Articles | Volume 15, issue 23
https://doi.org/10.5194/gmd-15-8749-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-8749-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ISMIP-HOM benchmark experiments using Underworld
Department of Geosciences, Eberhard Karls University
Tübingen, Tübingen, Germany
Haibin Yang
Research School of Earth Sciences, Australian National University,
Canberra, Australia
Justin Lang
Department of Geosciences, Eberhard Karls University
Tübingen, Tübingen, Germany
Paul D. Bons
Department of Geosciences, Eberhard Karls University
Tübingen, Tübingen, Germany
School of Earth Science and Resources, China University of
Geosciences, Beijing, China
Louis Moresi
Research School of Earth Sciences, Australian National University,
Canberra, Australia
Related authors
Paul D. Bons, Tamara de Riese, Steven Franke, Maria-Gema Llorens, Till Sachau, Nicolas Stoll, Ilka Weikusat, Julien Westhoff, and Yu Zhang
The Cryosphere, 15, 2251–2254, https://doi.org/10.5194/tc-15-2251-2021, https://doi.org/10.5194/tc-15-2251-2021, 2021
Short summary
Short summary
The modelling of Smith-Johnson et al. (The Cryosphere, 14, 841–854, 2020) suggests that a very large heat flux of more than 10 times the usual geothermal heat flux is required to have initiated or to control the huge Northeast Greenland Ice Stream. Our comparison with known hotspots, such as Iceland and Yellowstone, shows that such an exceptional heat flux would be unique in the world and is incompatible with known geological processes that can raise the heat flux.
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
The Cryosphere, 19, 1153–1180, https://doi.org/10.5194/tc-19-1153-2025, https://doi.org/10.5194/tc-19-1153-2025, 2025
Short summary
Short summary
The study presents internal reflection horizons (IRHs) over an area of 450 000 km² from western Dronning Maud Land, Antarctica, spanning 4.8–91 ka. Using radar and ice core data, nine IRHs were dated and correlated with volcanic events. The data enhance our understanding of the ice sheet's age–depth architecture, accumulation, and dynamics. The findings inform ice flow models and contribute to Antarctic-wide comparisons of IRHs, supporting efforts toward a 3D age–depth ice sheet model.
Paul Dirk Bons, Yuanbang Hu, Maria-Gema Llorens, Steven Franke, Nicolas Stoll, Ilka Weikusat, Julien Wetshoff, and Yu Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3817, https://doi.org/10.5194/egusphere-2024-3817, 2025
Short summary
Short summary
What causes folds in ice layers from the km-scale down to the scale visible in drill core? Classical buckle folding due to variations in viscosity between layers, or the effect of mechanical anisotropy of ice due to an alignment of the crystal-lattice planes? Comparison of power spectra of folds in ice, a biotite schist, and numerical simulations show that folding in ice is due to the mechanical anisotropy, as there is no characteristic fold scale that would result from buckle folding.
Nicolas Stoll, Ilka Weikusat, Daniela Jansen, Paul Bons, Kyra Darányi, Julien Westhoff, Mária-Gema Llorens, David Wallis, Jan Eichler, Tomotaka Saruya, Tomoyuki Homma, Martyn Drury, Frank Wilhelms, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Johanna Kerch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2653, https://doi.org/10.5194/egusphere-2024-2653, 2024
Short summary
Short summary
A better understanding of ice flow requires more observational data. The EastGRIP core is the first ice core through an active ice stream. We discuss crystal orientation data to determine the present deformation regimes. A comparison with other deep ice cores shows the unique properties of EastGRIP and that deep ice originates from the Eemian. We further show that the overall plug flow of NEGIS is characterised by many small-scale variations, which remain to be considered in ice-flow models.
Sara Polanco, Mike Blum, Tristan Salles, Bruce C. Frederick, Rebecca Farrington, Xuesong Ding, Ben Mather, Claire Mallard, and Louis Moresi
Earth Surf. Dynam., 12, 301–320, https://doi.org/10.5194/esurf-12-301-2024, https://doi.org/10.5194/esurf-12-301-2024, 2024
Short summary
Short summary
Two-thirds of the world's most populated cities are situated close to deltas. We use computer simulations to understand how deltas sink or rise in response to climate-driven sea level changes that operate from thousands to millions of years. Our research shows that because of the interaction between the outer layers of the Earth, sediment transport, and sea level changes deltas develop a self-regulated mechanism that modifies the space they need to gain or lose land.
Maria-Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David J. Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García-Castellanos, and Ricardo A. Lebensohn
The Cryosphere, 16, 2009–2024, https://doi.org/10.5194/tc-16-2009-2022, https://doi.org/10.5194/tc-16-2009-2022, 2022
Short summary
Short summary
Polar ice is formed by ice crystals, which form fabrics that are utilised to interpret how ice sheets flow. It is unclear whether fabrics result from the current flow regime or if they are inherited. To understand the extent to which ice crystals can be reoriented when ice flow conditions change, we simulate and evaluate multi-stage ice flow scenarios according to natural cases. We find that second deformation regimes normally overprint inherited fabrics, with a range of transitional fabrics.
Paul D. Bons, Tamara de Riese, Steven Franke, Maria-Gema Llorens, Till Sachau, Nicolas Stoll, Ilka Weikusat, Julien Westhoff, and Yu Zhang
The Cryosphere, 15, 2251–2254, https://doi.org/10.5194/tc-15-2251-2021, https://doi.org/10.5194/tc-15-2251-2021, 2021
Short summary
Short summary
The modelling of Smith-Johnson et al. (The Cryosphere, 14, 841–854, 2020) suggests that a very large heat flux of more than 10 times the usual geothermal heat flux is required to have initiated or to control the huge Northeast Greenland Ice Stream. Our comparison with known hotspots, such as Iceland and Yellowstone, shows that such an exceptional heat flux would be unique in the world and is incompatible with known geological processes that can raise the heat flux.
Cited articles
Alley, R. B.: Fabrics in polar ice sheets: development and prediction,
Science, 240, 493–495, 1988
Azuma, N.: A flow law for anisotropic ice and its application to ice sheets,
Earth Planet. Sc. Lett., 128, 601–614,
https://doi.org/10.1016/0012-821X(94)90173-2, 1994.
Bahadori, A., Holt. W. E., Feng, R., Austermann, J., Loughney, K. M., Salles, T., Moresi, L., Beucher, R.,
Lu, N., Flesch, L. M., Calvelage, C. M., Rasbury, E. T. Davis, D. M., Potochnik, A. R., Ward, W. B., Hatton,
K., Haq, S. S. B., Smiley T. M., Wooton, K. M., and Badgley, C.: Coupled influence of tectonics,
climate, and surface processes on landscape evolution in southwestern North
America, Nat. Commun., 13, 4437, https://doi.org/10.1038/s41467-022-31903-2, 2022.
Beucher, R., Giordani, J., Moresi, L., Mansour, J., Kaluza, O., Velic, M., Farrington, R., Quenette, S., Beall, A., Sandiford, D., Mondy, L., Mallard, C., Rey, P., Duclaux, G., Laik, A., Morón, S., Beall, A., Knight, B., and Lu, N.: Underworld2: Python Geodynamics Modelling for Desktop, HPC and Cloud (v2.13.0b), Zenodo [code], https://doi.org/10.5281/zenodo.6820562, 2022a.
Beucher, R., Giordani, J., Moresi, L., Mansour, J., Kaluza, O., Velic, M., Farrington, R., Quenette, S., Beall, A., Sandiford, D., Mondy, L., Mallard, C., Rey, P., Duclaux, G., Laik, A., Morón, S., Beall, A., Knight, B., and Lu, N.: Underworld2: Python Geodynamics Modelling for Desktop, HPC and Cloud (v2.13.0b), Zenodo [code], https://doi.org/10.5281/zenodo.6820562, 2022b.
Blatter, H., Clarke, G., and Colinge, J.: Stress and velocity fields inglaciers: Part
II.sliding and basal stress distribution, J. Glaciol., 44, 457–466, 1998.
Bons, P. D., Jansen, D., Mundel, F., Bauer, C. C., Binder, T., Eisen, O.,
Jessell, M.-G., Llorens, M., Steinbach, F., Steinhage, D., and Weikusat, I.:
Converging flow and anisotropy cause large-scale folding in Greenland's ice
sheet, Nat. Commun., 7, 11427, https://doi.org/10.1038/ncomms11427,
2016.
Bons, P. D., Kleiner, T., Llorens, M.-G., Prior, D. J., Sachau, T.,
Weikusat, I., and Jansen, D.: Greenland Ice Sheet: Higher nonlinearity of ice
flow significantly reduces estimated basal motion, Geophys. Res.
Lett., 45, 6542–6548, https://doi.org/10.1029/2018GL078356, 2018.
Bons, P. D., de Riese, T., Franke, S., Llorens, M.-G., Sachau, T., Stoll, N., Weikusat, I., Westhoff, J., and Zhang, Y.: Comment on “Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream” by Smith-Johnsen et al. (2020), The Cryosphere, 15, 2251–2254, https://doi.org/10.5194/tc-15-2251-2021, 2021.
Budd, W. and Jacka, T.: A review of ice rheology for ice sheet modelling,
Cold Reg. Sci. Technol., 16, 107–144, 1989.
Capitanio, F. A., Nebel, O., Cawood, P. A., Weinberg, R. F., and Clos, F.:
Lithosphere differentiation in the early Earth controls Archean tectonics,
Earth Planet. Sc. Lett., 525, 115755,
https://doi.org/10.1016/j.epsl.2019.115755, 2019.
Carluccio, R., Kaus, B., Capitanio, F. A., and Moresi, L. N.: The Impact of a
Very Weak and Thin Upper Asthenosphere on Subduction Motions, Geophys. Res.
Lett., 46, 11893–11905, https://doi.org/10.1029/2019GL085212, 2019.
Cavitte, M. G. P., Blankenship, D. D., Young, D. A., Schroeder, D. M.,
Parrenin, F., Lemeur, E., Macgregor, J. A., and Siegert, M. J.: Deep
radiostratigraphy of the East Antarctic plateau: connecting the Dome C and
Vostok ice core sites, J. Glaciol., 62, 323–334, https://doi.org/10.1017/jog.2016.11, 2016.
Duval, P., Ashby, M. F., and Anderman, I.: Rate-controlling processes in the
creep of polycrystalline ice, J. Phys. Chem., 87, 4066–4074,
https://doi.org/10.1021/j100244a014, 1983.
Ershadi, M. R., Drews, R., Martín, C., Eisen, O., Ritz, C., Corr, H., Christmann, J., Zeising, O., Humbert, A., and Mulvaney, R.: Polarimetric radar reveals the spatial distribution of ice fabric at domes and divides in East Antarctica, The Cryosphere, 16, 1719–1739, https://doi.org/10.5194/tc-16-1719-2022, 2022.
Evans, B. and Kohlstedt, D. L.: Rheology of Rocks, in: Rock Physics and
Phase Relations: a handbook of Physical Constants, Ref. Shelf, vol. 3, edited by:
Ahrens, T. J., 148–165, AGU, Washington D.C., 1995.
Farrington, R. J., Moresi, L. N., and Capitanio, F. A.: The role of
viscoelasticity in subducting plates, Geochem. Geophys. Geosyst.,
15, 4291–4304, 2014.
Gagliardini, O. and Zwinger, T.: The ISMIP-HOM benchmark experiments performed using the Finite-Element code Elmer, The Cryosphere, 2, 67–76, https://doi.org/10.5194/tc-2-67-2008, 2008.
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013.
Gillet-Chaulet, f., Gagliardini, O., Meyssonnier, J., Zwinger, T., and
Ruokolainen, J.: Flow-induced anisotropy in polar ice and related ice-sheet
flow modelling, J. Non-Newtonian Fluid Mech., 134, 33–43, 2006.
Glen, J. W.: The Creep of Polycrystalline Ice, P. Roy.
Soc. A, 228, 519–538, https://doi.org/10.1098/rspa.1955.0066, 1955.
Gödert, G.: A Mesoscopic Approach for Modelling Texture Evolution of Polar Ice
Including Recrystallization Phenomena, Ann. Glaciol., 37, 23–28,
https://doi.org/10.3189/172756403781815375, 2003.
Goelzer, H., Robinson, A., Seroussi, H., and van de Wal, R. S. W.:
Recent progress in Greenland Ice Sheet modelling, Current Climate Change
Reports, 3, 291–302, https://doi.org/10.1007/s40641-017-0073-y, 2017.
Goldsby, D. L.: Superplastic flow of ice relevant to glacier and ice-sheet
mechanics, in: Glacier Science and Environmental Change, edited by: Knight, P. G., Blackwell, Oxford,
308–314, https://doi.org/10.1002/9780470750636.ch60, 2006.
Goldsby, D. L. and Kohlstedt, D. L.: Superplastic deformation of ice:
Experimental observations, J. Geophys. Res., 106,
11017–11030, https://doi.org/10.1029/2000JB900336, 2001.
Haefeli, R.: Contribution to the movement and the form of ice sheets in the
Arctic and Antarctic, J. Glaciol., 3, 1133–1151, 1961.
Hindmarsh, R. C. A.: A numerical comparison of approximations to the Stokes
equations used in ice sheet and glacier modeling: HIGHER-ORDER GLACIER
MODELS, J. Geophys. Res.-Earth Surf., 109, F1, https://doi.org/10.1029/2003JF000065, 2004.
Hutter, K. (Ed.): Theoretical glaciology: material science of ice and the
mechanics of glaciers and ice sheets, D. Reidel Publishing Co., Dordrecht,
1983.
Johnson, J. V. and Staiger, J. W.: Modeling long-term stability of the
Ferrar Glacier, East Antarctica: Implications for interpreting cosmogenic
nuclide inheritance, J. Geophys. Res., 112, F03S30,
https://doi.org/10.1029/2006JF000599, 2007.
Kennedy, J. H., Pettit, E. C., and Di Prinzio, C. L.: The evolution of
crystal fabric in ice sheets and its link to climate history, J. Glaciol.,
59, 357–373, https://doi.org/10.3189/2013JoG12J159, 2013.
Korchinski, M., Rey, P. F., Mondy, L., Teyssier, C., and Whitney, D. L.:
Numerical investigation of deep-crust behavior under lithospheric extension,
Tectonophysics, 726, 137–146. https://doi.org/10.1016/j.tecto.2017.12.029,
2018.
Leysinger-Vieli, G. J.-M. C., Martín, C., Hindmarsh, R. C. A., and
Lüthi, M. P.: Basal freeze-on generates complex ice-sheet stratigraphy,
Nat. Commun., 9, 4669, https://doi.org/10.1038/s41467-018-07083-3, 2018.
Llorens, M.-G., Griera, A., Steinbach, F., Bons, P. D., Gomez-Rivas, E.,
Jansen, D., Roessiger, J., Lebensohn, R. A., and Weikusat, I.: Dynamic
recrystallization during deformation of polycrystalline ice: insights from
numerical simulations, Philos. T. R. Soc. Math. Phys. Eng. Sci., 375,
20150346, https://doi.org/10.1098/rsta.2015.0346, 2017.
MacGregor, J. A., Fahnestock, M. A., Catania, G. A., Paden, J. D., Prasad
Gogineni, S., Young, S. K., Rybarski, S. C., Mabrey, A. N., Wagman, B. M.,
and Morlighem, M.: Radiostratigraphy and age structure of the Greenland Ice
Sheet, J. Geophys. Res.-Earth Surf., 120, 212–241,
https://doi.org/10.1002/2014JF003215, 2015.
Mansour, J., Giordani, J., Moresi, L., Beucher, R., Kaluza, O., Velic, M.,
Farrington, R., Quenette, S., and Beall, A.: Underworld2: Python Geodynamics
Modelling for Desktop, HPC and Cloud, JOSS, 5, 1797,
https://doi.org/10.21105/joss.01797, 2020.
Mansour, J., Giordani, J., Moresi, L., Beucher, R., Kaluza, O., Velic, M., Farrington, R., Quenette, S., and Beall, A.: Underworld2: Python Geodynamics Modelling for Desktop, HPC and Cloud (v2.12.0b), Zenodo [code], https://doi.org/10.5281/zenodo.5935717, 2022.
Martín, C., Navarro, F., Otero, J., Cuadrado, M. L., and Corcuera, M.
I.: Three-dimensional modelling of the dynamics of Johnsons Glacier,
Livingston Island, Antarctica, Ann. Glaciol., 39, 1–8,
https://doi.org/10.3189/172756404781814537, 2004.
Martín, C., Gudmundsson, G. H., Pritchard, H. D., and Gagliardini, O.:
On the effects of anisotropic rheology on ice flow, internal structure, and
the age-depth relationship at ice divides, J. Geophys. Res., 114, F04001,
https://doi.org/10.1029/2008JF001204, 2009.
Mather, B., Müller, R.D., O'Neill, C., Beall, A., Vervoort, R. W., and
Moresi, L.: Constraining the response of continental-scale groundwater flow
to climate change, Sci. Rep.-UK, 12, 1–16, 2022.
McConnell, J. C. and Kidd, D. A.: On the plasticity of glacier and other
ice, P. Roy. Soc. London, 44, 331–367,
1888.
Moresi, L. and Mühlhaus, H. B.: Anisotropic viscous models of
large-deformation Mohr–Coulomb failure, Philosophical Magazine, 86,
3287–3305, 2006.
Moresi, L., Dufour, F., and Mühlhaus, H.-B.: A Lagrangian integration
point finite element method for large deformation modeling of viscoelastic
geomaterials, J. Comput. Phys., 184, 476–497,
https://doi.org/10.1016/S0021-9991(02)00031-1, 2003.
Moresi, L., Quenette, S., Lemiale, V., Meriaux, C., and Appelbe, B.:
Computational approaches to studying non-linear dynamics of the crust and
mantle, Phy. Earth Planet. Int., 15, 69–82, 2007.
Mühlhaus, H.-B., Moresi, L., Hobbs, B., and Dufour, F. D. R.: Large
Amplitude Folding in Finely Layered Viscoelastic Rock Structures, Pure Appl.
Geophys., 159, 23, https://doi.org/10.1007/s00024-002-8737-4, 2002.
Mühlhaus, H.-B., Moresi, L., and Cada, M.: Emergent Anisotropy and Flow
Alignment in Viscous Rock, Pure Appl. Geophys., 161, 2451–2463,
https://doi.org/10.1007/s00024-004-2575-5, 2004.
NEEM community members: Eemian interglacial reconstructed from a Greenland
folded ice core, Nature, 493, 489–494,
https://doi.org/10.1038/nature11789, 2013.
Nye, J. F.: The Flow Law of Ice from Measurements in Glacier Tunnels,
Laboratory Experiments and the Jungfraufirn Borehole Experiment, P. Roy. Soc. A,
219, 477–489, https://doi.org/10.1098/rspa.1953.0161, 1953.
Pattyn, F. and Payne, T.: Benchmark experiments for numerical Higher-Order
ice-sheet Models, https://frank.pattyn.web.ulb.be/ismip/welcome.html (last access: 30 May 2022),
2006.
Pattyn, F., Perichon, L., Aschwanden, A., Breuer, B., de Smedt, B., Gagliardini, O., Gudmundsson, G. H., Hindmarsh, R. C. A., Hubbard, A., Johnson, J. V., Kleiner, T., Konovalov, Y., Martin, C., Payne, A. J., Pollard, D., Price, S., Rückamp, M., Saito, F., Souček, O., Sugiyama, S., and Zwinger, T.: Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM), The Cryosphere, 2, 95–108, https://doi.org/10.5194/tc-2-95-2008, 2008.
Ranalli, G.: Rheology of the Earth., 366 pp., Allen and Unwin, Concord,
Mass., 1987.
Ranganathan, M., Minchew, B., Meyer, C. R., and Peč, M.:
Recrystallization of ice enhances the creep and vulnerability to fracture of
ice shelves, Earth Planet. Sc. Lett., 576, 11721, https://doi.org/10.1016/j.epsl.2021.117219, 2021.
Rathmann, N. M. and Lilien, D. A.: Inferred basal friction and mass flux
affected by crystal-orientation fabrics, J. Glaciol., 68, 236–252,
https://doi.org/10.1017/jog.2021.88, 2022.
Richards, D. H. M., Pegler, S. S., Piazolo, S., and Harlen, O. G.: The
evolution of ice fabrics: A continuum modelling approach validated against
laboratory experiments, Earth Planet. Sci. Lett., 556, 116718,
https://doi.org/10.1016/j.epsl.2020.116718, 2021.
Salles, T., Ding, X., and Brocard, G.: pyBadlands: A framework to simulate
sediment transport, landscape dynamics and basin stratigraphic evolution
through space and time, edited by: Borazjani, I., PLoS ONE, 13, e0195557,
https://doi.org/10.1371/journal.pone.0195557, 2018.
Sandiford, D., Moresi, L. M., Sandiford, M., Farrington, R., and Yang, T.:
The Fingerprints of Flexure in Slab Seismicity, Tectonics, 39, e2019TC005894,
https://doi.org/10.1029/2019TC005894, 2020.
Schroeder, D. M., Bingham, R. G., Blankenship, D. D., Christianson, K.,
Eisen, O., Flowers, G. E., Karlsson, N. B., Koutnik, M. R., Paden, J. D., and
Siegert, M. J.: Five decades of radioglaciology, Ann. Glaciol., 61,
1–13, 2020.
Sharples, W., Moresi, L. N., Velic, M., Jadamec, M. A., and May, D. A.:
Simulating faults and plate boundaries with a transversely isotropic
plasticity model, Phys. Earth Planet. Int., 252, 77–90,
2016.
Smith-Johnsen, S., Schlegel, N.-J., Fleurian, B., and Nisancioglu, K. H.:
Sensitivity of the Northeast Greenland Ice Stream to Geothermal Heat, J.
Geophys. Res.-Earth Surf., 125, e2019JF005252, https://doi.org/10.1029/2019JF005252,
2020.
Sugiyama, S., Gudmundsson, G. H., and Helbing, J.: Numerical investigation of
the effects of temporal variations in basal lubrication on englacial
strain-rate distribution, Ann. Glaciol., 37, 49–54,
https://doi.org/10.3189/172756403781815618, 2003.
Sulsky, D., Chen, Z. and Schreyer, H. L.: A particle method for
history-dependent materials, Comput. Meth. Appl. Mech.
Eng., 118, 179–196,
https://doi.org/10.1016/0045-7825(94)90112-0, 1994.
Wolovick, M. J., Creyts, T. T., Buck, W. R., and Bell, R. E.: Traveling
slippery patches produce thickness-scale folds in ice sheets: Traveling
slippery patches, Geophys. Res. Lett., 41, 8895–8901,
https://doi.org/10.1002/2014GL062248, 2014.
Yang, H. and Giordani, J.: underworld-community/sachau-et-al-ice-sheet: v1.1 (v1.1), Zenodo [data set], https://doi.org/10.5281/zenodo.7384424, 2022.
Yang, H., Moresi, L. N., and Mansour, J.: Stress recovery for the
particle-in-cell finite element method, Phys. Earth Planet.
Int., 311, 106637, https://doi.org/10.1016/j.pepi.2020.106637, 2021.
Young, T. J., Schroeder, D. M., Jordan, T. M., Christoffersen, P., Tulaczyk,
S. M., Culberg, R., and Bienert, N. L.: Inferring ice fabric from
birefringence loss in airborne radargrams: Application to the eastern shear
margin of Thwaites Glacier, West Antarctica, J. Geophys.
Res.-Earth Surf., 126, e2020JF006023,
https://doi.org/10.1029/2020JF006023, 2021.
Short summary
Knowledge of the internal structures of the major continental ice sheets is improving, thanks to new investigative techniques. These structures are an essential indication of the flow behavior and dynamics of ice transport, which in turn is important for understanding the actual impact of the vast amounts of water trapped in continental ice sheets on global sea-level rise. The software studied here is specifically designed to simulate such structures and their evolution.
Knowledge of the internal structures of the major continental ice sheets is improving, thanks to...