Articles | Volume 16, issue 1
https://doi.org/10.5194/gmd-16-199-2023
https://doi.org/10.5194/gmd-16-199-2023
Model description paper
 | 
06 Jan 2023
Model description paper |  | 06 Jan 2023

WRF–ML v1.0: a bridge between WRF v4.3 and machine learning parameterizations and its application to atmospheric radiative transfer

Xiaohui Zhong, Zhijian Ma, Yichen Yao, Lifei Xu, Yuan Wu, and Zhibin Wang

Related authors

Compressing high-resolution data through latent representation encoding for downscaling large-scale AI weather forecast model
Qian Liu, Bing Gong, Xiaoran Zhuang, Xiaohui Zhong, Zhiming Kang, and Hao Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3183,https://doi.org/10.5194/egusphere-2024-3183, 2024
Short summary
Machine learning parameterization of the multi-scale Kain–Fritsch (MSKF) convection scheme and stable simulation coupled in the Weather Research and Forecasting (WRF) model using WRF–ML v1.0
Xiaohui Zhong, Xing Yu, and Hao Li
Geosci. Model Dev., 17, 3667–3685, https://doi.org/10.5194/gmd-17-3667-2024,https://doi.org/10.5194/gmd-17-3667-2024, 2024
Short summary

Related subject area

Climate and Earth system modeling
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024,https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024,https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024,https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024,https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024,https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary

Cited articles

Belochitski, A. and Krasnopolsky, V.: Robustness of neural network emulations of radiative transfer parameterizations in a state-of-the-art general circulation model, Geosci. Model Dev., 14, 7425–7437, https://doi.org/10.5194/gmd-14-7425-2021, 2021. a
Bougeault, P. and Lacarrère, P.: Parameterization of orographic induced turbulence in a mesobeta scale model, Mon. Weather Rev., 117, 1872–1890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2, 1989. a
Chantry, M., Hatfield, S., Dueben, P., Polichtchouk, I., and Palmer, T.: Machine Learning Emulation of Gravity Wave Drag in Numerical Weather Forecasting, J. Adv. Model. Earth Sy., 13, e2021MS002477, https://doi.org/10.1029/2021MS002477, 2021. a
Chevallier, F., Chéruy, F., Scott, N., and Chédin, A.: A neural network approach for a fast and accurate computation of a longwave radiative budget, J. Appl. Meteorol., 37, 1385–1397, 1998. a
Chevallier, F., Morcrette, J.-J., Chéruy, F., and Scott, N.: Use of a neural-network-based long-wave radiative-transfer scheme in the ECMWF atmospheric model, Q. J. Roy. Meteor. Soc., 126, 761–776, 2000. a, b
Download
Short summary
More and more researchers use deep learning models to replace physics-based parameterizations to accelerate weather simulations. However, embedding the ML models within the weather models is difficult as they are implemented in different languages. This work proposes a coupling framework to allow ML-based parameterizations to be coupled with the Weather Research and Forecasting (WRF) model. We also demonstrate using the coupler to couple the ML-based radiation schemes with the WRF model.