capture the sta-
tistical properties of the observed precipitation (on the tail,
as well as their spatial attributes) which in turn improves the
prediction of strong precipitation events.

5 Conclusion and discussion

A novel architecture CLGAN is proposed in this work which
leverages the merits of U-Net, ConvLSTM, and GAN com-
ponents to generate high-quality precipitation predictions up
to 2 h over Guizhou, China. The Eulerian persistence is used
as the reference model to compare against the conventional
optical flow method DenseRotation, as well as two compet-
ing video prediction models (ConvLSTM and PredRNN-v2).
A Guizhou AWS_ML precipitation dataset is set up for the
nowcasting task based on minute-level precipitation mea-
surements of AWS gauges. The model performance is com-
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Figure 6. A case study for a rain system moving from west to east while intensifying. (a) Observation (Obse). The predictions of all models
are illustrated with difference plots: (b) persistence (Persi), (c) DenseRotation (Dense), (d) ConvLSTM (ConvL), (e) PredRNN-v2 (PredR),
and (f) CLGAN. The initial time of the prediction period is 06:50 CST on 12 June 2019.

prehensively evaluated by a series of domain-specific evalu-
ation metrics, including point-by-point and object-based ver-
ification methods. The results demonstrate that DL-based
video prediction models are generally superior to the con-
ventional methods, especially for the lead times exceeding

60 min. However, the use of grid-point-level losses (e.g., L1

or L2 loss) diminishes their capability to capture heavy
precipitation events. Since heavy precipitation events are
strongly under-represented in the data during training, the
models optimized solely on grid-point-level losses favor pre-
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Figure 7. Mean scores (a: RMSE; b: CSI; c: FSS; and d: OTS) for all lead times over the verification period for different weights of the L2

loss in CLGAN. The terms “weight1”, “weight999”, “weight99”, and “weight9” denote the weights of the L2 loss component λ with the
corresponding values of 1, 0.999, 0.99, and 0.9, respectively. As in Fig. 3, tPr = 8 mm h−1 is chosen for CSI, OTS, and FSS, together with
setting s to five grid points for the latter. The area threshold tA of OTS is set to nine grid points.

dicting weak precipitation rates to avoid large error contribu-
tions from strong precipitation events (double penalty prob-
lem). By contrast, the GAN component of CLGAN encour-
ages the generator to create predictions that share the sta-
tistical properties of observed precipitation, which makes it
superior to the baseline and the competing models in dichoto-
mous and spatial scores for heavy precipitation events.

Compared to the conventional methods, our results indi-
cate that video prediction models with deep neural networks
have a better capability of learning abstractions from data,
which in turn can improve the prediction of complex evolv-
ing systems. By learning the statistical dependency within
the continuous sequence of precipitation data, video predic-
tion models can simulate the precipitation patterns up to 2 h
ahead fairly well. Since NWP models suffer from the spin-
up issue in the first 6 h and the conventional approaches fail
to capture long-term dependency, video prediction models
show potential as a promising and reliable way for precipita-
tion nowcasting. However, a model performance degradation
is expected for longer lead time, i.e., after 2 h, due to the er-
ror accumulation in the auto-regressive prediction task. The
quick evolution of the convective precipitation systems is fur-
thermore challenging. Our results also demonstrate that it is
arduous to capture the shape of precipitation patterns by DL-

based models as demonstrated by the MODE scores. Future
work may try to integrate domain-specific evaluation metrics
for spatial forecasts (e.g., FSS and MODE) as a loss function
in DL-based models for precipitation nowcasting. Addition-
ally, we also see that a trade-off exists between evaluations on
grid-point and object-based levels when the adversarial loss
is varied. A grid search for the optimal combination of loss
function coefficients is required to generate realistic forecasts
with a low bias.

Beyond that, it is appealing to embed more predictors
which could be retrieved from NWP models, e.g., the verti-
cal velocity, water vapor, and thermal and other environmen-
tal conditions. The literature shows that the corresponding
predictors and physical constraints can greatly improve the
simulation of the targeted variable (Daw et al., 2017; Gong
et al., 2022). A careful selection of the predictors and an ap-
propriate embedding solution are subject to our future work.
In addition, GAN models can easily be adapted to a proba-
bilistic framework. By adding noise as an additional input,
ensemble forecasts can be obtained from which a quantifi-
cation of the forecast uncertainty can be deduced (Mordido
et al., 2018). A probabilistic nowcasting system is appealing
due to the strong inherent uncertainties in the dynamics of
precipitation patterns. Furthermore, note that ensemble pre-
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dictions corresponding to several future realizations provide
the possibility to issue more strong precipitation events (cf.
Ravuri et al., 2021). While this study focused on assessing
the need for an adversarial loss formulation, future work will
be directed towards a probabilistic nowcasting system.

Code and data availability. The Guizhou AWS_ML pre-
cipitation dataset and the exact version of the video pre-
diction models used in this paper are archived on Zenodo:
https://doi.org/10.5281/zenodo.7278016 (Ji et al., 2022). A frozen
code repository can be obtained here: https://gitlab.jsc.fz-juelich.de/
esde/machine-learning/ambs/-/tree/ambs_gmd_nowcasting_v1.0
(last access: 25 June 2022). The dataset and scripts can help users to
reproduce the results on their local machines or high-performance
computers. By using these data and models, it is highly recom-
mended to follow the README.md file of the code repository to
run the end-to-end workflow.
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