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Abstract. Numerical models have become an indispensable
tool for understanding and predicting the flow of ice sheets
and glaciers. Here we present the full-Stokes software pack-
age Underworld to the glaciological community. The code is
already well established in simulating complex geodynamic
systems. Advantages for glaciology are that it provides a full-
Stokes solution for elastic–viscous–plastic materials and in-
cludes mechanical anisotropy. Underworld uses a material
point method to track the full history information of La-
grangian material points, of stratigraphic layers and of free
surfaces. We show that Underworld successfully reproduces
the results of other full-Stokes models for the benchmark ex-
periments of the Ice Sheet Model Intercomparison Project for
Higher-Order Models (ISMIP-HOM). Furthermore, we test
finite-element meshes with different geometries and high-
light the need to be able to adapt the finite-element grid to
discontinuous interfaces between materials with strongly dif-
ferent properties, such as the ice–bedrock boundary.

1 Introduction

Numerical modeling has become a standard tool in the pre-
diction of ice flow in ice sheets and glaciers and has gained
increasing importance due to the quest to predict sea-level
rise (Goelzer et al., 2017). Ice sheets and glaciers on Earth
consist of ice 1h, the crystallographic variant of water ice that
is stable under the conditions at the Earth’s surface. Ice 1h is
a mineral with a hexagonal crystal symmetry that shows duc-
tile or crystal–plastic behavior (McConnell and Kidd, 1888;
Nye, 1953; Glen, 1955; Budd and Jacka, 1989) at differential
stresses in the order of 0.01–0.1 MPa that are typical for ice
sheets.

The flow law of ice is generally assumed to be a power law
(Glen, 1955; Budd and Jacka, 1989), often termed “Glen’s
(flow) law” (Haefeli, 1961), in which the strain rate is pro-
portional to the differential stress to the power n, the stress
exponent. Usually modelers assume n=3 (see, e.g., Pattyn
et al., 2008), although several studies – including the origi-
nal study of Glen (1955) – assume that n≈ 4 probably best
describes the rheology of ice. This is confirmed by more re-
cent studies (Goldsby and Kohlstedt, 2001; Goldsby, 2006;
Bons et al., 2018; Ranganathan et al., 2021).

Most rock-forming minerals also flow with a power-law
rheology (Ranalli, 1987; Evans and Kohlstedt, 1995). Mod-
elers of tectonic processes thus face the same challenges re-
lated to nonlinear flow as those in the glaciological commu-
nity. Recent versions of the software package “Underworld”
(Moresi et al., 2007; Mansour et al., 2020; code available
at https://doi.org/10.5281/zenodo.1436039, Beucher et al.,
2022a) provide a Python API originally developed to simu-
late geodynamics processes. Similar to Elmer/Ice (Gagliar-
dini et al., 2013), it solves the full-Stokes equations for
viscous–elastic–plastic deformation and is coupled to heat
flow (Moresi et al., 2003; Mansour et al., 2020). The latter
is relevant considering the potential impact geothermal heat
flow may have on ice flow and ice streams (Smith-Johnsen et
al., 2020; Bons et al., 2021).

As with most minerals, the rheology of ice 1h strongly
depends on a range of factors, such as temperature and mi-
crostructure. In addition, ice 1h has a strongly anisotropic
rheology (Duval et al., 1983; Azuma, 1994), and it is increas-
ingly recognized that this plays a crucial role in the behav-
ior of flowing ice, especially at ice streams (Rathmann and
Lilien, 2022). In particular, airborne radar (Schroeder et al.,
2020) has shown a rich diversity in fold structures inside the
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ice sheets (NEEM community members, 2013; Wolovick et
al., 2014; MacGregor et al., 2015; Bons et al., 2016; Cavitte
et al., 2016; Leysinger-Vieli et al., 2018). Radar data also
allow for direct measurements of the crystallographic and,
hence, mechanical anisotropy in ice (e.g., Young et al., 2021;
Ershadi et al., 2022). As the mechanical anisotropy, together
with processes such as basal melting, is thought to actively
influence flow of ice and folding, there is an urgent need to
include it in ice flow models on various scales (Rathmann
and Lilien, 2022).

Underworld includes mechanical anisotropy (Moresi and
Mühlhaus, 2006; Sharples et al., 2016). It employs the mate-
rial point method (MPM) (Sulsky et al., 1994; Moresi et al.,
2003), where Lagrangian material points are combined with
a finite-element (FE) mesh. First and foremost, these mate-
rial points allow for tracking of the strain history and rhe-
ological or physical changes on distinct Lagrangian points.
Further, tracking of the material points allows us to under-
stand the deformation of individual volumes or layers within
the ice sheet and the evolution of the surface. Particles can
also be used to record the crystallographic preferred orienta-
tion (CPO) and thus the local mechanical anisotropy of the
material. This way, the mechanical anisotropy can evolve as
a result of the local deformation. The combination of both
anisotropic rheology and particle tracking has potential for
the modeling of large-scale folds of stratigraphic layers ob-
served in ice sheets (Wolovick et al., 2014; NEEM commu-
nity members, 2013; Bons et al., 2016; Cavitte et al., 2016;
Leysinger-Vieli et al., 2018), in particular when the folding is
a result of the anisotropic rheology of ice (Bons et al., 2016).

Finally, Underworld can be coupled with other models to
investigate surface effects, such as sedimentation and ero-
sion, and processes that affect the base of the model, such
as mantle deformation and heat flux (Salles et al., 2018; Ba-
hadori et al., 2022). These have their equivalents at the sur-
face of ice sheets in the form of snow precipitation, ablation,
and both surface and basal melting (e.g., Jacobson and Ray-
mond, 1998; Smith-Johnsen et al., 2020). For all these rea-
sons, Underworld, which is already well established for the
simulation of complex tectonic processes (for instance, San-
diford et al., 2020; Carluccio et al., 2019; Capitanio et al.,
2019; Korchinski et al., 2018), surface processes (Bahadori
et al., 2022) and long-term ground water motion (Mather et
al., 2022), also seems well suited to simulate ice-sheet and
glacier flow.

Any numerical model needs to be validated or bench-
marked. The Ice Sheet Model Intercomparison Project for
Higher-Order Models (ISMIP-HOM; Pattyn et al., 2008,
and Supplement or https://frank.pattyn.web.ulb.be/ismip/
welcome.html, last access: 30 May 2022) provides tests for
the comparison of computational ice-sheet flow models for
different purposes. “Higher-order” here refers to models that
go beyond the shallow-ice approximation (SIA) up to full-
Stokes solutions (as Underworld does).

ISMIP-HOM includes both 2D and 3D experiments. The
flow law is Glen’s law with a stress exponent n= 3 and, in
one experiment, Newtonian flow. In this paper we publish the
results for the full suite of experiments of the benchmark. We
focus on three issues: (i) the viability of the results as com-
pared to solutions provided by other models, (ii) the com-
putation time and (iii) the influence of the geometry of the
underlying finite-element grid. The tests are performed us-
ing the 2.10 release of the software package Underworld. Fi-
nally, we provide one example of how mechanical anisotropy
and tracking of the stratigraphy can be incorporated in Un-
derworld to illustrate the potential of Underworld to simulate
mechanically complex systems and the resulting structures
within a glacier or ice sheet.

2 Method

2.1 Governing equations

The solution in Underworld is based on the Stokes equation
of slow flow of a Newtonian incompressible fluid:

∂τij

∂xj
−
∂P

∂xi
+ ρgi = 0, (1)

∂vi

∂xi
= 0. (2)

Here τij is the deviatoric stress tensor, P the pressure, g the
gravitational acceleration and v the velocity (see Tables 1 and
2 for symbols used). Simulations are based on Glen’s flow
law for viscous flow (Glen, 1955), according to which the
strain rate (ε̇ij ) is proportional to the deviatoric stress (τij ) to
the power n, the stress exponent. This flow law can be written
as

ε̇i,j = Aτ
n−1
II τij , (3)

where A is the temperature-dependent rate factor and τII
the second invariant of the deviatoric stress tensor τij (Nye,
1953).

Based on Newtonian flow, where τij = 2ηε̇i,j , we define
an effective viscosity ηice after Eq. (3) as

ηice =
1
2
A−1/nε̇

(1−n)/n
II . (4)

2.2 Characteristics of Underworld with regard to
specific challenges in the modeling of ice flow

Underworld is designed to solve some of the special prob-
lems relevant to modeling geodynamic processes. Identical
problems arise in the modeling of ice. Some of these chal-
lenges are as follows:

1. the modeling of discontinuities in the material proper-
ties at layer boundaries, for instance, at the ice–rock and
ice–air interfaces;
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Table 1. Parameters and their values, as prescribed by Pattyn et al. (2008) for the intercomparison project.

Symbol Parameter Value Unit

An=3 ice-flow parameter for stress exponent n= 3 10−16 Pa−3 a−1

An=1 ice-flow parameter for stress exponent n= 1 (Newtonian) 2.140373× 107 Pa−1 a−1

ρice ice density 910 kg m−3

ρbed bed rock density 2700 kg m−3

n exponent of Glen’s flow law for ice 3 or 1
ηbed constant bedrock viscosity 1022 Pa s
ηice effective viscosity of ice Pa s
g gravitational constant 9.81 m s−2

L model width 5–160 km

Table 2. Symbols used in this paper and not listed in Table 1.

Symbol Variable Typical unit

β2 basal friction coefficient
ε̇ij strain rate tensor a−1

ε̇II second invariant of the strain rate tensor a−1

m adaption parameter for mesh deformation
N number of nodes in a mesh
P pressure Pa
p coordinates of a vertex point
τb
xy horizontal shear stress at the ice basis in x direction Pa
τij deviatoric stress tensor Pa
τII second invariant of the deviatoric stress tensor Pa
vb
x , vb

y velocity at ice basis, x and y component m a−1

vs
x , vs

y velocity at ice surface, x and y component m a−1

x, y axes parallel and vertical to the tilted surface, referred to as “horizontal”/“vertical” m

2. gradients within the ice, for instance, due to strain soft-
ening or thermal effects;

3. the tracking of the strain history;

4. the often extreme spatial extent of the modeled systems;

5. the very strong deformation of the material.

Underworld addresses these issues with the so-called ma-
terial point method (MPM) (Sulsky et al., 1994; Moresi et
al., 2003), which is closely related to the venerable particle-
in-cell (PIC) method. MPM uses a Eulerian finite-element
mesh in order to calculate the incremental development of
the velocity field and other field variables, such as, temper-
ature and pressure. In the MPM method, Lagrangian mate-
rial points (“particles”) carry the density, viscosity, thermal
conductivity and other relevant material parameters. They
thereby record the history at their current location at every
time step and some historical properties like the stress at pre-
vious time step for simulations of viscoelastic deformations
(Farrington et al., 2014). The underlying mesh provides so-
lutions for the incremental movement of the material points.
The method is advantageous in the modeling of the emer-
gence of structures (e.g., folding; see Mühlhaus et al., 2002)

or where very strong deformation is involved, as in the defor-
mation across shear zones or near the base of an ice sheet. In
MPM, the mesh does not carry any history information other
than deformation of the boundary and therefore can be re-
meshed at any time as required and without loss of accuracy.

There is an unavoidable smoothing which comes from the
coarseness of the computational mesh relative to the material
point density (Moresi et al., 2003). While material bound-
aries are represented by a continuous interpolant on the grid,
they are necessarily discrete in the case of particles. This can
lead to fluctuations in the solution close to sharp rheological
or mechanical boundaries (Yang et al., 2021), for instance,
at the interface between ice and underlying rock. In the ice
itself, a change in mechanical parameters is usually more
gradual and is controlled, for example, by the temperature
gradient.

Another complication in the numerical modeling of ice
flow is the highly anisotropic behavior of ice, created by
the near-orthotropic properties of the ice crystal. The pos-
sibility to model anisotropic flow is built into Underworld
(Mühlhaus et al., 2004). Like any other local material prop-
erty, the orientation of the anisotropy can be stored on the
particle level.
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Underworld offers a variety of possible solvers, includ-
ing the well-known MUMPS, LU and multi-grid methods.
We have carried out brief comparative precision tests with
these solvers and could not find any difference in precision to
the standard solver which is based on the multi-grid method.
Throughout this study we will generally use MUMPS for 2D
models and multi-grid for 3D models. The exception is tests
of the computation time, for which we contrast a variety of
solvers.

3 Description of experiments

The ISMIP-HOM benchmark experiments have been de-
scribed in detail in Pattyn and Payne (2006) and Pattyn et
al. (2008). We perform all the experiments as described in
these publications. For simplicity we also apply the same al-
phabetical numbering scheme and refer to the experiments
as Experiment A to Experiment F. As we strive to focus on
the essentials in the following descriptions, we refer to the
original publications for further technical details if needed.

Experiments A, B, C and F are three-dimensional. Experi-
ments D and E only consider two spatial dimensions, and Ex-
periment B has an additional version in 2D. Experiments A
through D are performed for a variety of horizontal system
dimensions L, with L= 5, 10, 20, 40, 80 or 160 km. Exper-
iments A through E use a flow law based on n= 3, and Ex-
periment F applies Newtonian flow where n= 1 (Table 1).

We tested the influence of the mesh geometry on the re-
sults and the CPU time consumption as a function of the total
degree of freedom using Experiment D and the 2D version of
Experiment B.

3.1 Experiments A and B

A and B consider a slab of ice with a mean ice thickness
H = 1000 m, lying on a sloping bed with a mean slope
α = 0.5◦. The bedrock topography consists of a series of si-
nusoidal bumps (Experiment A) or ripples (Experiment B)
with an amplitude of 500 m (Fig. 1). The minimum thickness
of the rock layer is 500 m, and the total height of the model is
2000 m. The flow of ice is governed by Eq. (3). The bedrock
viscosity is constant, and ice is frozen to the bedrock. Rele-
vant material parameters are compiled in Table 1.

The surface elevation is described by the formula

zs (x,y)=−x · tan(α) . (5)

Bedrock topography for Experiment A is described using zs
by

zb (x,y)= zs (x,y)− 1000+ 500sin(ωx) · sin(ωy) (6)

and for Experiment B by

zb (x,y)= zs (x,y)− 1000+ 500sin(ωx) . (7)

3.2 Experiments C and D

Experiments C and D are similar to Experiments A and B,
although the topography of the bedrock is flat. Instead, the
coefficient of basal friction β2 varies in a sinusoidal manner.
The ice thicknessH is constant at 1000 m. The slope angle α
of the ice surface and of the underlying bedrock is 0.1◦. Ice
flow is governed by Eq. (3), and the material parameters are
summarized in Table 1. According to the benchmark specifi-
cations, Experiment C is run exclusively in 3D and Experi-
ment D exclusively in 2D.

The basal friction coefficient relates the basal drag τ b to
the basal velocity vb by

τ b
= vbβ2. (8)

With ω = 2π/L the coefficient of basal friction β2 for Ex-
periment C is defined as

β2
= 1000+ 1000 · sin(ωx) · sin(ωy) (9)

and for Experiment D by

β2
= 1000+ 1000 · sin(ωx) . (10)

Figure 2 shows the basal drag and the basal velocity cal-
culated from Eq. (10) (Experiment D) and Eq. (8). Here,
the velocity is calculated for a constant basal shear stress
τ b
= ρicegH sin(α), according to the shallow-ice approxi-

mation (SIA) (Hutter, 1983). Notice the singularity in the
velocity field (Fig. 2b), which develops because β2

= 0 at
x = 3/4L.

3.3 Experiment E

Experiment E is a two-dimensional diagnostic experiment
along the central flowline of a glacier in the European Alps
(Haut Glacier d’Arolla). The basic experiment and geome-
try are described in Blatter et al. (1998) and by Pattyn et
al. (2008). The general geometry of the glacier profile as used
in the experiment is shown in Fig. 3. The experiment is run
with two different basal conditions: (1) the ice is frozen to the
ground everywhere (β2

=∞), or (2) a zone of zero traction
(β2
= 0) between x = 2200 m and x = 2500 m exists. Com-

pare Eq. (8) for the meaning of the basal friction coefficient
β2.

3.4 Experiment F

Experiment F is a prognostic experiment in which a free ice
surface relaxes until a steady state is reached for a zero sur-
face mass balance. The slab of ice is resting on a bed with
a mean slope α = 3◦. The bedrock plane parallels the sur-
face but is perturbed by a Gaussian bump. The initial bedrock
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Figure 1. (a) 2D geometry of Experiment B. This is identical to a section parallel X located at ŷ = 0.25 in Experiment A (right). Sloping
angle α is given in degrees. Also depicted is the velocity field of the flowing ice, resulting for a model width L of 5000 m from the simulations
described below. Color and arrow length visualize the amount of velocity. (b) Bedrock topography for Experiment A and general naming
scheme for the axes of 3D experiments.

Figure 2. (a) Basal drag β2 and (b) basal velocity vb
x plotted according to Eqs. (9) and (10) and applying the SIA, plotted for L= 5000 m.

Notice the singularity in the velocity field, which develops because β2
= 0 at x = 3/4L, which is within the modeled domain.

Figure 3. Longitudinal profile of Haut Glacier d’Arolla (Pattyn et
al., 2008). Blue line: contact ice–rock. Orange line: contact ice–air.
Red zone: area of varying basal conditions, with either β2

=∞ or
β2
= 0.

(B0) and surface (S0) elevation are described by

S0 (x,y)= 0 (11)

B0 (x,y)=−H 0
+ a0 ·

(
exp

[
−x2
+ y2

σ 2

])
, (12)

where σ = 10H 0.
Experiment F applies a Newtonian (n= 1) flow law, given

in Table 1, so that the effective viscosity ηeff = (2An=1)
−1.

The experiment is run with two different values for the slip
ratio c, so that c = 1 and c = 0 is applied. c is used to describe
the basal friction coefficient β2 (see Eq. 8) by

β2
=

(
cAn=1H

0
)−1

. (13)

4 The FE mesh

The model domain is discretized by quadrilateral Q1/P0 el-
ements, where velocity is continuously linear, and pressure
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8754 T. Sachau et al.: ISMIP-HOM benchmark experiments using Underworld

is discontinuously constant. The pressure grid is offset from
the velocity grid. A direct comparison of the pressure at fixed
locations to the results of other models is therefore prone
to some interpolation error. Periodicity of the in- and out-
flow boundaries is applied in all experiments except Experi-
ment E.

The ice–rock interface is defined by either of the two fol-
lowing methods, depending on the type of experiment: (i) by
particles or (ii) directly by the mesh geometry.

4.1 FE grids with a rectangular hull

In most experiments we assume that the bedrock is identical
to the basal grid boundary. In experiments with a flat bedrock
topography (C, D and F), this means that the resulting shape
of the mesh is rectangular.

An exception is the 2D version of Experiment B: in or-
der to evaluate the impact of the mesh geometry and of a
particle representation of the bedrock material, we define the
sinusoidal bedrock topography using particles on a FE grid
with a rectangular hull. Different materials are represented
by particles with different rheological properties. Particles
are assigned to either ice or bedrock depending on whether
their depth exceeds the local ice thicknessH . As pointed out,
the material point method can lead to spurious fluctuations in
gradients at material boundaries, if particles of different ma-
terials are both located in one element.

In order to test and improve this behavior, we define three
different internal grid geometries and compare the smooth-
ness of the resulting basal shear stress τb. These geometries
are (i) a classic rectangular grid, (ii) a grid where the grid res-
olution increases in the vicinity of the ice–bedrock interface
and (iii) a grid where the mesh perfectly fits the rock surface
(Fig. 4).

4.1.1 Rectangular grid geometry

The benchmark assumes a constant height of the model for
each experiment, while the width is varied in a series of runs
during such an experiment. It is typically expected that the
accuracy of the solution and the computation time are most
optimal if the aspect ratio of cells is close to 1.

4.1.2 Structurally conforming grid

We adapt the rectangular mesh to the underlying topogra-
phy defined by the ice–rock boundary by vertically shifting
its vertices, so that the model resolution is significantly in-
creased close to the bedrock surface. Using the vertices of
the regular rectangular grid as input, the new vertical y co-
ordinate p′2 of a vertex point p = [p1,p2] from the regular
mesh becomes

p2 =

 s (p1)−1y ·
(
|1y|

s(p1)−Y0

)m
if s (p1) > p2

s (p1)−1y ·
(
|1y|

Y1−s(p1)

)m
if s (p1)≤ p2

. (14)

We assume here that the grid in y direction originates at
Y0 = 0 and ends in Y1 = 1. The rock surface is defined by
a function s(x). 1y = s(p1)−p2 is the vertical distance be-
tween the rock surface and p2. Both resolution and the ge-
ometry of individual cells are adapted to the interface line
as shown in Fig. 3b. m is a structural adaption parameter,
controlling the intensity of the mesh deformation. It is worth
pointing out that the resolution in x is not affected by this
geometry.

4.1.3 Grid fitted to ice–rock interface

The mesh defined by Eq. (14) does not guarantee that the
ice–rock interface is aligned perfectly with finite-element
edges. This may still introduce stress perturbations in el-
ements containing different materials with strong viscosity
contrasts (Yang et al., 2021). Therefore it makes sense to ap-
ply another mesh structure whose mesh edges fit the ice–rock
interface exactly.

We define the new vertical y coordinate p′2 of a vertex
point p = [p1,p2] from the regular mesh by

p′2 =

 s (p1)− (s (p1)−Y0) ·
n0−n
n0

(
n0−n
n0

)m
if s (p1) > p2

s (p1)− (Y1− s (p1)) ·
n0−n
nt−n0

(
n0−n
nt−n0

)m
if s (p1)≤ p2

. (15)

The variable n denotes the nth node in the vertical y direc-
tion; n0 is a predefined node, which is relocated exactly to
the rock surface; and nt is the total number of vertical ver-
texes. The difference between the equations above is that we
fix n0 in Eq. (14), while n0 varies along the x direction for
the case discussed in Eq. (15). As before, m is an adaption
parameter which controls the intensity of the mesh deforma-
tion. The adaption of the grid geometry does not affect the
position of nodes in the x direction.

4.2 FE grids with a non-rectangular hull

In all other experiments with an uneven bedrock topography
(Experiments A and E and the 3D version of Experiment B)
we apply Eq. (15) with m= 0 to the lower system boundary.
In the case of Experiment D, the ice–air interface is not flat;
therefore particles represent ice and overlying air (Fig. 5).

4.3 Basal conditions

Underworld pre-implements no-slip and free-slip bound-
ary conditions for flat system boundaries. However, Exper-
iments C through E require the usage of a friction law. We
realize the basal drag requirement by a basal layer with New-
tonian viscosity, whose viscosity is dependent on the basal
friction coefficient β2.

In the following, the relation between the Newtonian vis-
cosity of this basal layer (ηb) and β2 is derived. For the sake
of simplicity, we assume a flat horizontal surface, so that the
usual notation can be used. In the case of an uneven base,
x and y correspond to directions parallel or perpendicular to
the lower system boundary.

Geosci. Model Dev., 15, 8749–8764, 2022 https://doi.org/10.5194/gmd-15-8749-2022



T. Sachau et al.: ISMIP-HOM benchmark experiments using Underworld 8755

Figure 4. (a) Rectangular mesh. (b) Structurally conforming mesh, with increased resolution at the ice–rock interface. (c) Mesh perfectly
fits the rock surface. Blue: ice. Red: bedrock. For visualization purposes, both mesh resolution and distortion are reduced compared to the
actual experiments. The structure parameter m= 0.5 for both adapted grids (see Eqs. 14, 15). Mesh resolution: x = 128, y = 64. In the case
of the rectangular mesh, it is additionally 256× 128.

Figure 5. Grid geometry and particle distribution used for Experiment E, representing Haut Glacier d’Arolla. Particles carry the rheological
properties of ice and air. Blue: ice. Red: air.

Combining and integrating the relations τ = 2ηbε̇ (Newto-
nian flow) and ε̇ = ∂vx/∂y (definition of the strain rate) leads
to ηb (x)= h ·β

2 (x), with h the layer height. This relation
is then used to define the local viscosity of the Newtonian
layer. At the top of this layer, the velocity condition defined
in Eq. (8) is satisfied.

5 General performance tests

Below, we will first examine the CPU time consumption as
a function of the grid resolution and the effect of the grid
geometry on the smoothness of results.

5.1 CPU time consumption

The mesh resolution is one of the most important parameters
that controls the precision of the solution. Since computation
time increases with resolution, it is desirable to establish a
relationship between these two quantities. Below we test and
display the CPU time of the initial solution of the 2D version
of Experiment B. The computation time is not directly linked
to the mesh resolution but instead to the degrees of freedom
(DOF) of the system. For 2D-Stokes problems with quadri-
lateral elements, the degrees of freedom are 3N , with N the
total number of nodes (Gagliardini and Zwinger, 2008). Fig-
ure 6 shows the relationship between the DOF and the com-
putation time in a log–log plot for a series of 13 simulations
with different resolutions and for different solvers (MUMPS,
LU and multi-grid). The ratio of width to height of the grid
cells remains constant in all experiments. On the hardware
side, the simulations ran on a system with an Intel Xeon E5

processor with eight cores and 32 GB RAM. Of these eight
cores, only one core was assigned to a trial run, and only one
experiment was calculated at a time.

The interpolation between N and the computation time
(s) expressed by a power regression is 0.00014N1.21 (multi-
grid), 0.00037N1.06 (MUMPS) and 0.00013N1.15 (LU). In
the case of the multi-grid method, outliers from the generally
linear relation exist, which are related to the recursive refine-
ment of the grid. Outliers do not exist for the direct solvers
MUMPS and LU.

It is important to note, that – theoretically – the direct
solvers should not scale better thanN2. Therefore, the power
regression cannot be used in order to extrapolate these results
to an arbitrary DOF. It can be seen in Fig. 6 that a slight up-
ward curvature of the data with regard to the interpolation
exists.

5.2 Impact of the grid geometry

We tested the impact of the grid geometry based on using the
flow law parameters n= 3 and A= 10−16 Pa−3 a−1 (Pattyn
et al., 2008). In order to increase effects related to the geom-
etry, the mesh resolution is intentionally relatively small, at
128× 64. Only for the rectangular grid is a larger resolution
applied. The non-rectangular meshes use an adaption param-
eter m= 0.25.

The results for the surface velocity are generally smooth
and virtually identical in the three grid geometries. However,
fluctuations of the shear stress can become considerable, es-
pecially close to the ice–bedrock interface (Fig. 7), depend-
ing on the type of FE grid. These fluctuations are largest if a
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Figure 6. Computation time for Experiment B plotted vs. the
degrees of freedom and using different solvers. Blue: Mumps
(0.00037N1.06). Red: LU (0.00013N1.15). Green: multi-grid
(0.00014N1.212).

low-resolution rectangular mesh is used. Increasing the reso-
lution of the rectangular mesh does not fully eliminate the
fluctuations but is a way to reduce the problem (as high-
lighted in Fig. 7c). A more conforming grid with an increased
resolution around the rock surface (Eq. 1) reduces the fluctu-
ations significantly but does not completely eliminate them
(Fig. 7b). The unambiguously smoothest results are achieved
using a grid fully fitted to the rock surface after Eq. (15)
(see Fig. 7a). This confirms that fluctuations become smaller
when there is less mixing of materials with different proper-
ties within an element.

The absence of fluctuations in the stress field is a mea-
sure for the ability of the model to deal with discontinuous
material boundaries. In the following simulations for Exper-
iment B, we will therefore exclusively apply the fitted mesh.
This is in line with the original benchmark paper by Pattyn et
al. (2008), who suggested testing the models with optimized
settings.

The boundary between ice and the bedrock is usually the
only nonplanar material boundary in glaciers and ice sheets.
The other material boundary, between ice and air, can of-
ten be considered almost planar in the modeling of large ice
sheets, while rheological changes within the ice itself can
usually be treated as gradual, controlled, for instance, by the
temperature field or the crystallographic fabric. It is an im-
portant conclusion from these results that a FE mesh fitted
(even approximately) to the underlying bedrock topography
can significantly improve the accuracy of ice flow simula-
tions based on the material point method.

5.3 Impact of the grid resolution

Choosing a well-suited mesh resolution is always a balance
between precision requirements and computational limita-
tions. The computation limits can be related either to the
hardware or to general time constraints, which do not allow
for very long computation times. Also mesh geometry has an

impact on the accuracy and may or may not require a larger
resolution.

Given the existing time constraints and the number of sim-
ulations, this allowed us to test resolutions of 64× 32 and
128× 64 up to 256× 128. Even at the relatively small reso-
lution of 64× 32, the solution for stress and velocity at the
surface of the model is smooth and virtually identical to the
results obtained with higher resolutions, independent of the
mesh geometry (Sect. 5.2). This was different in the case of
the interface between the ice and the underlying bedrock.
While performance was good enough or very good with a
resolution of 128×64 for grids adapted to the interface, a res-
olution of 256× 128 was necessary to obtain usable results
in the case of a rectangular mesh. Two grid points above the
interface, the solution was smooth for all mesh geometries at
128× 64 and did not differ from higher resolutions.

The highest-resolution 3D simulations ran mostly on a
high-performance computer (HPC) cluster. Accuracy was
systematically tested for Experiment B using a fitted grid,
by comparing the results of the 2D and 3D experiments. Un-
der perfect conditions, 2D and 3D simulations should yield
identical results. We found that the necessary resolution is
highly dependent on the system size, i.e., on the aspect ratio
of the cells. For small system sizes of up to 20 km, we found
that a minimum resolution of 256× 128× 32 was necessary
to produce similar results as for the 2D model. Larger sys-
tems already produced satisfactory results with a resolution
of 128× 64× 8.

6 Specific results

Below we will compare the results of the individual bench-
mark experiments generated by Underworld to the results of
alternative codes. Where applicable, we run both the three-
dimensional and the two-dimensional version of the bench-
mark experiments. This applies to Experiments B and C. For
the latter, Experiment D is the associated 2D setup. All re-
sults are compiled in the Supplement to this paper. Concern-
ing the output parameter1p, which is the difference between
the isotropic and the hydrostatic pressure, the curve progres-
sion is very similar to that of other full-Stokes models of
the ISMIP but shows stronger fluctuations between adjacent
evaluation points. This is due to the internal architecture of
Underworld experiments, where the mesh used for the cal-
culation of pressure is a sub-mesh of the velocity mesh with
a staggered geometry. Fluctuations are a product of internal
interpolation.

6.1 Experiments A and B

We fit the lower system boundary to the topography of
the underlying bedrock in the 3D experiments by applying
Eq. (15) with m= 0.2 to the lower system boundary. The
2D version of Experiment B is based on a rectangular grid,
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Figure 7. The basal shear stress τb
xy (in kPa), calculated on (a) a grid fitted to the rock surface, and (b) a structurally more conforming grid,

which increases mesh resolution at the rock surface and (c) a rectangular grid. The experiments are based on a grid resolution of 128× 64.

which is internally fitted to the rock surface as in Sect. 5.2
above. Other relevant parameters are given in Table 1.

Results of Experiment A are shown in Figs. S1 and S2 in
the Supplement and display the surface velocity and the basal
shear stress. Results of Experiment B are shown in Fig. S3 to
S6 in the Supplement and show surface velocity and basal
shear stress in a 2D version of the experiment and at an arbi-
trary section paralleling the x axis of the 3D experiment. Di-
agrams include the results of full-Stokes solutions published
in Pattyn et al. (2008) for comparison.

The surface velocity is controlled by the model width L
and is in the range from a few meters per year to more than
100 m a−1. Figure 8 compares our results for Experiment B
to results compiled from eight full-Stokes models that were
previously published (Pattyn et al., 2008). A full comparison
of the results is in the Supplement to this paper.

In Experiment B, the shape of the horizontal surface ve-
locity for L= 5 km differs significantly from that for the
other cases. The surface velocity is larger over the bump and
thus anti-correlated with the ice thickness. Gagliardini and
Zwinger (2008) explain this as a mass conservation effect:
horizontal flux cannot be balanced by vertical flux because
the vertical velocity would be too large for the given system
size. This phenomenon does not occur in Experiment A, with
the same system size, although the section is identical at the
chosen location. This can be explained because ice can flow
around the sides of the bump.

Figure 8 shows the maximum and minimum surface ve-
locity vx (ys) and the maximum basal shear stress τxy (yb)

calculated by the 2D version of Experiment B and com-
pares it to other full-Stokes solutions compiled by Pattyn et
al. (2008). Maxima of both the shear stress and the surface
velocity show a tendency to be at the lower end of the spec-
trum, while minima are virtually identical to the results from
the comparison models. However, a full comparison (com-
pare Supplement) shows a more diverse distribution of the
results than the minima–maxima comparison in Fig. 6 im-
plies. The results of our Experiments show generally a very
good agreement with the majority of models, while some of

the comparison models display large deviations with regard
to the entire curve.

Figures S5 and S6 in the Supplement compare the results
of the 2D and the 3D setup, which should be ideally identi-
cal. The results for the surface velocity are virtually identi-
cal, with exception of the L= 5 km case, where a deviation
of ∼ 2 % for the maximum and the minimum velocity exists
if comparing 2D and 3D results. A similar effect exists re-
garding the extrema of the basal shear stress, which are most
notable for L= 5 km and L= 10 km.

To shed some light on the difference between 2D and 3D
results, we ran 3D simulations with a resolution of 128×64×
8 and of 256×128×32 for these system sizes and compared
them to the results of the 2D simulation (256× 128). Re-
garding the surface velocity, the higher-resolution 3D mesh
indeed yields results closer to the 2D result than the lower-
resolution simulation (Fig. S6 in the Supplement). This is not
the case for the basal shear stress, where the deviation from
the 2D result is comparable for both resolutions.

Possible reasons are (a) different hardware, the 2D exper-
iment, and the low-resolution 3D experiment running on the
same machine while the high-resolution 3D experiment ran
on a HPC cluster and (b) differences in the mesh geometry.
The low-resolution simulations use an exponent m= 0.25 in
Eq. (15). For technical reasons m is set to 0 for experiments
on the cluster.

6.2 Experiments C and D

Parameters for Experiments C and D are given in Table 1 for
n= 3. Results are summarized in Figs. S6 and S7 (Experi-
ment C) and Figs. S8 and S9 (Experiment D) in the Supple-
ment.

In Experiment C, the surface velocity is strongly depen-
dent on the system size L. In the case of the smallest sys-
tem size (L= 5 km), the surface velocity is close to constant
at ∼ 16 m a−1. With L= 160 km it ranges from 8.8 up to
122.5 m a−1 (Fig. S7, Supplement). The shear stress results
of the Underworld simulations line up well with the compar-
ison simulations. They show a sinusoidal curve with a maxi-
mum at x̂ = 0.25 and a minimum at x̂ = 0.75. With increas-
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Figure 8. Maximum and minimum values of the horizontal surface velocity (vx (ys)) and of the maximum basal shear stress (τxy (yb)) in
Experiment B and D, plotted for every model size. The underlying FE mesh is fitted to the rock–ice interface. Results are compared to
the results of eight full-Stokes models (compiled and published by Pattyn et al., 2008). Abbreviations of the comparison experiments are
compiled in Table 3.

Table 3. Model abbreviations used in the diagrams, taken from Pattyn et al., 2008. “Dimensions”: model dimensions. “Method”: numerical
method: FE: finite element, Sp: spectral method, MPM: material point method.

Model Dimensions Method Reference

tsa1 2 MPM this study, based on Mansour et al. (2020)
Jla1 3 MPM this study, based on Mansour et al. (2020)
aas2 3 FE unpublished
cma1 3 FE Martín et al. (2004)
jvj1 3 FE Johnson and Staiger (2007)
mmr1 3 FE unpublished
oga1 3 FE Gagliardini and Zwinger (2008)
rhi1 3 Sp Hindmarsh (2004)
rhi3 3 Sp Hindmarsh (2004)
ssu1 2 FE Sugiyama et al. (2003)

ing model size, the maximum gets progressively flattened.
The peak downwards at the singularity value x̂ = 0.75 is far
less impacted by model size, which means it gets more dom-
inant for bigger values of L.

In Experiment D, the maximum surface velocity increases
with model width L and is in the range from 16 m a−1 to

more than 235 m a−1. Figure 9 shows the maximum and min-
imum surface velocity and the maximum shear stress τxy .
Results are generally in good agreement with the majority
of model results they are compared to. However, the gen-
eral variation between the results of the comparison models
is generally larger than in the 2D version of Experiment B,
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the only other 2D experiment of the benchmark. The same
statement applies to basal shear stress. Again, a full compar-
ison of the results is included in the Supplement to this paper.

6.3 Experiments E and F

Experiment E is calculated for two different setups, where
either the entire glacier is frozen to the underlying bedrock
or where a traction-free section close to the center exists. In
both cases, the results of Underworld lie within the range of
the comparison models (see Figs. S10 and S11 in the Sup-
plement). Both the calculated surface velocity and the basal
shear stress are in the lower range of this range, which is true
for the majority of models. In particular, extreme values of
the curve are a bit smoother than in some of the other full-
Stokes models.

The prognostic Experiment F calculates the surface ve-
locity and the surface topography. Results are compiled in
Figs. S12 and S13 in the Supplement. Since the majority of
potential comparison models are not capable of calculating a
free surface, the results of Underworld can be compared to
only two other software packages. Due to the special prop-
erties of the software, we only model the version of the ex-
periment with a basal no-slip condition. Other values for the
basal traction would either involve a very complex imple-
mentation or yield questionable results. We ran the model
until no further change in topography or velocity occurred
and interpreted this as the stable state.

When we compare our results with those of the two ref-
erence models with respect to an analytical sample solution
(Frank Pattyn, personal communication, 2022), qualitatively
similar results are obtained. One of the reference models
shows very good agreement with the theoretical surface el-
evation but shows lower accuracy with respect to surface ve-
locity. Underworld predicts the surface velocity the best of
the three models but tends to develop a slightly less extreme
topography than the analytical solution.

7 Comparison experiments with anisotropic and
isotropic ice

Ice is assumed to deform mostly by dislocation creep at nat-
ural strain rates (Budd and Jacka, 1989), whereby slip along
the basal planes is much easier than slip along the other slip
planes (Duval et al., 1983). This makes an ice single crys-
tal mechanically effectively transversely isotropic, with the
c axis that is oriented perpendicular to the basal plane as the
symmetry axis. The anisotropy of ice single crystals leads
to a crystallographic preferred orientation (CPO) in a de-
forming aggregate of ice crystals (Alley, 1988; Llorens et al.,
2017). The mechanical anisotropy of an aggregate may be of
a lower symmetry than that of a single crystal but can be ap-
proximated to a first order as orthotropic (Gillet-Chaulet et
al., 2006).

One of the features of Underworld which makes it inter-
esting for the modeling of ice is its capability to model lin-
ear orthotropic viscosity, which includes transverse isotropy
as a special case. In order to demonstrate its effect, we set
up comparison experiments with anisotropic and isotropic
ice rheology, based on the setup of Experiment B: ice flows
over a sinusoidal surface, driven by a general 0.5◦ tilt of the
model. Isotropic flow is governed by Eq. (4), using the pa-
rameters given in Table 1.

The orientation of the anisotropy is stored as the c axis
orientation on the level of the particles in Underworld. The
aggregate anisotropy of one mesh element is calculated from
the individual c axis orientations of the cloud of particles in
an element. Fabric evolution is simulated using the rotation
of the c axes in the flow field after, e.g., Gillet-Chaulet et
al. (2006) or Richards et al. (2021). However, for simplicity,
in our example here we assume that all basal planes are and
remain horizontal. The anisotropy of ice, in terms of the ra-
tio of resistance to slip parallel to crystallographic non-basal
and basal planes, is about 60–80 in a single ice crystal (Duval
et al., 1983). However, as we simulate aggregates of crystals
here, we set the viscosity for shear non-parallel to the basal
planes only 10 times higher than the viscosity for shear par-
allel to the basal planes, which we assume equal to that used
for the isotropic flow law.

Figure 9 shows the shape of marker lines prior to deforma-
tion and after 750 years of flow for both iso- and anisotropic
ice models. Marker lines inherit their sinusoidal shape from
the shape of the underlying topography and are then folded
according to the localization of the highest shear rates. In
isotropic ice (Fig. 9b), the axial plane of the shear fold is
mostly controlled by the underlying topography. In the case
of anisotropic ice (Fig. 9c), the folding is more intense, and
the axial plane is subhorizontal, showing that the anisotropy
has a distinct effect on resulting fold structures.

Figures 10 and 11 that show the velocity field and the
strain rate field in both materials allow for a better under-
standing of the deformation process. In the case of isotropic
ice, the flow field is controlled by the underlying topogra-
phy. Hence the hill on the left acts as a bottleneck for the ice
flow, and the hill sides funnel ice in and out of the bottleneck
region. Consequently, the zone of high shear strain at the ice–
rock interface extends across the crest of the bedrock bump
(Fig. 10a) and the maximum velocity above it. Outside the
bottleneck region, flow is comparatively evenly distributed.

In the case of anisotropic ice, the flow regime and thus the
shear folding is quite different. Here, flow is strongly con-
trolled by the inherent anisotropy and far less by the bedrock
topography. Looking at the velocity field (Fig. 11a), it be-
comes clear that the flow field is internally subdivided into
a fast-flowing upper part and slow-flowing “dead ice” in the
lower part. Decoupling of the shallow and deep ice develops
because the anisotropy facilitates shear along the horizontal
basal planes. The resulting horizontal high-strain zone spans
the entire system and produces the distinct shear fold.
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Figure 9. Marker lines prior to (a) and after 750 years of flow of (b) isotropic and (c) anisotropic ice. The axial plane of the resulting shear
fold in isotropic ice mimics the bedrock topography, while it is controlled by shearing along a horizontal shear zone in the case of anisotropic
ice. Green: bedrock, flow to the right.

Figure 10. Velocity field and strain rate field in isotropic ice. Large strain rates and velocities occur in the vicinity of the bottleneck formed
by the crest of the hill. Green: bedrock. For velocity, red is 70 m a−1 and blue is 0 m a−1. For strain rate, red is 0.032 a−1, and blue is 0 a−1.
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Figure 11. Velocity field and strain rate field in anisotropic ice. The velocity field is vertically subdivided into a fast-flowing upper and an
almost stagnant lower part. The strain rate is thus at its maximum in the horizontal shear zone that spans from crest to crest of the bedrock
undulations. Green: bedrock, velocity: red: 6.6 m a−1, blue: 0 m a−1, strain rate: red: 0.031 a−1, blue: 0 a−1.

8 Outlook

One of the great advantages of the Underword2 software
package from the standpoint of the modeler is its great flex-
ibility and traceability due to its hybrid nature as both a par-
ticle and a finite-element model. Another contribution to its
flexibility is the easy extensibility of the core code and the
interactive development thanks to the existence of a Python
API. The compatibility of the API with the mathematical–
scientific packages NumPy and SciPy provides easy access
to a wide range of numerical resources. Anisotropic flow and
heat flow are already part of the core package.

Given the current debates in the ice community about the
role of the anisotropy and hence of the fabric evolution of ice
or the ideas for improvements of the flow laws for ice (e.g.,
Kennedy et al., 2013; Llorens et al., 2017; Richards et al.,
2021; Martín et al., 2009), this type of flexibility is an im-
portant precondition for a future proof numerical model for
glacier ice. One example was the implementation of the or-
thotropic rheology and the fabric evolution in deformed ice
following Gödert (2003) and Gillet-Chaulet et al. (2006) by
the authors of this text. Possible improvements to the fab-
ric evolution models – for instance, by the SpecCAF model
(Richards et al., 2021) – can be easily implemented and
tested.

A few desirable features are currently still missing but are
on the road map for future versions of Underworld. The soon-
to-be-released Underworld3, for instance, allows for greater
flexibility of the mesh geometry, including the triangulation
of shapes and areas with arbitrary geometry.

9 Conclusions

The Underworld software is designed to solve deforma-
tion in complex geodynamic systems with nonlinear elastic–
viscous–plastic materials, for which it provides a full-Stokes
solution. It is therefore well suited for the modeling of glacier
and ice-sheet flow, as it includes heat flow and anisotropic
rheology. The combination of Lagrangian mass points (par-
ticles) and a Eulerian finite-element solution allows for the
tracking of individual points as well as of inner and outer
surfaces, such as deforming stratigraphic layers, but also of
the thermal–mechanical properties in deforming materials. In
the case of large rheological differences across interfaces, the
possibility to fit the grid to the interface greatly improves the
accuracy of stress field, compared to other grid types. In the
case of ice flow experiments, it makes sense to fit the grid to
the bedrock–ice boundary.

We compared results of Underworld simulations with
those of other modeling approaches for the set of bench-
mark experiments provided by Pattyn et al. (2008). Our re-
sults match the full-Stokes solutions that are compiled in that
study. This means that Underworld is a viable alternative
to other full-Stokes models, in particular where the material
point method is advantageous, such as when accurate track-
ing of material volumes or stratigraphic layers is desired. A
further advantage is that, owing to the built-in Python API,
Underworld is very flexible and can be extended to be ap-
plied to even the more complex processes which are involved
in the flow of ice sheets and glaciers.
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experiments discussed in this article is included in the Supple-
ment to this article, along with graphical representations and
text files of the results. They are also available through Yang
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for this paper is available through Mansour et al. (2022;
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