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Abstract. Uncertainties in an output of interest that de-
pends on the solution of a complex system (e.g., of par-
tial differential equations with random inputs) are often, if
not nearly ubiquitously, determined in practice using Monte
Carlo (MC) estimation. While simple to implement, MC es-
timation fails to provide reliable information about statistical
quantities (such as the expected value of the output of in-
terest) in application settings such as climate modeling, for
which obtaining a single realization of the output of inter-
est is a costly endeavor. Specifically, the dilemma encoun-
tered is that many samples of the output of interest have to
be collected in order to obtain an MC estimator that has suffi-
cient accuracy – so many, in fact, that the available computa-
tional budget is not large enough to effect the number of sam-
ples needed. To circumvent this dilemma, we consider using
multifidelity Monte Carlo (MFMC) estimation which lever-
ages the use of less costly and less accurate surrogate mod-
els (such as coarser grids, reduced-order models, simplified
physics, and/or interpolants) to achieve, for the same compu-
tational budget, higher accuracy compared to that obtained
by an MC estimator – or, looking at it another way, an MFMC
estimator obtains the same accuracy as the MC estimator at
lower computational cost. The key to the efficacy of MFMC
estimation is the fact that most of the required computational
budget is loaded onto the less costly surrogate models so that
very few samples are taken of the more expensive model of
interest. We first provide a more detailed discussion about
the need to consider an alternative to MC estimation for un-
certainty quantification. Subsequently, we present a review,

in an abstract setting, of the MFMC approach along with its
application to three climate-related benchmark problems as
a proof-of-concept exercise.
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1 Introduction

In many application settings – climate modeling being a
prominent one – large computational costs are incurred when
solutions to a given model are approximated to within an
acceptable accuracy tolerance. In fact, this cost can be pro-
hibitively large when one has to obtain the results of multiple
simulations, as is the case for, e.g., uncertainty quantification,
control, and optimization, to name a few. Thus, there is often
a need for compromise between the accuracy of simulation
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algorithms and the number of simulations needed to obtain,
say, in the uncertainty quantification setting, accurate statis-
tical information.

For example, consider the following case, which repre-
sents the focus of this paper. Suppose one has a complex
system, say, a system of discretized partial differential equa-
tions, for which the input data depends on a vector of ran-
domly distributed parameters z. Letting u(z) denote the solu-
tion of the discretized partial differential equations, we define
an output of interest F

(
u(z)

)
= F(z) that depends on u(z) so

that, of course, it also depends on the choice of z. Next, sup-
pose we wish to use Monte Carlo sampling to estimate the
expected value Q= E(F (z)) of the output of interest F(z),
i.e., we have the Monte Carlo estimator of Q given by

QMC
=

1
M

M∑
m=1

F(zm)=
1
M

M∑
m=1

F
(
u(zm)

)
≈ E(F (z))

=Q, (1)

where {zm}Mm=1 denotes a set of M independent and identi-
cally distributed samples of the random vector z. This is a
common task in uncertainty quantification, which provides
useful statistical information in both predictive and inferen-
tial applications.

On the other hand, Monte Carlo estimation is not with-
out its drawbacks. Consider the following scenario. Let δ < 1
denote a measure of the spatial grid size used to discretize
the partial differential equation (PDE) system in question,
and suppose that δ is normalized by the diameter of the do-
main in which that system is posed. Then, we have it that
the error in the approximate solution is of O(δνd) for some
νd > 0 and that the cost (e.g., measured in seconds, days, or
weeks) of a simulation which obtains the approximate solu-
tion is of O(δ−νc) for some νc > 0. Neglecting any additional
costs connected with the evaluation of F(z)= F

(
u(z)

)
(for

any given z) once u(z) is obtained, it is clear that the cost C
incurred when obtaining the Monte Carlo estimator QMC is
of O(Mδ−νc). Of course, it is well known that the accuracy
of a Monte Carlo estimator is of O(1/

√
M) so that in order

for the accuracy of the estimator to be commensurate with
the discretization error, we must have that 1/

√
M ∝O(δνd).

Therefore, the needed number of samples is proportional to
M ∝ δ−2νd , and the total cost CM incurred when determining
the Monte Carlo estimator QMC is of O(δ−2νd−νc).

The cost CM can quickly get out of control when deal-
ing with large-scale problems. For example, suppose that the
approximate solution of the PDE system is second-order ac-
curate, i.e., νd = 2, and that a single simulation incurs a cost
of O(δ−3) (i.e., νc = 3), which is the best-case scenario in
three dimensions. We then have that the number of samples
needed is M ∝ δ−4, and the total cost CM is∝ δ−7. Thus,
with even a modest grid size of δ = 0.01, we have it that the
number of samples needed is M ∝ 108 and that the total cost
is CM∝ 1014, which is too high for practical use. Turning
things around, suppose instead that the available computa-

tional budget allows for at most 10 thousand simulations, i.e.,
M = 104, so that the resulting accuracy of the Monte Carlo
simulator is of O(10−2). Here, the estimator error and ap-
proximation error are already commensurate when δ = 0.1,
making the choice of a smaller delta redundant if not infea-
sible. In fact, in this case, there is no way to achieve the four
digits of accuracy sought by choosing δ = 0.01, since the
best we can do with the available budget is on the order of
O(10−2). Note that the situation becomes even worse when
the PDE system in question is time dependent, as a single
simulation incurs an even larger cost when one accounts for
the number of time steps used in the simulation.

Given that the cost of MC estimation is at times pro-
hibitively expensive, it comes as no surprise that many al-
ternatives or run-arounds to such estimation have been pro-
posed. One approach in this direction has led to the develop-
ment of many different random-parameter sampling schemes
(e.g., quasi-Monte Carlo sampling, sparse-grid sampling, im-
portance sampling, Latin hypercube sampling, lattice sam-
pling, and compressed sensing, to name just a few) for which
the estimation error is guaranteed to be smaller than its
Monte Carlo equivalent; see, e.g., Addcock et al. (2022),
Evans and Swartz (2000), Gunzburger et al. (2014), Nierder-
reiter (1992), Sloan (1994), and Smith (2013). On the other
hand, some of these alternate approaches require smoothness
of solutions to achieve better accuracy. Furthermore, most, if
not all, of these methods are superior to Monte Carlo sam-
pling only for the moderate dimension of the parameter vec-
tor z; see the references just cited.

A second approach towards reducing the cost of Monte
Carlo (and, for that matter, for any type of) uncertainty es-
timation is to use approximate solutions of the PDE sys-
tem that are less costly to obtain compared to the cost of
obtaining the approximation of actual interest. For exam-
ple, using simulations obtained using coarser grids or us-
ing reduced-order models such as reduced-basis or proper-
orthogonal-decomposition methods are less costly, as are in-
terpolation and support vector machine approximations; see,
e.g., Cristianini and Shawe-Taylor (2000), Fritzen and Ryck-
elynck (2019), Keiper et al. (2018), Quarteroni and Rozza
(2014), Quarteroni et al. (2016), and Steinwart and Christ-
mann (2008). However, such approaches, by definition, re-
sult in less accurate approximations compared to the accu-
racy that one wants to achieve.

In this paper, we do not consider any of the possible alter-
nate sampling schemes, nor do we exclusively consider us-
ing less costly and less accurate approximate solutions of the
PDE system. Instead, because of the near ubiquity of its use
in practice, our goal is to outperform traditional Monte Carlo
estimation by using a nontraditional Monte Carlo sampling
strategy and, in so doing, to refrain from incurring any loss
of accuracy. To meet this goal, we invoke multifidelity Monte
Carlo estimation which, in addition to the expensive and ac-
curate PDE system approximation of interest (hereafter re-
ferred to as the “truth” approximation), also uses cheaper-
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to-obtain and less accurate approximations (which are re-
ferred to as the “surrogates”). The bottom line is that mul-
tifidelity Monte Carlo estimation meets our goal by leverag-
ing increased sampling of the less accurate and less costly
approximations alongside low sampling of the more expen-
sive and more accurate truth approximation. The multifi-
delity Monte Carlo algorithm systematically determines the
number of samples taken from each surrogate (i.e., there is no
guess-work involved) and systematically (i.e., again, there is
no guess-work involved) combines the samples of the sur-
rogates to obtain the desired estimator. We note that multifi-
delity Monte Carlo estimation has already been shown to out-
perform Monte Carlo estimation in a variety of application
settings; see, e.g., Clare et al. (2022), Dimarco et al. (2023),
Konrad (2019), Law et al. (2022), Modderman (2021), Quick
et al. (2019), Rezaeiravesh et al. (2020), Romer et al. (2020),
and Valero et al. (2022) for some examples.

In Sect. 2, we review how the Monte Carlo and multi-
fidelity Monte Carlo estimators are constructed in an ab-
stract setting; here we follow the expositions in Peherstor-
fer et al. (2016) and also in Gruber et al. (2022a). Then, in
Sects. 3 and 4, we demonstrate the effectiveness of mul-
tifidelity Monte Carlo estimation using three well-known
climate-related benchmarks. Section 3.1 and 3.2 are respec-
tively devoted to single-layer shallow-water equation models
based on the SOMA test case of Wolfram et al. (2015) and
Test Case 5 of Williamson et al. (1992). Section 4 is devoted
to a benchmark case for the first-order model for ice sheets;
see Blatter (1995), Pattyn (2003), and Perego et al. (2012),
Tezaur et al. (2015). We close by providing some concluding
remarks in Sect. 5.

2 Monte Carlo and multifidelity Monte Carlo
estimators

An abstraction of the specific settings considered in Sects. 3
and 4 is given as follows:

– It involves having in hand a (discretized) partial dif-
ferential equation (PDE) system for which the solution
u(z) depends on a random vector of parameters z ∈ 0,
where 0 denotes a parameter domain.

Note that the input data to this PDE system (e.g., forcing
terms, initial conditions, and coefficients) could depend
on one or more of the components of the random vector
z.

– We are interested in situations whereby, for any z ∈ 0,
obtaining u(z) is a costly endeavor.

– We define a scalar output of interest (OoI) F 1(z)=

F 1(u(z)) that depends on the solution u(z) of the (dis-
cretized) PDE system; of course, if obtaining u(z) is
costly, then so is obtaining F 1(z).

While they are not considered in this work, vector-
valued outputs of interest can also be treated with multi-
fidelity Monte Carlo techniques. OoIs could be, e.g., av-
erages or extremal values of the energy associated with
the solution u(z).

– Having defined an OoI F 1(z), we let Q1 = E
(
F 1) de-

note the quantity of interest (QoI) corresponding to the
F 1(z), where E( · ) denotes the expected value with re-
spect to z.

– Because the estimation of Q1 = E
(
F 1) is the central

goal of this paper, we refer to F 1(z) as the “truth” output
of interest.

– Commonly, even ubiquitously, a Monte Carlo (MC)
sampling method is used to (approximately) quantify
the uncertainty in the chosen OoI F 1(z).

– Specifically, MC sampling is used to estimate the quan-
tity of interest Q1 = E

(
F 1) corresponding to F 1(z),

i.e., we have it that the MC estimator of the QoI Q1 =

E
(
F 1) is given by

QMC
1 =

1
M1

M1∑
m=1

F 1(zm)≈Q1 = E
(
F 1
)
, (2)

where {zm}
M1
m=1 denotes a set of M1 randomly selected

points in the parameter domain 0.

– We are then faced with the following dilemma: on the
one hand, obtaining an acceptably accurate MC estima-
tor QMC

1 of the QoI Q1 requires obtaining the solution
u(z) of the discretized PDE system at many randomly
selected points z ∈ 0; on the other hand, each of those
approximate solutions u(z) are computationally costly
to obtain.

Quantifying uncertainties in climate system settings are
victimized by this two-headed dilemma to the extent
that, e.g., accurate long-time integrations often cannot
be realized in practice.

Due to the issue of prohibitive computational cost, we turn to
multifidelity Monte Carlo (MFMC) methods for uncertainty
quantification. MFMC methods leverage the availability of
surrogate outputs of interest F k(z), k = 2, . . .,K , which have
smaller computational complexity compared to that of the
truth OoI F 1(z). As mentioned in Sect. 1, there are many
types of surrogates that can be used for this purpose, e.g.,
discretized PDEs with coarser spatial grids and larger time
steps, reduced-basis and proper-orthogonal-decomposition-
based reduced-order models, and interpolants of F 1(z), to
name just a few.
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For the truth and the K − 1 surrogate OoIs, Monte Carlo
(MC) sampling yields the K unbiased estimators

QMC
k =

1
Mk

Mk∑
m=1

F k(zm)≈ E
(
F k
)

=Qk for k = 1, . . .,K, (3)

where z1, . . .,zMk
denote Mk independent and identically

distributed (i.i.d.) samples of z ∈ 0. The goal of an MFMC
method is to use an appropriate linear combination of the K
MC estimators QMC

k in Eq. (3) to estimate the QoI Q1 =

E
(
F 1). Specifically, we define the MFMC estimator as

QMFMC
=QMC

1 +

K∑
k=2

αk

(
QMC
k −Q

MC
k−1

)
≈Q1

= E
(
F 1
)
, (4)

where {αk}Kk=2 denotes a sequence of scalar weights, and
{Mk}

K
k=1 denotes a nondecreasing sequence of integers defin-

ing the number of samples.
Letting Ck denote the cost of evaluating the kth output of

interest F k , the costs of computing the respective MC and
MFMC estimators are given as

CMC
k = CkMk for k = 1, . . .,K and

CMFMC
=

K∑
k=1

CMC
k = C ·M,

where C= {Ck}Kk=1 and M= {Mk}
K
k=1 denote K vectors

formed from the previously introduced sequences.
The variance σ 2

k of the kth output of interest F k and the
correlation ζk,k′ between the outputs of interest F k and F k

′

are given by, for k′,k = 1, . . .,K ,

σ 2
k = Var

[
F k(z)

]
and ζk,k′ =

Cov
[
F k(z),F k

′

(z)
]

σkσk′
,

respectively, where Cov[·, ·] denotes the statistical covari-
ance. We then have that the mean-squared error (MSE) in-
curred by the MC estimator QMC

k of the QoI Qk is given by

e(QMC
k )= E

((
Qk −Q

MC
k

)2
)

= E
((

E
(
F k(z)

)
−QMC

k

)2
)

= E
(
F k(z)

)2
−E

(
F k(z)2

)
=
σ 2
k

Mk

for k = 1, . . .,K, (5)

whereas the MSE incurred by the QMFMC estimator of the
QoI, Q1 is given by (see Peherstorfer et al., 2016)

e
(
QMFMC

)
=
σ 2

1
M1
+

K∑
k=2

(
1

Mk−1
−

1
Mk

)
(
α2
kσ

2
k − 2αkσkσ1ζ1,k

)
. (6)

Note that it can be shown (see, e.g., Peherstorfer et al., 2016)
that the MSE for QMFMC is lower than that for QMC

1 if and
only if√
e(QMFMC)

e(QMC
1 )

=

K−1∑
k=1

√
Ck

C1

(
ζ 2

1,k − ζ
2
1,k+1

)
< 1. (7)

Given a fixed computational budget B, MFMC aims to
construct an optimal sampling strategy M= {Mk}

K
k=1 along

with an optimal set of weights α = {αk}Kk=2 so that the MSE
(Eq. 6) of the multifidelity estimator QMFMC is lower than
the MSE (Eq. 5) of the Monte Carlo estimator QMC

1 . Viewed
differently, this means that an appropriate estimator QMFMC

can achieve a fixed MSE ε > 0 at a smaller computational
cost compared to that incurred for the Monte Carlo estimator
QMC

1 achieving MSE ε.
In Peherstorfer et al. (2016, 2018), unique optimal values

of M= {Mk}
K
k=1 and α = {αk}Kk=2 are analytically obtained

by minimizing the MSE (Eq. 6) of the QMFMC estimator
(Eq. 4) over the real numbers. However, the values M must
certainly be integers for practical use, and the heuristic of Pe-
herstorfer et al. (2016) which determines the optimal values
can result in either a biased estimator of the expectation or
(with naïve modification) a violation of the given budget B.
For “small” computational budgets, the consequences of this
can be quite severe, as illustrated in Gruber et al. (2022a).

Because “small” computational budgets are of high inter-
est for climate modeling, here, instead of using the MFMC
method of Peherstorfer et al. (2016, 2018), we use the modi-
fied MFMC method of Gruber et al. (2022a), which guaran-
tees that the optimal sampling numbers are integers and that
the computational budget is not exceeded. In that method, in-
stead of simply minimizing the MSE e(QMFMC) defined in
Eq. (6), the modified MFMC estimator is determined through
the use of at least some of the sequential minimization prob-
lems given by

for k = 1,2, . . .,K and, if k > 1,
for given M1,1, . . .,Mk−1,k−1,

minimize the functional

Lk(Mk,αk;λk,µk,ξk)=

e
(
QMFMC

)
+ λk

( K∑
k′=k

Ck′Mk′,k −

(
B −

k−1∑
k′=1

Ck′
))

+

K∑
k′=k+1

µk′,k
(
Mk′,k −Mk′−1,k

)
− ξkMk,k, (8)
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whereµk′,k for k′ = k+1, . . .,K , λk , and ξk > 0 are Lagrange
multipliers.

In Eq. (8), the first term added to the MSE e(QMFMC) en-
forces the budget constraint – or, more precisely, for each
k, enforces that the remaining available budget suffices to
not exceed the given budget B after that budget has been
depleted by the sampling already effected for the OoIs F k

′

,
k′ = 1, . . .,k− 1, where, of course, for k = 1 the whole bud-
get B is available. The second term added in Eq. (8) enforces
the monotone non-decrease in the number of samples Mk′,k

for k′ > k. The third term added to the MSE enforces the
positivity of Mk,k .

Repeating the arguments made in Peherstorfer et al. (2016)
concerning optimal choices for the sample numbers and
weights, the results given in Box 1 below are proved in Gru-
ber et al. (2022a).

It is remarkable that, due to Eq. (11), the weights α∗
k′,k

depend only on input data, specifically on the variances and
correlations of the OoIs {F k

′

}
K
k′=1. As such, the value of α∗

k′,k
is independent of k so that

α∗k′,k =
ζ1,k′σ1

σk′
= α∗k′,1 for all k = 1, . . .,K

and all k′ = k+ 1, . . .,K.

Thus, the set of weights {α∗
k′,1}

K
k′=2 determined from the min-

imization of L1 suffices to determine α∗
k′,k

for all such k′ and
k; i.e., all α∗

k′,k
for all k′ and k are determined once and for

all by the minimization of L1.
Unfortunately, as was the case in Peherstorfer et al.

(2016, 2018), the results given in Box 1 do not immediately
lead to a practical MFMC method because the sample num-
bers M∗

k′,k
given in Eqs. (10) and (11) are not, in general,

integers. Moreover, as was also the case in Peherstorfer et
al. (2016, 2018), the first and perhaps even the first few sam-
pling numbers at stage k′ = 1 may be< 1 in addition to being
non-integer. In those papers, a rounding procedure is imple-
mented; i.e., the sample numbers Mk′,1 are replaced by inte-
gers, though this is unsuitable for scenarios where M1,1 < 1
as the choice M1,1 = 0 leads to a biased estimator while the
choice M1,1 = 1 exceeds the computational budget. On the
other hand, the modified MFMC method in Box 2 below is
constructed to avoid these issues while preserving the opti-
mality of the original solution (up to some amount of round-
ing). Note that in that box and elsewhere, b · c denotes round-
ing downwards to the nearest integer.

3 Tests for the single-layer rotating shallow-water
equations

Consider the single-layer rotating shallow-water equations
(RSWEs) posed on the domain 0×[0,T ] and given by (see
Vallis, 2012)

∂h

∂t
+∇ · (hu)= 0,

∂u

∂t
+ (k · ∇ ×u+ f )(k×u)

+∇

(
|u|2

2
+ g(h+hb)

)
=G(h,u), (12)

where 0 denotes the surface of a sphere or a subset of that
surface, [0,T ] denotes a time interval; k denotes a unit vec-
tor perpendicular to the surface of the sphere; h(x, t) denotes
the fluid thickness; u(x, t) denotes the vector velocity field
tangential to the surface of the sphere; G(h,u) denotes the a
forcing term that depends on the specific setting; f denotes
the Coriolis parameter; hb(x, t) denotes the bottom topogra-
phy; g denotes the (constant) acceleration due to gravity; and
∇ denotes the tangential gradient – i.e.,∇f =Df−(Df ·k)k
where D is the derivative operator of R3.

Note that the expression (k ·∇ ×u+f )/h that appears in
the velocity equation is known as the potential vorticity; see
Vallis (2012). Supplementing Eq. (12) are the initial condi-
tions h= h0 and u= u0 at t = 0; and, if 0 is a strict subset
of the surface of the sphere, the boundary condition u ·n= 0
on the boundary ∂0 of 0, where n denotes the unit vector
tangent to the surface of the sphere and also (outwardly) per-
pendicular to ∂�.

The RSWEs represent a useful simplification of the prim-
itive equations (Vallis, 2012) which are commonly used in
oceanic and atmospheric modeling and which are obtained
by assuming a small ratio between the vertical and horizontal
length scales. In this way, the single-layer RSWEs describe
the motion of a thin layer of fluid which lies on a rigid sur-
face, yielding conditions used extensively in the modeling of
oceanic and atmospheric flows.

Spatial discretization of the system (Eq. 12) is effected us-
ing the TRiSK scheme (Ringler et al., 2010; Thuburn et al.,
2009), which is a staggered C-grid mimetic finite difference–
finite volume scheme that preserves desirable physical prop-
erties, including conservation laws for mass, energy, and po-
tential vorticity. TRiSK discretization involves the approxi-
mation h` of the thickness h at the center of a grid cell P`,
the approximation ue of the normal to the edge component
u ·n of velocity at the centers of the edges of P`, and the ap-
proximation of the potential vorticity (k ·∇×u+f )/h at the
vertices of P`. The necessary meshing is done using spheri-
cal centroidal Voronoi tessellation (SCVT) grids (Jacobsen et
al., 2013; Ringler et al., 2008; Yang et al., 2018); examples
of such grids are given in Sect. 3.1 and 3.2 for the specific
settings of those sections.

Temporal discretization of the system (Eq. 12) is ef-
fected using an explicit fourth-order Runge–Kutta method,
although many alternative time-stepping schemes have also
been proposed for this purpose; see, e.g., Leng et al. (2019),
Meng et al. (2020), and Trahan and Dawson (2012). We de-
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Box 1. Optimal non-integer sampling numbers for the modified MFMC method; see Gruber et al. (2022a).

Box 2. Practical near-optimal integer sampling numbers for the modified MFMC method; see Gruber et al. (2022a).
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Table 1. Data corresponding to the three SCVT meshes used in the
wind-driven gyre experiment.

Grid Number of Number of Number of
resolution cells edges vertices

8 km ⇒ 120 953 364 124 243 172
16 km ⇒ 30 217 91 285 61 069
32 km ⇒ 8521 25 898 17 378

note by {tn}
Nt
n=0 with t0 = 0 and tNt = T the time instants

used for temporal discretization.

3.1 A wind-driven gyre test case for the RSWE system

The specific setting considered here is a modification of
the benchmark test case referred to as “simulating ocean
mesoscale activity” (SOMA; Wolfram et al., 2015), which
involves a geodesic basin with radius 1250 km centered at
latitude–longitude (35◦,0◦) on the surface of the Earth. In-
side the basin, the depth of fluid varies from 2500 m at
the center to 100 m on the coastal shelf, creating a realis-
tic topography which yields interesting dynamical behaviors
which are useful for studying the propagation of fronts and
eddies. The present experiment considers this same setting
with a constant density ρ, leading to a computational model
for a wind-driven barotropic gyre.

In Eq. (12),

G(h,u)= dbottom(h,u)+ dwind(h)

with

{
dbottom(h,u)=−cbottom

|u|u
ρh

dwind(h)=
τwind
ρh
,

with fbottom(h,u) denoting a forcing term due to the bottom
drag and fwind(h) denoting a forcing term due to wind drag.
Here, cbottom denotes the bottom-drag coefficient chosen to
be 10−3, ρ denotes the density, and τwind denotes the surface
wind stress. See, e.g., Wolfram et al. (2015) for a discussion
of this choice for G(h,u).

For constructing the MC and MFMC estimators, we use
three SCVT grids of the SOMA domain 0 listed in Table 1.
A representative SCVT meshing of 0 is illustrated in Fig. 1.
Note that for the SCVT grids used by the TRiSK scheme,
the cells are almost all hexagonal, with a few pentagons and
heptagons thrown in.

The output of interest we consider is the maximum fluid
layer thickness, which is a common benchmark in oceanic
RSWE simulations and which is relevant to, e.g., the detec-
tion of phenomena such as flooding. In particular, we simu-
late the RSWE until the final time of T = 3 d using the finest
grid (8 km resolution) of 120 953 cells, and then we choose
the OoI F 1

gyre given by

F 1
gyre = max

`=1,...,120 953
h`, (13)

where h` denotes the fluid thickness at the center of the cell
P` at the final time T = 3.

The quantity of interest we choose considers the effect
that perturbations of the initial velocity u0 = u(0) have on
F 1

gyre and how that effect can be quantified using MC and
MFMC estimation. To this end, consider random dilations
(1+ z)u0 of the initial velocity depending on the i.i.d. ran-
dom variable z that is uniformly distributed over the in-
terval [−0.5,0.5]. Then, the OoI defined in Eq. (13) de-
pends on the choice of z in that interval; i.e., we have it
that F 1

gyre = F
1
gyre(z). In particular, we choose the QoI to be

the expectation Q1,gyre = E
(
F 1

gyre

)
of the output of interest

F 1
gyre(z) defined in Eq. (13).
Note that in practical RSWE simulations, as is the case for

more sophisticated models such as the primitive equations,
an approximation of the initial data u0 is often obtained from
a pre-processing procedure in which the RSWE system is
spun-up from rest, i.e., from a zero initial condition for u,
up to some specified time; see Anderson et al. (1975) and
Bleck and Boudra (1986). This procedure is invoked so as
to eliminate transient artifacts which are not present in the
current ocean or atmosphere and produces an initial config-
uration which is closer to observed oceanic and atmospheric
data. The outcome of the spin-up calculation over the spin-up
time frame of 15 d is illustrated in Fig. 2. The initial condi-
tions u0 and h0 that supplement Eq. (12) are then simply set
to the outcome of this pre-processing step, i.e., to the fluid
thickness and velocity obtained at the end of the spin-up cal-
culation.

3.1.1 MC and MFMC estimators

The MC estimatorQMC
1,gyre ofQ1,gyre = E

(
F 1

gyre

)
is given by

Eq. (2). Unfortunately, obtaining acceptable accuracy using
an MC estimator suffers from a double shortcoming. First,
for any given z, obtaining F 1

gyre is a costly endeavor because
it requires the solution of the discretized RSWE system to
obtain the necessary 120 953 values of h`(z). Second, to ob-
tain an MC estimator that is of acceptable accuracy requires
obtaining F 1

gyre for many sample values of z.
Naturally, to mitigate this double shortcoming, we turn to

the MFMC estimator described in Box 2 of Sect. 2. To do
so, we define three surrogate OoIs, F 2

gyre(z), F
3
gyre(z), and

F 4
gyre(z), all three of which are less costly to obtain com-

pared to that of F 1
gyre(z). Here, F 2

gyre(z) and F 3
gyre(z) are sim-

ply based on solving the discretized RSWE system using
the coarser 16 and 32 km grids, respectively. The third sur-
rogate, F 4

gyre(z), is the piecewise-linear interpolant based on
the values of F 1

gyre(z), which are exact at the three points
z= {−0.5, 0, 0.5}. These four OoIs constitute a reasonable
multifidelity ensemble of models that are available during
computational ocean studies, even more realistic ones such
as primitive equation models. Moreover, all four OoIs can
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Figure 1. The 32 km grid used for the wind-driven gyre test case and a zoom-in on a portion of that mesh.

Figure 2. For the setting of Sect. 3.1, the RSWE truth model solution (8 km resolution) with thickness h (a) and velocity field u (b) after
integration of the system from rest for T = 15 d.

be leveraged for MFMC estimation, whereas more tradi-
tional MC and multilevel MC estimators only make use of
the first or the first three OoIs, respectively. Approximations
of the costs and correlations for the four OoIs {F kgyre(z)}

4
k=1

are obtained by considering 100 uniform i.i.d. samples of
z ∈ [−0.5,0.5]. These are computed to be

C=


C1
C2
C3
C4

=


101.1
12.83
1.714
0.05



and ζ 1 =


ζ1,1
ζ1,2
ζ1,3
ζ1,4

=


1.00000000
0.99975045
0.99975920
0.99974835

 , (14)

where Ck for k = 1,2,3 denotes the average computation
time (in wall-clock seconds) necessary to advance the rele-
vant discretized RSWE system by one time step, computed
using 500 time steps for the simulation parameter z= 0.001.
Note that the cost C4 is assigned arbitrarily because the
cost of evaluating the interpolant is negligible. These cost-
correlation pairs are ideal for MFMC estimation; i.e., the sur-
rogates are very well correlated with F 1

gyre(z) and are much
less costly to obtain compared to F 1

gyre(z). Note that the 100
samples of z used to determine the data in Eq. (14) can be
reused when determining the MC and MFMC estimators.

From Eq. (14), we observe that the more expensive surro-
gate F 2

gyre(z) is slightly less correlated to F 1
gyre(z) than the

cheaper surrogate F 3
gyre(z) is. So, to satisfy the first criteria

in Eq. (9), the correlations should be ordered in decreasing
order: ζ1,1, ζ1,3, ζ1,2, and ζ1,4. However, it turns out that the
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second criteria in Eq. (9) for k = 2 is then not satisfied; thus,
F 2

gyre(z) is removed from the list of surrogates when comput-
ing the MFMC estimator. That estimator is given by Eq. (4)
with K = 4 and where k = 2 is excluded from the sum. This
is an example which illustrates, as discussed in Sect. 2, that
not all surrogates one chooses contribute to the efficiency of
MFMC estimation and that, on the other hand, their omission
does no harm to the accuracy of that estimator.

As already alluded to, the goal is to compare, for the same
budget, the MSEs of the approximations QMC

gyre and QMFMC
gyre

to the exact QoI Q1,gyre = E
(
F 1) produced by the MC and

MFMC estimators. However, there is still an additional chal-
lenge to be dealt with, namely that it is unclear how to choose
a reference QoI that one can use to determine these MSEs,
as only limited data (200 high-fidelity samples) are avail-
able, and an MC approximation QMC

gyre with 200 samples
is not sufficient for an accurate estimate of the expectation
E
(
F 1). Therefore, we choose Qref

gyre to denote the average
of the MFMC approximation QMFMC

gyre at the highest budget
B = 128C1 taken over 250 runs using samples z that are in-
dependently drawn from the interval [−0,5,0.5], except for
the fact that the first M3 (recall that M2 is omitted) samples
of each run are drawn from the pre-collected sampling set
of size 200. The use of MFMC in defining Qref

gyre makes use
of the fact that the MFMC method is at least as accurate as
MC estimation, which can be verified through the inequality
(Eq. 7). With this choice, the MSEs in the MFMC and MC
estimators can be measured with respect to the “exact quan-
tity” Qref

gyre.
The results of this procedure are given in Table 2 and

Fig. 3, from which it is evident that MFMC produces a much
more precise estimate compared to that of MC. In addi-
tion to MSE e(QMFMC

gyre ), we report the relative MSE defined
as erel(Q

MFMC
gyre )= e(QMFMC

gyre )/(Qref
gyre)

2. It is interesting that
most of the computational budget is loaded onto the very
crude piecewise-linear interpolant approximation F 4

gyre(z),
allowing MFMC to achieve not only a lower MSE but also
an estimate with much smaller variance from run to run. Es-
pecially telling is the bottom plot in Fig. 3, from which it is
obvious that, for the same budget, MFMC estimation results
in greater accuracy of 2 or 3 orders of magnitude compared
to that MC estimation – or, looking at it another way, for
the same relative MSE, MFMC estimation requires a much
smaller budget compared to MC estimation.

3.2 Test Case 5 for the RSWE system

We again consider the RSWE system (Eq. 12), but now� de-
notes the whole surface of the sphere. Specifically, we con-
sider the configuration of Test Case 5 defined in Williamson
et al. (1992), which is widely used as a benchmark and
employed as a stepping stone towards more realistic atmo-
spheric models; see, e.g., Leng et al. (2019), Meng et al.
(2020), Ringler et al. (2010), and Williamson et al. (1992).

Table 2. Results of the wind-driven barotropic gyre test with per-
turbed initial velocities for budgets B = 2kC1 equivalent to 2k

highest-fidelity runs.

MC

k e(QMC
gyre)× 10−5 erel(Q

MC
gyre)× 10−3

2 22.69 25.89
4 11.08 12.65
8 6.086 6.946
16 2.539 2.898
32 1.167 1.331
64 0.4156 0.4743
128 0.1306 0.1491

Modified MFMC

k Number of samples taken of e(QMFMC
gyre ) erel(Q

MFMC
gyre )

F 1
gyre(z) F 3

gyre(z) F 4
gyre(z) ×10−8

×10−6

2 1 1 1968 43.09 49.18
4 1 3 4016 32.88 37.52
8 3 6 8032 10.50 11.98
16 7 12 16 064 5.949 6.790
32 15 25 32 128 2.483 2.833
64 31 51 64 256 1.107 1.263
128 62 102 128 512 0.5733 0.6542

Note that, for this example, there are no additional forces
acting on the system so that G(h,u)= 0 in Eq. (12).

Test Case 5 considers the flow over an isolated moun-
tain centered at longitude λc =

3π
2 and latitude θc =

π
6 with

height

hb(z1)= z1

(
1−

r

a

)
, (15)

where a = π
9 , r2

=min{a2, (λ− λc)
2
+ (θ − θc)

2
}, and λ,θ

denote longitude and latitude, respectively. In Eq. (15), z1
denotes a random variable that is uniformly distributed over
the interval [1 km, 3 km].

The initial tangential (to the sphere) velocity in the lon-
gitudinal and latitudinal directions is chosen to be u0(z2)=

(z2 cosθ,0), where z2 denotes a random variable that is uni-
formly distributed over the interval [15 m s−1, 25 m s−1]. The
initial fluid thickness h is chosen as

h0(z2)= ĥ−
1
g

(
Rωz2+

z2
2

2

)
sin2θ,

where ĥ= 5.96 km, R = 6371.22 km, and ω = 7.292×
10−5 s−1. With this, the solutions u(z) and h(z) of the RSWE
system (Eq. 12) depend on the random vector z= (z1,z2) ∈

[1 km, 3 km] × [15 m s−1, 25 m s−1]. In Fig. 4, we provide
an example of the initial thickness h0(z2) and the thickness
h(z1,z2) after 10 d for specific values of z1 and z2.

For the simulation results given in Fig. 4 and for other re-
sults in this subsection, we use the TRiSK scheme for spa-
tial discretization and a fourth-order explicit Runge–Kutta
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Figure 3. Results for the wind-driven barotropic gyre test with output of interest (Eq. 13) averaged over 250 applications of MC and MFMC
estimation. (a) The quantity of interest Q as a function of the budget for the MC and MFMC estimators. (b) A zoom-in of the top figure.
(c) The relative MSE of the MC and MFMC estimators as a function of the budget; shaded regions represent the standard deviations of the
MC and MFMC predictions when compared to their averages over the 250 runs. Note that the melon region is contained in the blue region,
indicating that the MFMC estimator has a smaller standard deviation than the MC estimator.

Figure 4. The initial thickness h0(z2) with z2 = 23.82865 m (a) and the thickness h after 10 d (b) and the mountain height hb(z1) with
z1 = 2023.78 m.

method for temporal discretization. SCVT uniform gridding
is employed as in Sect. 3.1, although now the grid covers
the whole surface of the sphere. A comparison of two such
SCVT grids with 480 and 240 km resolutions is provided in
Fig. 5. In constructing the MC and MFMC estimators, we use
the three globally refined SCVT meshes of the whole sphere
according to the data in Table 3.

For the output of interest, we choose

F 1
test5(z)=

1
N1
`

max
`=1,...,N1

`

|ue,`(z)|,

where N1
` denotes the number of cell edges for the finest res-

olution case of 120 km, and ue,`(z) denotes the value of the
normal component of velocity ue at the `th cell edge for any

Table 3. Data corresponding to the three SCVT meshes used in the
Test Case 5 experiment.

Grid Number of Number of Number of
resolution cells edges vertices

120 km ⇒ 40 962 122 880 81 920
240 km ⇒ 10 242 30 720 20 480
480 km ⇒ 2562 7680 5120

choice of the random vector z= (z1,z2) ∈ [1 km, 3 km] ×
[15 m s−1, 25 m s−1]. We then have it that the quantity of in-
terest is given by
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Figure 5. Two global SCVT meshes of the sphere surface with dif-
ferent grid resolutions: 480 km (a) and 240 km (b).

Q1,test5 = E
(
F 1

test5(z)
)
. (16)

3.2.1 MC and MFMC estimators

Similarly to before, the goal is now to construct and compare,
for the same computational budget, MC and MFMC estima-
tors of the QoI defined in Eq. (16). The MC estimatorQMC

1,test5
of the QoI Q1,test5 = E

(
F 1

test5
)

is given by Eq. (2). The
MFMC estimator QMFMC

1,test5 of Q1,test5 = E
(
F 1

test5
)

makes use
not only of the MC estimator QMC

1,test5 for the finest 120 km
grid but also of the MC estimators QMC

2,test5 ≈ E
(
F 1

test5
)

and QMC
3,test5 ≈ E

(
F 1

test5
)
, corresponding the coarser 240 and

480 km grids, respectively.
In this case, 4500 uniform i.i.d. realizations of z are drawn

for pre-computation, of which all models share 1200 and the
two lower-fidelity surrogates share the entire 4500. Using
100 samples of the random variable z, the costs and corre-
lation coefficients of these models are respectively approxi-
mated by

C=

C1
C2
C3

=
434.8

126.9
58.04


and ζ 1 =

ζ1,1
ζ1,2
ζ1,3

=
1.00000000

0.99986604
0.99925882

 ,
where the costs C1, C2, and C3 denote the computation time
(in wall-clock seconds) necessary to advance the relevant dis-
cretized RSWE system by one time step. As was the case
for the wind-driven gyre experiment, these cost-correlation
pairs are ideal for MFMC estimation; i.e., the surrogates OoIs
F 2

test5(z) and F 3
test5(z) are very well correlated with F 1

test5(z)

and are much less costly to obtain compared to F 1
test5(z).

Note that the 100 samples of z used to determine the data
in Eq. (14) can be reused when determining the MC and
MFMC estimators. From this point on, all other details about
the construction and use of the MC and MFMC estimators

Table 4. Results of Test Case 5 with perturbed initial velocities for
budgets B = 2kC1 equivalent to 2k high-fidelity runs.

MC

k e(QMC
test5) erel(Q

MC
test5)× 10−3

2 26.95 18.51
4 14.54 9.987
8 6.884 4.729
16 3.689 2.534
32 1.609 1.105
64 0.7501 0.5153
128 0.2846 0.1955
256 0.1048 0.07202

Modified MFMC

k Number of samples taken of e(QMFMC
test5 ) erel(Q

MFMC
test5 )

F 1
test5(z) F 2

test(z) F 3
test(z) ×100

×10−3

2 1 1 5 11.49 7.891
4 1 1 20 2.838 1.950
8 1 1 49 1.147 0.7879
16 1 2 106 0.6137 0.4216
32 1 5 218 0.2927 0.2011
64 2 10 437 0.09758 0.06704
128 5 20 874 0.03788 0.02603
256 10 41 1748 0.01169 0.008034

are the same as for the wind-driven barotropic gyre test case
of Sect. 3.1.

The results provided in Table 4 and Fig. 6 show that
MFMC estimation produces a much more precise estimate
compared to MC estimation. As was true for the wind-driven
gyre test case, especially telling is the bottom plot in Fig. 6,
from which it is obvious that, for the same budget, MFMC
estimation results in an order of magnitude greater accuracy
compared to that MC estimation – or, looking at it another
way, for the same relative MSE, MFMC estimation requires
a much smaller budget compared to MC estimation.

4 First-order ice sheet model

The next experiment we consider illustrates the effectiveness
of MFMC estimation on a QoI important for the realistic
modeling of ice sheets such as those found near, e.g., Green-
land, Antarctica, and various glaciers.

4.1 The first-order model for ice sheets

The dynamical behavior of ice sheets is commonly modeled
by what is referred to as the first-order model or the Blatter–
Pattyn model. Here, we provide a short review of that model;
detailed descriptions are given in, e.g., Blatter (1995), Pattyn
(2003), Perego et al. (2012), and Tezaur et al. (2015).
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Figure 6. Results over 250 runs of the RSWE system for the Test Case 5 experiment with quantity of interest given by Eq.(16). Shaded
regions represent the variance in the MC and MFMC predictions over the 250 runs, which are independent except for the fact that all random
sampling employs the same pre-collected (random) set of parameters. Note that the melon region is contained in the blue region, indicating
that the MFMC estimator has a smaller standard deviation than the MC estimator.

Figure 7. An (x1,x3) cross section of the three-dimensional domain
� occupied by an ice sheet and the boundary segments defined in
Eq. (17).

Let � denote the three-dimensional domain occupied by
the ice sheet with the boundary 0 = 0s ∪0b ∪0`, given by

0s ⇐ x3 = s(x1,x2) ⇒ top surface of the ice sheet
0b ⇐ x3 = b(x1,x2) ⇒ bottom (or basal) surface

of the ice sheet
0` ⇐ `(x1,x2)= 0 ⇒ lateral boundary. (17)

Figure 7 provides an illustration of the boundary segments
defined in Eq. (17).

Also, let u1 and u2 denote the x1 and x2 components of the
velocity vector u= (u1 u2 u3)

ᵀ. Then, the first-order model
equations for ice sheets is given by the following partial dif-
ferential equations:{
−∇ · (2µε1)+ ρg

∂s
∂x1

= 0
−∇ · (2µε2)+ ρg

∂s
∂x2

= 0
for x = (x1 x2 x3)

ᵀ
∈�, (18)

whereµ denotes the viscosity coefficient, g denotes the grav-
itational acceleration, and ρ denotes the density. In Eq. (18),
the strain-rate tensor (ε1,ε2) is given by

ε1 =


2 ∂u1
∂x1
+
∂u2
∂x2

1
2

(
∂u1
∂x2
+
∂u2
∂x1

)
1
2
∂u1
∂x3

 and ε2 =


1
2

(
∂u1
∂x2
+
∂u2
∂x1

)
∂u1
∂x1
+ 2 ∂u2

∂x2
1
2
∂u2
∂x3



and the nonlinear viscosity coefficient µ is given by the Glen
flow law

µ=
1
2
A−

1
n ε

1
n
−1

e ,

with n= 3 being the usual choice. The effective strain rate
εe is given by

ε2
e =

(∂u1

∂x1

)2
+

(∂u2

∂x2

)2
+
∂u1

∂x1

∂u2

∂x2
+

1
4

(∂u1

∂x2
+
∂u2

∂x1

)2

+
1
4

(∂u1

∂x3

)2
+

1
4

(∂u2

∂x3

)2
,

and A is often chosen to obey the Arrhenius relation

A= A(T )= a exp(−Q/RT ),

where T denotes the absolute temperature measured in de-
grees kelvin,R denotes the universal gas constant,Q denotes
the activation energy for creep, and a is an empirical flow
constant often used as a tuning parameter.

The system (Eq. 18) is supplemented by the boundary con-
ditions

ε1 ·n= 0 and ε2 ·n= 0 on 0s,
2µε1 ·n+βu= 0 and 2µε2 ·n+βv = 0 on 0b,
u= 0 and v = 0 on 0`,

(19)

where β denotes a basal-friction parameter.
Once the horizontal components u1 and u2 of the velocity

are determined, the vertical-velocity component w is deter-
mined by enforcing incompressibility; i.e., we have it that

∂w

∂x3
=−

∂u1

∂x1
−
∂u2

∂x2
for x ∈�. (20)

Because the right-hand side is known, this is an ordinary dif-
ferential equation for w.
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Of paramount interest in the modeling of ice sheets is the
monitoring of the temporal evolution of the ice sheet domain
�. However, one notices that there are no time derivatives of
u1 and u2 appearing in Eq. (18); i.e., that system is a static
one. The reasoning behind this curiosity is twofold. Firstly,
we have it that the system (Eq. 18) is coupled to an equation
for the temporal evolution of the temperature T within the
ice sheet and is also coupled to an equation for the temporal
evolution of the top surface of the ice sheet, which engenders
changes in the ice sheet domain �. Secondly, the timescale
of changes in the temperature is much shorter (e.g., hourly)
when compared to the timescale (e.g., at least many days) of
changes in the ice sheet domain �.

Thus, in a computational model of ice sheet dynamics, de-
termination of the domain � is coupled to that of the ve-
locity u. Precisely, the temperature and top surface are first
advanced from a given domain–velocity pair (�,u) over
several time steps, producing an evolution that prescribes
a new domain–temperature pair (�,T ). Following this, the
pair (�,T ) are used to generate a new velocity u by solving
Eqs. (18) and (20). While both stages of this process are im-
portant, the present experiment focuses on the computation
of u from � and T .

4.2 MC and MFMC estimation

The specific application setting we consider is based on Ex-
periment C of the benchmark examples in Leng et al. (2012)
and Pattyn et al. (2008). Here, the ice domain is a rectangu-
lar parallelepiped that has a square base with side length L
and thickness H and which lies on a slanted bed with slope
parameter θ . The upper surface boundary is given as

zs(x1,x2)=−x1 tanθ,

and the basal topography is given as

zb(x1,x2)= zs(x1,x2)−H.

For constructing the MC and MFMC estimators, we set the
lengthL= 80 km and heightH = 1 km and then use uniform
tetrahedral grids of the ice domain �t with 120, 60, and 30
grid intervals in each horizontal direction and, correspond-
ingly, 20, 10, and 5 intervals in the vertical direction. As a
result, we have that number of vertices, horizontal triangles,
and tetrahedra are determined according to the data in Table
5.

The first-order ice sheet model is discretized using the sta-
bilized P1–P1 finite elements given in Zhang et al. (2011). To
solve the resulting nonlinear system of discrete equations, 15
Picard iteration steps are carried out, after which a switch is
made to a Newton iteration, up to a maximum of a total of
40 iterations. However, if the residual error decrease is less
than 75 % relative to the residual error of the previous step,
the nonlinear iteration is switched back to a Picard iteration.
An example illustration of the discrete solution of this ice

Table 5. Data corresponding to the three tetrahedral meshes used in
the ice sheet experiment.

grid number of number of number of
resolution vertices horizontal triangles tetrahedra

120× 120× 20 ⇒ 307 461 28 800 1 728 000
60× 60× 10 ⇒ 40 931 7200 216 000
30× 30× 5 ⇒ 5766 1800 27 000

sheet model for specific values of the parameters θ and β is
provided in Fig. 8 using the highest-resolution grid.

Because the cracking and melting of ice sheets is an im-
portant indicator of climate change (Clark et al., 1999; Hanna
et al., 2013), we consider the the output of interest to be

F 1
ice(z)=

1
2N1

N1∑
`=1
|un(z)|

2,

where N1 = 307461 is the number of vertices of the finest
120× 120× 20 grid, and un(z) denotes the value of the dis-
crete velocity u at the nth vertex for any choice of the i.i.d.
random vector z= (θ,β) ∈ [0.2,0.8]×[800m,1200m]. This
OoI provides a measurement of how energetic the ice sheet
is depending on its slope and friction coefficient and can be
loosely related to how vigorously the ice will deform given a
configuration specified by z. We then choose the quantity of
interest, given by

Q1,ice = E
(
F 1

ice(z)
)
. (21)

Two surrogates for the ice sheet model,

F 2
ice(z)=

1
2N2

N2∑
n=1
|un(z)|

2 and

F 3
ice(z)=

1
2N3

N3∑
n=1
|un(z)|

2,

are defined respectively using the coarser 60× 60× 10 grid
with N2 = 40931 and the even coarser 30×30×5 grid with
N3 = 5766. Then, from Eq. (3), we have the correspond-
ing three Monte Carlo estimators {QMC

1,ice, Q
MC
2,ice, Q

MC
3,ice}, and

from Eq. (4), we have the MFMC estimator QMFMC
ice , which

makes use of these three MC estimators.
At this point, we proceed as was done in Sect. 3.2. For ex-

ample, we now have that the approximate costs (measured
in wall-clock seconds and averaged over 100 random sam-
ples) for computing F 1

ice(z), F
2
ice(z), and F 3

ice(z), as well as
the approximate correlations for the three OoIs, are given by

C=

C1
C2
C3

=
285.5

23.05
2.690


and ζ 1 =

ζ1,1
ζ1,2
ζ1,3

=
1.00000000

0.99999796
0.99996691

 .
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Figure 8. A simulation of the ice sheet model with θ = 0.7387 and β = 901.5232, discretized at the highest grid resolution. The top two
plots display contours of the velocity components u1 and u2, respectively, on the top surface 0s. The third plot displays a contour plot of
velocity component u3. The fourth plot displays a cutaway plot of the velocity magnitude |u| inside the sheet.

The remaining experimental details are nearly identical to
those of Sect. 3.2. As was the case for the oceanic simula-
tions, the computational expense of these models precludes
the collection of unlimited data, so a total of 8000 uniform
i.i.d. realizations of z are drawn, of which all models share
200 and the lower-fidelity surrogates share 1000. The results
of carrying out MFMC and MC estimation over 250 “inde-
pendent” runs using this common data set are provided in
Table 6 and Fig. 9. Here, it is especially apparent that the
budget-preserving modifications to MFMC that led to the al-
gorithm in Box 2 were necessary, as B� C ·R and because
only one high-fidelity run is ever selected by the algorithm.

Despite this, it is clear from Table 6 and the plots in Fig. 9
that, within these small budgets, MFMC estimation produces
an estimator which is much more accurate and precise than
that of MC estimation. This is not surprising because MFMC
estimation has the flexibility to load most of its budget onto
the cheaper lower-fidelity surrogate models, evaluating them
many times in order to bring down the overall variance of
their estimates. Again, this provides empirical validation for
the use of MFMC estimation over MC estimation when es-
timating model statistics, even in practical cases where data
availability is low.

Table 6. Results of the ice sheet experiment for budgets equivalent
to 2k high-fidelity runs.

MC

k e(QMC
ice )× 106 erel(Q

MC
ice )× 10−2

2 37.26 11.79
4 20.08 6.354
8 11.62 3.676
16 5.296 1.676
32 2.457 0.7774
64 1.018 0.3221

Modified MFMC

k Number of samples taken of e(QMFMC
ice ) erel(Q

MFMC
ice )

F 1
ice(z) F 2

ice(z) F 3
ice(z) ×104

×10−4

2 1 1 97 69.67 22.05
4 1 1 309 16.81 5.323
8 1 1 726 3.793 1.200
16 1 4 1555 1.370 0.4335
32 1 8 3215 1.123 0.3554
64 1 17 6506 0.3393 0.1074
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Figure 9. Results over 250 runs of the ice sheet experiment with quantity of interest (Eq. 21). Shaded regions represent variance in the MC
and MFMC predictions over the 250 runs. Note that the melon region is contained in the blue region, indicating that the MFMC estimator
has a smaller standard deviation than the MC estimator.

5 Concluding remarks

This paper serves to introduce multifidelity Monte Carlo es-
timation as an alternative to standard Monte Carlo estimation
for quantifying uncertainties in the outputs of climate system
models, albeit in very simplified settings. Specifically, we
consider benchmark problems for the single-layer shallow-
water equations relevant to ocean and atmosphere dynam-
ics, and we also consider a benchmark problem for the first-
order model of ice sheet dynamics. The computational re-
sults presented here are promising in that they amply demon-
strate the superiority of MFMC estimation when compared
to MC estimation on these examples. Furthermore, the use
of MFMC as an estimation method will surely be even more
efficacious when quantifying uncertainties in more realistic
climate-modeling settings for which the simulation costs are
prohibitively large, e.g., for long-term climate simulations.
Thus, our next goal is to apply MFMC estimation to more
useful models of climate dynamics (such as the primitive
equations for ocean and atmosphere and the Stokes model
for ice sheets) that are also coupled to the dynamics of other
climate system components and also to passive and active
tracer equations.

Code and data availability. The climate simulation data used
in this work along with Python code for reproducing the
relevant experiments can be found at the GitHub reposi-
tory (https://github.com/agrubertx/Multifidelity-Monte-Carlo,
last access: 10 February 2023) with permanent identifier
https://doi.org/10.5281/zenodo.7071646 (Gruber et al., 2022b).
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