This work applies a novel technical tool, multifidelity Monte Carlo (MFMC) estimation, to three climate-related benchmark experiments involving oceanic, atmospheric, and glacial modeling. By considering useful quantities such as maximum sea height and total (kinetic) energy, we show that MFMC leads to predictions which are more accurate and less costly than those obtained by standard methods. This suggests MFMC as a potential drop-in replacement for estimation in realistic climate models.
This work applies a novel technical tool, multifidelity Monte Carlo (MFMC) estimation, to three...