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Abstract. In numerical weather prediction (NWP) models,
physical parameterization schemes are the most computa-
tionally expensive components, despite being greatly simpli-
fied. In the past few years, an increasing number of studies
have demonstrated that machine learning (ML) parameteri-
zations of subgrid physics have the potential to accelerate and
even outperform conventional physics-based schemes. How-
ever, as the ML models are commonly implemented using
the ML libraries written in Python, very few ML-based pa-
rameterizations have been successfully integrated with NWP
models due to the difficulty of embedding Python functions
into Fortran-based NWP models. To address this issue, we
developed a coupler to allow the ML-based parameteriza-
tions to be coupled with a widely used NWP model, i.e.,
the Weather Research and Forecasting (WRF) model. Sim-
ilar to the WRF I/O methodologies, the coupler provides the
options to run the ML model inference with exclusive pro-
cessors or the same processors for WRF calculations. In ad-
dition, to demonstrate the effectiveness of the coupler, the
ML-based radiation emulators are trained and coupled with
the WRF model successfully.

1 Introduction

Numerical weather prediction (NWP) models have become
the most important tools for operational weather forecasting
and have many applications in different domains, including
energy, traffic, logistics, and planning (Coiffier, 2011; Pu and
Kalnay, 2018). The physics-based parameterizations are es-
sential in the NWP models as they approximate some pro-

cesses that are either too small-scale to be explicitly resolved
at the model grid resolution or too complex and not fully
understood. Although many simplifications are made to pa-
rameterizations to reduce the computational cost, the calcula-
tions of physical parameterizations still account for a signifi-
cant portion of the total computational time of NWP models
(Wang et al., 2019). Also, the parameterization schemes of-
ten contain uncertain parameters estimated from more faith-
ful high-resolution simulations with statistical models (Sten-
srud, 2013). For example, the parameters in radiative transfer
parameterizations can be fitted to the output of the most ac-
curate line-by-line model (Clough et al., 2005), and param-
eters in cloud turbulence parameterizations can be inferred
from large-eddy simulations (LESs) (Mason, 1989). How-
ever, other parameters can only be learned from observations
as the related governing equations are unknown (Schneider
et al., 2017).

One alternative is to train machine learning (ML) mod-
els to replace the traditional physics-based parameterization
schemes. The ML-based parameterizations have the poten-
tial to outperform traditional parameterizations with higher
computational efficiency. For example, the radiative trans-
fer parameterization scheme is one of the most computa-
tionally expensive components in NWP models, and it has
the longest history of developing ML-based radiation emu-
lators. Chevallier et al. (1998, 2000) developed a neural net-
work (NN) based longwave radiation parameterization (Neu-
roFlux) and has been used operationally in the European
Centre for Medium-Range Weather Forecasts (ECMWF)
four-dimensional variational data assimilation system. The
NeuroFlux is 7 times faster than the previous scheme with
comparable accuracy (Janisková et al., 2002). Recently, Song
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and Roh (2021) developed and used the neural network based
radiation emulators in the operational weather forecasting
model in the Korea Meteorological Administration. They
demonstrated that using NN-based emulators frequently can
improve real-time weather forecasting in terms of accuracy
and speed compared to the original method, which infre-
quently uses the original radiation parameterization.

Similarly, ML-based emulators have been developed for
other parameterization schemes in NWP models. Rasp et al.
(2018) successfully developed and coupled an NN-based
convection parameterization into an aquaplanet general cir-
culation model (GCM). They showed that the NN-based pa-
rameterization was able to perform multi-year simulations, of
which results were close to that of the original simulations.
For planetary boundary layer (PBL) parameterization, Wang
et al. (2019) used the inputs and outputs from Yonsei Univer-
sity (YSU) PBL scheme of the Weather Research and Fore-
casting (WRF) model to develop the NN-based parameteriza-
tions. They showed that the NN-based parameterization suc-
cessfully simulated the vertical profiles of velocities, temper-
ature, and water vapor within the PBL over the entire diurnal
cycle. Urban land surface models (ULSMs) are reasonably
fast, but none of them is best at predicting all the main surface
fluxes (Grimmond et al., 2010, 2011). One solution is to run
an ensemble of ULSMs coupled to the NWP models to im-
prove predictions, which is technically difficult to implement
and would require more computational time due to running
multiple ULSMs simultaneously. Meyer et al. (2022a) devel-
oped an urban NN (UNN) to emulate the ensemble mean of
22 ULSMs. They demonstrate that the WRF model coupled
with the UNN is more accurate than the WRF with a sin-
gle well-known USLM. Grundner et al. (2021) demonstrated
the potential of an NN-based cloud cover parameterization
to accurately reproduce the subgrid scale cloud fraction to
improve the low-resolution climate model predictions.

In many cases, ML-based parameterization schemes are
only evaluated in offline settings due to the practical chal-
lenge of coupling ML-based emulators with NWP mod-
els. However, the offline performance of ML-based emu-
lators does not necessarily reflect their online performance
when coupled with other components of NWP models. ML-
based parameterizations are often trained using high-level
programming languages like Python and easy-to-use ML li-
braries such as PyTorch (Paszke et al., 2017) and Keras (Gulli
and Pal, 2017). However, the NWP codes are mainly writ-
ten in Fortran, making it difficult to integrate directly with
ML-based emulators. Researchers used multiple approaches
to circumvent these issues. Krasnopolsky (2014) developed
a single-layer NN software for developing NN-based radia-
tion emulators in NWP models (Belochitski and Krasnopol-
sky, 2021; Krasnopolsky et al., 2010; Song and Roh, 2021).
Some researchers wrote a Fortran module that reproduces
NN architectures using matrix–matrix multiplication with
the weights saved from offline training (Chantry et al., 2021;
Hatfield et al., 2021; Rasp et al., 2018), which only works

well for simple NN architectures such as the fully connected
(FC) NNs and becomes increasingly difficult to implement
for more complex NN structures. Ott et al. (2020) produced
an open source software library, the Fortran–Keras Bridge
(FKB), which enables users to access many features of the
Keras application programming interface (API) in Fortran
and implement NNs in Fortran code. However, the FKB can
only support FC or dense layer NNs. Therefore, researchers
cannot fully use the most advanced NN structures, such
as convolution, self-attention, and variational autoencoder
structures, to build powerful ML-based emulators for online
applications. Wang et al. (2022) proposed an NN–GCM cou-
pler to allow Python-based NNs to communicate with the
Fortran-based GCM. Although using the coupler can make
the ML-based emulators be deployed efficiently, its require-
ment for data transfer on a hard disk makes it hard to achieve
speed-up.

To address the abovementioned problems, we developed
a WRF–ML coupler that allows any ML-based parameter-
ization schemes to be coupled with the WRF model. The
WRF model is selected as it is a popular open source NWP
model used by many researchers and operational organi-
zations. Also, to demonstrate the applicability of the cou-
pler, we trained and coupled the ML-based radiation emu-
lators with the WRF model. The ML-based radiation emu-
lators were studied most among all the physical parameter-
ization schemes and coupled with the ECMWF Integrated
Forecasting System (IFS), the National Centers for Environ-
mental Prediction (NCEP) Climate Forecast System (CFS),
and the WRF model in the previous studies (Song and Roh,
2021; Meyer et al., 2022b). Also, the rapid radiative trans-
fer model for general circulation models (RRTMG; Iacono
et al., 2008) is selected for radiation as it is widely used in
weather and climate models, such as the NCEP Global Fore-
cast System (GFS) and the China Meteorological Adminis-
tration (CMA) Global/Regional Assimilation and Prediction
System (GRAPES). To train the ML-based radiation emula-
tors, the WRF model is run to generate a dataset for training
and evaluation. We also illustrate the performance of the ML-
based radiation emulators in the online setting. Lastly, we
compare the accuracy and computational costs of the WRF
simulations coupled with ML-based radiation emulators with
the WRF simulations using original RRTMG schemes.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the original and ML-based RRTMG module.
Section 3 introduces the WRF I/O quilt processors and the
WRF–ML coupler. Section 4 briefly presents the WRF model
setup and ML-based radiation emulators. Section 5 presents
the analysis and results in online settings. Conclusions and
discussions are in Sect. 6.
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Figure 1. Pseudo-code for the original RRTMG module.

2 Description of original and ML-based RRTMG
model

2.1 Description of original RRTMG module

The RRTMG is developed by the Atmospheric and Environ-
mental Research (AER) and comprises shortwave (SW) and
longwave (LW) schemes that calculate SW and LW radiation
fluxes and heating rates, respectively. Figure 1 presents the
pseudo-code for the original radiation module in the WRF
model. At the beginning of the radiation driver module, the
input and output variables are initialized. Then, the corre-
sponding radiation calculations are started according to the
parameters (i.e., ra_lw_physics and ra_sw_physics) speci-
fied in the configuration file (i.e., namelist.input). When the
RRTMG schemes are selected, the subroutine rrtmg_lwinit is
called to perform calculations needed to initialize the long-
wave calculations. Next, the subroutines rrtmg_lwrad and
rrtmg_swrad are called to perform the RRTMG SW and LW
radiation calculations.

2.1.1 Description of ML-based RRTMG module

The original radiation computations process one atmospheric
column at a time and loop over all the horizontal grid points.
The three-dimensional variables associated with the grid cell
(indexed as (i,j,k) in the WRF model output files) are in-
dexed as (i,k,j) in memory by the WRF to make it more
cache friendly and increase the cache hit rate. The index i,
j , and k represent the west–east, south–north, and vertical
directions, respectively. With the ML-based RRTMG model,
inference can be implemented on a batch of data, which re-

Figure 2. Pseudo-code for the ML-based RRTMG module.

quires the input data to be packed into batches. The input
features of ML-based radiation emulators have dimensions
of W × H , where W and H represent the number of fea-
tures and vertical levels, respectively. Therefore, the origi-
nal three-dimensional variables are reshaped to be indexed
as (i,j,k) to match the dimensions requirement of ML-based
input features (done by preprocess_layout in Fig. 2). The ML
model inference is completed within the function infer_run.
Unlike physics-based radiation schemes, ML-based schemes
do not need to calculate intermediate variables such as op-
tical depth. Instead, the ML-based model accomplishes the
mapping from the input features to outputs. After inference is
finished, ML model outputs will be post-processed to match
the dimensions of the original WRF data array to continue
model simulations.

3 WRF–ML coupler

This subsection briefly describes the WRF I/O quilt server
techniques as a similar method is adopted in the WRF–ML
coupler to have exclusive servers for ML model inference.
Then the methodologies of the WRF–ML coupler are de-
scribed in detail.

3.1 Description of WRF I/O quilt servers

The WRF model is designed to run efficiently on parallel
distributed-memory computing systems. To do this, the WRF
applies domain decomposition to split the entire domain into
nprocs (equal to nx × ny) number of subdomains so that the
total amount of work is divided into nprocs compute tasks,
where nx and ny are the number of processors along the
west–east and south–north directions. Furthermore, the WRF
model contains an I/O layer to gather all the distributed data
arrays onto the master message passing interface (MPI) rank
0 while other MPI ranks block until the master completes
the write. However, as the domain size increases or resolu-
tion increases, leading to an increasing amount of informa-
tion to write, the increasing time cost of writing output files
becomes a bottleneck for the overall performance. There-
fore, the WRF model also provides an option to use asyn-
chronous I/O (quilt) servers that deal exclusively with I/O
so that the compute processors can continue without waiting
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for writing output files. More specifically, the WRF allows
users to specify the number of groups of I/O servers to al-
locate (nio_groups) and the number of I/O ranks per group
(nio_tasks_per_group). Similar to the I/O quilt servers, the
WRF–ML coupler also provides the option to use several
processors for ML model inference exclusively, of which
more details are described in the following subsection. While
GPUs are typically more powerful than CPUs, both CPUs
and GPUs are supported for inference. CPUs are cheaper
than GPUs and more widely available, and using CPUs for
inference can also avoid extra costs due to GPU–CPU data
transfer.

3.1.1 Description of the WRF–ML coupler

Figure 3 shows that when the WRF model launches the ini-
tialization process, the subroutine infer_init is called to ini-
tialize the ML model inference services. Similar to the asyn-
chronous I/O servers, several processes are assigned to ex-
clusively work on ML model inference using either GPUs
or CPUs. The number of inference processors and the num-
ber of inference ranks per group are specified in the con-
figuration file by setting the newly added variables nin-
fer_tasks_per_group and ninfer_groups in the namelist.input
file. The difference between the inference processors and
the asynchronous I/O servers is that the inference proces-
sors apply the synchronous method, as WRF calculations
run sequentially, and the subsequent calculations of the WRF
model rely on the outputs from ML-based parameterizations.
Usually, the number of inference processors is much smaller
than that of the WRF compute processors, so a single infer-
ence processor must process data from multiple processors.
The inference processor listens and receives data from the
corresponding WRF compute processors through the MPI
transmission while blocking the compute processes (see the
right part in Fig. 4). After inference is finished, the inference
process sends outputs of ML-based schemes back to the com-
pute processors to continue the standard WRF calculations.
In addition, the ninfer_tasks_per_group and ninfer_groups
can be set to −1 to execute the ML model inference using the
same processors as for the WRF compute processes. Then,
memory copy is not needed between the WRF compute pro-
cessors and inference processors.

The functions for implementing the ML-based model in-
ference are all written in Python, commonly used by the ma-
chine learning community. To allow the Fortran-based WRF
code to call those Python functions, it is necessary first to
link the Fortran executables to the system Python library.
iso_c_binding is an intrinsic module defined in Fortran 2003
for interoperability with C. As shown in the left part of Fig. 3,
the iso_c_binding is imported within the Fortran code. Al-
though no C code is needed, the C foreign function interface
(CFFI) for Python is used to generate C-style binding inter-
faces within the Python script (see the middle part of Fig. 3).
The interfaces for C-function are also defined in the Python

scripts, which are used to generate a dynamic library that For-
tran modules can link.

This WRF–ML coupler allows the ML models to be easily
coupled with the WRF model with minimal effort. Also, re-
searchers are able to make full use of the state-of-the-art ML
model structures. This methodology is made open source in
the hope that more and more machine learning researchers
will participate in improving the traditional NWP models.

4 Experiment setup

The ML-based radiation emulator is coupled with the WRF
model to demonstrate the coupler’s practicality. This section
firstly describes the WRF model setup, ML-based radiation
emulators’ network structures, and offline evaluation metrics.

4.1 WRF model setup

In this work, the WRF model version 4.3 is compiled us-
ing the GNU Fortran (gfortran version 6.5.1) compiler with
the “dmpar” option. To generate a dataset for model train-
ing, the WRF model is run using the domain configuration
shown in Fig. 5. The WRF model is set up within the GFS
model grid with a single domain at a horizontal grid spacing
of 5 km and has 190 × 170 grid points in the west–east and
north–south directions (i.e., 32 300 grid cells). The number
of vertical levels is 57, and the model top is 10 hPa. In ad-
dition, the WRF model is configured using physics schemes,
including the New Thompson et al. scheme (Thompson et al.,
2008), Bougeault–Lacarrère (BouLac) planetary boundary
layer (PBL) scheme (Bougeault and Lacarrère, 1989), RUC
land surface model (Smirnova et al., 1997; Smirnova et al.,
2000), and RRTMG for both SW and LW radiation (Iacono
et al., 2008). The WRF simulations were run for 3 d per
month, and the initialization days were randomly selected.
The first 2 d of every 3 d simulations are used for training,
and the last day is used for testing. The model generates ra-
diation inputs and outputs every 30 model minutes.

4.2 ML-based radiation emulators and offline
evaluations

Many researchers (Chevallier et al., 2000; Krasnopolsky
et al., 2010; Song and Roh, 2021) have previously used
the FC networks to replace the radiation schemes within
the operational NWP models. Additionally, Ukkonen (2022)
showed that bidirectional recurrent NNs (RNNs) are more
accurate than the feed-forward NNs (FNNs) for emulating
atmospheric radiative transfer. Yao et al. (2023) also demon-
strated that the bidirectional long short-term memory (Bi-
LSTM) achieves the best accuracy in radiative transfer pa-
rameterization. Therefore, this study has trained and tested
both FC networks and Bi-LSTM models. As an increasing
number of trainable parameters of a ML model increases
both accuracy and computational cost, finding a balance is
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Figure 3. Framework of the WRF–ML coupler.

Figure 4. Synchronous sequence implementation between WRF and ML-based parameterization.

crucial for applying ML models in operational NWP models.
Table 1 illustrates the structures of five ML models, includ-
ing two FC networks (models A and B) and three Bi-LSTM
models (models C to E). Models A and D, as well as models
B and E, have approximately the same number of parame-
ters, respectively. More details about the model training and
comparisons can be referenced in Yao et al. (2023). All the
ML-based emulators have been converted to ONNX and run
using the ONNX Runtime library version 1.7.

Figure 6 shows the inference time of different ML-based
radiation emulators on one Intel Xeon Platinum 8269CY
CPU and one NVIDIA Tesla T4 GPU, respectively. Model
E has the longest inference time and is much longer than
model B, even though they have a similar number of parame-
ters. This is because the FC networks have a much lower time
complexity than LSTM models. Similarly, although the num-
ber of parameters of model A is about 10.3 and 1.03 times
that of models C and D (see Table 1), model A is still faster
than models C and D.
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Table 1. Description of different ML models used for emulating radiative transfer calculations, including description of model structures and
total number of parameters.

Model name Network structure Number of layers Number of nodes Number of parameters
(bidirectional layers

for Bi-LSTM models)

Model A FC 5 30 70 248
Model B FC 10 200 840 028
Model C Bi-LSTM 1 16 6788
Model D Bi-LSTM 3 32 67 844
Model E Bi-LSTM 5 96 993 028

Figure 5. Digital evaluation data of the single WRF domain with
horizontal resolution at 5 km.

The performance of different ML-based radiation emula-
tors is evaluated on the testing data in the offline setting.
Table 2 summarizes the root mean square error (RMSE)
of fluxes and heating rates which are the final outputs of
the radiation schemes. Since SW fluxes at the surface and
top-of-atmosphere (TOA) radiation are particularly impor-
tant to climate and weather prediction, their RMSE is also
shown in Table 2. It is shown that model E is the most ac-
curate, with RMSE of SW and LW fluxes of about 6.157
and 1.274 W m−2, RMSE of SW and LW heating rates of
about 0.051 and 0.095 K d−1, and SW fluxes at the surface
and TOA of about 6.871 and 5.576 W m−2. Model D has
comparable accuracy to the best-performing model E while
having only 1/14 of the parameters and a much shorter infer-
ence time. Furthermore, considering that model C only has
the smallest number of parameters, model C has relatively
good accuracy, while the RMSE of SW heating rate is 5 times
higher than model E. On the other hand, models A and B
have at least 4 times higher RMSE than model E in terms of
heating rates, with RMSE of SW fluxes at the surface and
top of the atmosphere at least 20 times higher than model

Figure 6. Inference time of different ML-based emulators run on
one CPU core (a) and GPU (b) with different batch sizes. The num-
ber of vertical levels is 57.

E. In summary, it is demonstrated that the Bi-LSTM model
is more accurate than FC networks for radiation emulation,
and model D achieves the best balance between accuracy and
computing efficiency.

Since it is difficult to know the performance of the ML-
based emulators in the online settings based on offline eval-
uation, the following Section presents the online evalua-
tions of different ML-based emulators coupled with the WRF
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Table 2. RMSE of different ML-based radiation emulators for test data in offline evaluation.

SW flux LW flux SW heating rate LW heating rate Surface SW flux TOA SW flux
W m−2 W m−2 K d−1 K d−1 W m−2 W m−2

Model A 247.0 41.46 1.172 2.035 209.2 273.5
Model B 195.2 29.64 0.946 2.172 173.3 216.3
Model C 7.658 2.032 0.277 0.337 8.534 6.628
Model D 5.355 1.305 0.099 0.161 5.854 4.804
Model E 6.157 1.274 0.051 0.095 6.871 5.576

model. In addition, the WRF model is also run with the orig-
inal RRTMG schemes as a reference to evaluate the perfor-
mance of the ML-based emulators.

5 Online evaluation results

The ML-based radiation emulators are coupled with the
WRF model using the WRF–ML coupler. The WRF simula-
tions coupled with ML-based emulators were run using three
configurations: zero exclusive processes for inference, four
exclusive inference processes on CPUs, and four exclusive
inference processes on GPUs. Also, the total number of WRF
processes is kept to 24 to ensure fair comparisons. The calcu-
lation time of radiation driver using different ML-based radi-
ation emulators is compared. The WRF model is initialized
at 12:00 UTC on a randomly selected day (i.e., 9 November)
in the year 2021 and runs for three days, which is not part of
the previously used dataset to ensure the ML-based emula-
tors are evaluated on unseen data. Finally, the temperature at
2 m (T2 m) and wind speed at 10 m (WS10 m) output from the
WRF model are compared.

5.1 Computational efficiency evaluation of radiation
driver

The calculation time of the WRF radiation driver using orig-
inal RRTMG schemes and ML-based radiation emulators are
profiled using the timing function rsl_internal_microclock
provided by the WRF model. Table 3 shows that it takes
about 1441 ms (ms: milliseconds) to run a radiation driver
using the original RRTMG schemes. In terms of ML-based
radiation emulators, using GPUs for inference is significantly
faster than using CPUs for inference, especially for the Bi-
LSTM model, as it is less computationally efficient than the
FC networks given a similar number of parameters. When
GPUs are used for inference, all ML-based emulators except
model E are at least 3 times faster than the original RRTMG
schemes. However, whether this speed-up is due to apply-
ing ML-based emulators or the upgrade in hardware (using
GPUs instead of CPUs) is unclear and is beyond the scope
of this paper. On the other hand, when CPUs are used for
inference, having four processes exclusively for inference is
slower than having inference executed on the WRF compute

Table 3. Calculation time (in units of milliseconds) of radiation
driver when using the original RRTMG schemes and the ML-based
radiation emulators. The batch size is 32 300, as the domain has
190 × 170 grid points.

Total processes 24

Original RRTMG 1441.24 ms

ML inference processes 0 4 CPUs 4 GPUs

Model A 91.73 237.57 176.87
Model B 365.31 808.43 331.34
Model C 666.37 921.56 258.66
Model D 2620.92 3383.42 418.28
Model E 7166.46 10 330.05 1690.76

processors, which is probably due to the more significant in-
crease in time cost due to data copy between CPUs than the
decrease in time cost from having CPUs exclusively for in-
ference.

5.2 Prognostic validation

Figures 7 and 8 present the difference in 24, 48, and 72 h
forecasts between the WRF simulations coupled with ML-
based radiation emulators and the WRF simulation with orig-
inal RRTMG schemes. On the spatial difference, the red and
blue patterns indicate significantly positive and negative bi-
ases of ML-based simulations, respectively. On the other
hand, green patterns indicate no or small difference from the
original WRF simulations. A domain-averaged mean abso-
lute difference (MAD) is also calculated to measure the over-
all performance of ML-based emulators in online settings.
Notably, the difference does not increase with the simula-
tion time, as the difference at 72 forecast hours is similar to
that of 24 forecast hours. The WRF simulations coupled with
FC networks (models A and B) have the worst performance,
with a much larger difference from the original WRF simu-
lation than WRF simulations coupled with Bi-LSTM models
(models D and E) over the entire domain. Model B is more
accurate than model A in offline settings but performs much
worse than model A in the online evaluation. The MAD of
T2 m and WS10 m is greater than 5.6 and 1.3, respectively, for
model B, while the MAD of T2 m and WS10 m is slightly less
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Figure 7. Differences in temperature at 2 m at forecast horizons of 24, 48, and 72 h between WRF simulations coupled with ML models A,
B, C, D, and E and the WRF simulation with the original RRTMG schemes for radiation emulation. The title of each figure indicates the
mean absolute difference (MAD) of the WRF domain.

Figure 8. Differences in wind speed at 10 m at forecast horizons of 24, 48, and 72 h between WRF simulations coupled with ML models A,
B, C, D, and E and the WRF simulation with the original RRTMG schemes for radiation emulation.
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than 2.3 and 1.0, respectively, for models A. Model C per-
forms best among all the three FC networks, with the MAD
slightly worse than the MAD of models D and E. Models
D and E have a similar spatial distribution of difference, al-
though model E has about 10 times the number of parameters
as model D and a slightly higher accuracy in offline valida-
tion.

Overall, model E demonstrates the best performance, with
the domain-averaged MAD smaller than 0.10 for both tem-
perature at 2 m and wind speed at 10 m. Both model D and
model E show a comparable forecast with the original WRF
simulation over the entire domain. Overall, model D is more
suitable to replace the original RRTMG schemes as it is more
computationally efficient than model E. Using model D with
GPU as inference processors is about 7 times faster.

In summary, the WRF–ML coupler enables all the ML-
based radiation emulators to couple with the WRF models
efficiently. Moreover, the WRF simulations coupled with ML
models are run successfully using CPU or GPU for inference.
Furthermore, the WRF–ML coupler can be a valuable tool
for researchers to evaluate their ML-based parameterization
in online settings.

6 Summary and conclusions

As demonstrated in many previous studies, emulating the
subgrid physics using ML models has the potential to be
faster or, by training on observations or detailed high-
resolution models, even more accurate than the conventional
parameterization schemes. However, the fact that ML mod-
els are commonly implemented using Python while the NWP
models are coded in Fortran makes it challenging to imple-
ment the ML-based parameterization in NWP models for op-
erational applications. Previously, researchers usually hard-
coded the operations of NNs into Fortran, which is time-
consuming and prone to error as even minor changes to
the ML model require rewriting the Fortran code. Some
researchers used simple Fortran-based NN libraries, which
could convert existing models trained in Python to mod-
els usable in the Fortran framework. However, these meth-
ods are only feasible for applying simple, dense, layer-based
NNs. In this paper, we propose a WRF–ML coupler that
provides researchers with the tool to implement ML mod-
els into NWP models with minimal effort. The advantage of
this coupler is that more complex and advanced ML model
structures are supported, as it can directly communicate with
Python-based modules. The coupler is made open source in
the hope that more and more researchers can integrate the
ML-based parametrization to improve the traditional NWP
models for more accurate weather or climate forecast. In ad-
dition, the methodologies also allow the integration of any
Python scripts into the WRF model. An example of coupling
the primitive Python subroutines into the WRF code is also
provided in the code repository.

Furthermore, the capability of the WRF–ML coupler was
demonstrated by coupling the ML-based radiation parame-
terization into the WRF model. It was also illustrated that
ML-based parameterizations’ computational efficiency and
accuracy should be balanced to achieve the best overall per-
formance for operational applications.
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