Articles | Volume 15, issue 23
https://doi.org/10.5194/gmd-15-8639-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-15-8639-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
spyro: a Firedrake-based wave propagation and full-waveform-inversion finite-element solver
Keith J. Roberts
CORRESPONDING AUTHOR
Department of Mining and Petroleum Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
Alexandre Olender
Department of Mechanical Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
Lucas Franceschini
Department of Mechanical Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
Robert C. Kirby
Department of Mathematics, Baylor University, Waco, USA
Rafael S. Gioria
Department of Mining and Petroleum Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
Bruno S. Carmo
Department of Mechanical Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
Related authors
No articles found.
William Radünz, Bruno Carmo, Julie K. Lundquist, Stefano Letizia, Aliza Abraham, Adam S. Wise, Miguel Sanchez Gomez, Nicholas Hamilton, Raj K. Rai, and Pedro S. Peixoto
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-166, https://doi.org/10.5194/wes-2024-166, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This study investigates how simple terrain can cause significant variations in wind speed, especially during specific atmospheric conditions like low-level jets. By combining simulations and observations from a real wind farm, we found that downstream turbines generate more power than upstream ones, despite wake effects only impacting the upstream turbines. We highlight the crucial role of the strong vertical wind speed gradient in low-level jets in driving this effect.
Cited articles
Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A.,
Richardson, C., Ring, J., Rognes, M. E., and Wells, G. N.: The FEniCS
project version 1.5, Archive of Numerical Software, 3, 100, https://doi.org/10.11588/ans.2015.100.20553, 2015. a, b
Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N.:
Unified form language, ACM Trans. Math. Softw., 40, 1–37,
https://doi.org/10.1145/2566630, 2014. a, b
Aminzadeh, F., Burkhard, N., Long, J., Kunz, T., and Duclos, P.: Three
dimensional SEG/EAEG models – an update, The Leading Edge, 15, 131–134,
https://doi.org/10.1190/1.1437283, 1996. a
Basker, B., Rüger, A., Deng, L., and Jaramillo, H.: Practical
considerations and quality control for an FWI workflow, The Leading Edge, 35,
151–156, 2016. a
Billette, F. J. and Brandsberg-Dahl, S.: The 2004 BP Velocity Benchmark, in: Extended
Abstracts, 67th Annual EAGE Conference & Exhibition, EAGE, Madrid, Spain, 13–16 June
2005, B035, 2005. a
Brenders, A. J. and Pratt, R. G.: Efficient waveform tomography for
lithospheric imaging: implications for realistic, two-dimensional acquisition
geometries and low-frequency data, Geophys. J. Int., 168,
152–170, https://doi.org/10.1111/j.1365-246X.2006.03096.x, 2007. a
Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential
Equations, 1st edn., Springer International Publishing, ISBN 978-0-387-70914-7,
https://doi.org/10.1007/978-0-387-70914-7, 2011. a
Brittan, J., Bai, J., Delome, H., Wang, C., and Yingst, D.: Full waveform
inversion – the state of the art, First Break, 31, 75–82,
https://doi.org/10.3997/1365-2397.31.10.71541, 2013. a
Brossier, R., Operto, S., and Virieux, J.: Seismic imaging of complex onshore
structures by 2D elastic frequency-domain full-waveform inversion,
Geophysics, 74, WCC105–WCC118, https://doi.org/10.1190/1.3215771, 2009. a
Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G.: Multiscale seismic
waveform inversion, Geophysics, 60, 1457–1473, https://doi.org/10.1190/1.1443880,
1995. a, b
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A Limited Memory Algorithm for
Bound Constrained Optimization, SIAM J. Sci. Comput., 16, 1190–1208,
https://doi.org/10.1137/0916069, 1995. a, b
Castellanos, C., Métivier, L., Operto, S., Brossier, R., and Virieux, J.: Fast
full waveform inversion with source encoding and second-order optimization
methods, Geophys. J. Int., 200, 720–744, https://doi.org/10.1093/gji/ggu427, 2014. a
Clayton, R. and Engquist, B.: Absorbing boundary conditions for acoustic and
elastic wave equations, Bull. Seismol. Soc. Am., 67, 1529–1540, 1977. a
Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., and Oldenburg, D. W.:
SimPEG: An open source framework for simulation and gradient based
parameter estimation in geophysical applications, Comput. Geosci., 85,
142–154, https://doi.org/10.1016/j.cageo.2015.09.015, 2015. a, b
Cui, T., Leng, W., Lin, D., Ma, S., and Zhang, L.: High Order Mass-Lumping
Finite Elements on Simplexes, Numer. Math.-Theory, Me., 10, 331–350, https://doi.org/10.4208/nmtma.2017.s07, 2017. a
Cyr, E. C., von Winckel, G. J., Kouri, D. P., Gardiner, T. A., Ridzal, D.,
Shadid, J. N., and Miller, S.: LDRD Report: Topological Design
Optimization of Convolutes in Next Generation Pulsed Power Devices, Tech.
rep., Office of Scientific and Technical Information (OSTI),
https://doi.org/10.2172/1413648, 2017. a, b
Dablain, M.: The application of high-order differencing to the scalar wave
equation, Geophysics, 51, 54–66, https://doi.org/10.1190/1.1442040, 1986. a
Etienne, V., Virieux, J., and Operto, S.: A massively parallel time-domain
discontinuous Galerkin method for 3D elastic wave modeling, in: SEG
Technical Program Expanded Abstracts 2009, SEG, 2657–2661,
https://doi.org/10.1190/1.3255398, 2009. a
Farrell, P., Ham, D., Funke, S., and Rognes, M.: Automated Derivation of the
Adjoint of High-Level Transient Finite Element Programs, SIAM J. Sci.
Comput., 35, C369–C393, https://doi.org/10.1137/120873558, 2013. a
Farrell, P. E., Mitchell, L., and Wechsung, F.: An Augmented Lagrangian
Preconditioner for the 3D Stationary Incompressible Navier–Stokes
Equations at High Reynolds Number, SIAM J. Sci. Comput., 41, A3073–A3096,
https://doi.org/10.1137/18m1219370, 2019. a
Farrell, P. E., Kirby, R. C., and Marchena-Menéndez, J.: Irksome: Automating Runge–Kutta Time-stepping
for Finite Element Methods, ACM Trans. Math. Softw., 47, 1–26,
https://doi.org/10.1145/3466168, 2021. a
Fathi, A., Kallivokas, L. F., and Poursartip, B.: Full-waveform inversion in
three-dimensional PML-truncated elastic media, Comput. Method. Appl. M.,
296, 39–72, https://doi.org/10.1016/j.cma.2015.07.008, 2015. a, b
Fichtner, A.: Full Seismic Waveform Modelling and Inversion, 1st edn., Springer Berlin
Heidelberg, ISBN 978-3-642-26607-2, https://doi.org/10.1007/978-3-642-15807-0, 2011. a, b, c, d
firedrake-zenodo: Software used in “Full waveform inversion using triangular waveform-adapted meshes” (Firedrake_20210810.0), Zenodo [software], https://doi.org/10.5281/zenodo.5176201, 2021. a, b
Fruehn, J., Greenwood, S., O”Driscoll, R., Jones, I., and Brittan, J.: A
strategy for regional-scale FWI in the salt provinces offshore Brazil,
in: SEG Technical Program Expanded Abstracts 2019, SEG, 1330–1334,
https://doi.org/10.1190/segam2019-3201719.1, 2019. a
Geevers, S., Mulder, W., and van der Vegt, J.: Dispersion Properties of
Explicit Finite Element Methods for Wave Propagation Modelling on Tetrahedral
Meshes, J. Sci. Comput., 77, 372–396, https://doi.org/10.1007/s10915-018-0709-7,
2018a. a, b
Geevers, S., Mulder, W., and van der Vegt, J.: Dispersion Properties of
Explicit Finite Element Methods for Wave Propagation Modelling on Tetrahedral
Meshes, J. Sci. Comput., 77, 372–396, https://doi.org/10.1007/s10915-018-0709-7,
2018c. a, b, c, d
Geršgorin, S.: Über die Abgrenzung der Eigenwerte einer
Matrix, Bulletin de l'Académie des Sciences de l'URSS, Classe des
sciences mathématiques et na, 6, 749–754, 1931. a
Gras, C., Dagnino, D., Jiménez-Tejero, C. E., Meléndez, A., Sallarès, V., and Ranero, C. R.: Full-waveform inversion of short-offset, band-limited seismic data in the Alboran Basin (SE Iberia), Solid Earth, 10, 1833–1855, https://doi.org/10.5194/se-10-1833-2019, 2019. a, b
Grote, M. and Sim, I.: Efficient PML for the wave equation, Global Science
Preprint, arXiv [preprint], https://doi.org/10.48550/arXiv.1001.0319, 2 January 2010. a
Homolya, M., Mitchell, L., Luporini, F., and Ham, D. A.: TSFC: A
Structure-Preserving Form Compiler, SIAM J. Sci. Comput., 40, C401–C428,
https://doi.org/10.1137/17m1130642, 2018. a
Jones, I. F.: Tutorial: The mechanics of waveform inversion, First Break, 37,
31–43, https://doi.org/10.3997/1365-2397.2019017, 2019. a
Kaltenbacher, B., Kaltenbacher, M., and Sim, I.: A modified and stable version
of a perfectly matched layer technique for the 3-d second order wave equation
in time domain with an application to aeroacoustics, J. Comput. Phys., 235,
407–422, https://doi.org/10.1016/j.jcp.2012.10.016, 2013. a, b, c, d
Kirby, R. C.: Algorithm 839, ACM Trans. Math. Softw., 30, 502–516,
https://doi.org/10.1145/1039813.1039820, 2004. a, b
Kirby, R. C. and Mitchell, L.: Solver Composition Across the PDE/Linear
Algebra Barrier, SIAM J. Sci. Comput., 40, C76–C98,
https://doi.org/10.1137/17m1133208, 2018. a, b
Kirby, R. C., Logg, A., Rognes, M. E., and Terrel, A. R.: Common and unusual
finite elements, in: Automated Solution of Differential Equations by the
Finite Element Method, Springer Berlin Heidelberg, 95–119,
https://doi.org/10.1007/978-3-642-23099-8_3, 2012. a
Lax, P. and Wendroff, B.: Systems of conservation laws, Comm. Pure Appl. Math.,
13, 217–237, https://doi.org/10.1002/cpa.3160130205, 1960. a
Lines, L. R. and Newrick, R. T.: Fundamentals of Geophysical Interpretation,
Society of Exploration Geophysicists, volume 13, ISBN 9781560801726, https://doi.org/10.1190/1.9781560801726, 2004. a, b, c
Liu, J., Brio, M., and Moloney, J. V.: Overlapping Yee FDTD Method on
Nonorthogonal Grids, J. Sci. Comput., 39, 129–143,
https://doi.org/10.1007/s10915-008-9253-1, 2008. a
Liu, Y., Teng, J., Xu, T., and Badal, J.: Higher-order triangular spectral
element method with optimized cubature points for seismic wavefield modeling,
J. Comput. Phys., 336, 458–480,
https://doi.org/10.1016/j.jcp.2017.01.069, 2017. a
Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P. A., Herrmann, F. J., Velesko, P., and Gorman, G. J.: Devito (v3.1.0): an embedded domain-specific language for finite differences and geophysical exploration, Geosci. Model Dev., 12, 1165–1187, https://doi.org/10.5194/gmd-12-1165-2019, 2019. a, b, c, d
Luporini, F., Varbanescu, A. L., Rathgeber, F., Bercea, G.-T., Ramanujam, J.,
Ham, D. A., and Kelly, P. H.: Cross-Loop Optimization of Arithmetic Intensity
for Finite Element Local Assembly, ACM Trans. Archit. Code Optim., 11, 1–25,
https://doi.org/10.1145/2687415, 2015. a
Luporini, F., Ham, D. A., and Kelly, P. H.: An Algorithm for the Optimization
of Finite Element Integration Loops, ACM Trans. Math. Softw., 44, 1–26,
https://doi.org/10.1145/3054944, 2017. a
Martin, G. S., Marfurt, K. J., and Larsen, S.: Marmousi-2: An updated model
for the investigation of AVO in structurally complex areas, Society of Exploration Geophysicists, 1979–1982,
https://doi.org/10.1190/1.1817083, 2005. a, b, c
Mitusch, S., Funke, S., and Dokken, J.: dolfin-adjoint 2018.1: Automated
adjoints for FEniCS and Firedrake, JOSS, 4, 1292,
https://doi.org/10.21105/joss.01292, 2019. a, b
Modave, A., St-Cyr, A., Mulder, W., and Warburton, T.: A nodal discontinuous
Galerkin method for reverse-time migration on GPU clusters, Geophys. J.
Int., 203, 1419–1435, https://doi.org/10.1093/gji/ggv380, 2015. a
Mulder, W. and Shamasundar, R.: Performance of continuous mass-lumped
tetrahedral elements for elastic wave propagation with and without global
assembly, Geophys. J. Int., 207, 414–421, https://doi.org/10.1093/gji/ggw273, 2016. a
Mulder, W., Zhebel, E., and Minisini, S.: Time-stepping stability of continuous
and discontinuous finite-element methods for 3-D wave propagation, Geophys.
J. Int., 196, 1123–1133, https://doi.org/10.1093/gji/ggt446, 2013. a, b, c
Padovani, E., Priolo, E., and Seriani, G.: Low And High Order Finite Element
Method: Experience In Seismic Modeling, J. Comp. Acous., 02, 371–422,
https://doi.org/10.1142/s0218396x94000233, 1994. a
Patera, A. T.: A spectral element method for fluid dynamics: Laminar flow in
a channel expansion, J. Comput. Phys., 54, 468–488,
https://doi.org/10.1016/0021-9991(84)90128-1, 1984. a, b
Persson, P.-O.: Mesh size functions for implicit geometries and PDE-based
gradient limiting, Eng. Comput., 22, 95–109,
https://doi.org/10.1007/s00366-006-0014-1, 2006. a
Peter, D., Komatitsch, D., Luo, Y., Martin, R., Le Goff, N., Casarotti, E.,
Le Loher, P., Magnoni, F., Liu, Q., Blitz, C., Nissen-Meyer, T., Basini, P.,
and Tromp, J.: Forward and adjoint simulations of seismic wave propagation on
fully unstructured hexahedral meshes, Geophys. J. Int., 186, 721–739,
https://doi.org/10.1111/j.1365-246x.2011.05044.x, 2011. a, b, c
Pratt, R. G. and Worthington, M.: Inverse Theory Applied To Multi-Source
Cross-Hole Tomography. Part 1: Acoustic Wave-Equation Method1, Geophys.
Prospect., 38, 287–310, https://doi.org/10.1111/j.1365-2478.1990.tb01846.x, 1990. a, b
Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A. T.,
Bercea, G.-T., Markall, G. R., and Kelly, P. H.: Firedrake, ACM Trans. Math.
Softw., 43, 1–27, https://doi.org/10.1145/2998441, 2017. a, b, c, d
Robein, E.: Seismic imaging: a review of the techniques, their principles, merits and limitations,
EAGE, DB Houten, 244 pp., 2010. a
Roberts, K. J.: Simulation scripts and data for full waveform inversion using spyro, Zenodo [data set], https://doi.org/10.5281/zenodo.5172307, 2021. a, b
Roberts, K. J., Olender, A., and Franceschini, L.: spyro V0.1.0 (V0.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5164113, 2021a. a, b, c
Roberts, K., Gioria, R., and Pringle, W.: SeismicMesh: Triangular meshing
for seismology, JOSS, 6, 2687, https://doi.org/10.21105/joss.02687, 2021b. a, b, c, d
Rücker, C., Günther, T., and Wagner, F. M.: pyGIMLi: An open-source
library for modelling and inversion in geophysics, Comput. Geosci., 109,
106–123, https://doi.org/10.1016/j.cageo.2017.07.011, 2017. a, b
Sava, P. and Biondi, B.: Wave‐equation migration velocity analysis. I.
Theory, Geophys. Prospect., 52, 593–606,
https://doi.org/10.1111/j.1365-2478.2004.00447.x, 2004a. a
Sava, P. and Biondi, B.: Wave‐equation migration velocity analysis. II.
Subsalt imaging examples, Geophys. Prospect., 52, 607–623,
https://doi.org/10.1111/j.1365-2478.2004.00448.x, 2004b. a
Schwedes, T., Ham, D. A., Funke, S. W., and Piggott, M. D.: Mesh dependence in
PDE-constrained optimisation, in: Mesh Dependence in PDE-Constrained
Optimisation, Springer, 53–78, ISBN 978-3-319-59483-5, https://doi.org/10.1007/978-3-319-59483-5, 2017. a
Seriani, G. and Priolo, E.: Spectral element method for acoustic wave
simulation in heterogeneous media, Finite Elem. Anal. Des., 16, 337–348,
https://doi.org/10.1016/0168-874x(94)90076-0, 1994. a, b
Thrastarson, S., van Driel, M., Krischer, L., Boehm, C., Afanasiev, M., van
Herwaarden, D.-P., and Fichtner, A.: Accelerating numerical wave propagation
by wavefield adapted meshes. Part II: Full-waveform inversion, Geophys.
J. Int., 221, 1591–1604, https://doi.org/10.1093/gji/ggaa065, 2020.
a, b, c
Tournois, J., Srinivasan, R., and Alliez, P.: Perturbing Slivers in 3D Delaunay
Meshes, in: Proceedings of the 18th International Meshing Roundtable, edited
by: Clark, B. W., Springer Berlin Heidelberg, Berlin,
Heidelberg, 157–173, https://doi.org/10.1007/978-3-642-04319-2_10, 2009. a, b
Trinh, P.-T., Brossier, R., Métivier, L., Tavard, L., and Virieux, J.:
Efficient time-domain 3D elastic and viscoelastic full-waveform inversion
using a spectral-element method on flexible Cartesian-based mesh,
Geophysics, 84, R61–R83, https://doi.org/10.1190/geo2018-0059.1, 2019. a, b
van Driel, M., Boehm, C., Krischer, L., and Afanasiev, M.: Accelerating
numerical wave propagation using wavefield adapted meshes. Part I: Forward
and adjoint modelling, Geophys. J. Int., 221, 1580–1590,
https://doi.org/10.1093/gji/ggaa058, 2020. a, b
Witte, P. A., Louboutin, M., Kukreja, N., Luporini, F., Lange, M., Gorman,
G. J., and Herrmann, F. J.: A large-scale framework for symbolic
implementations of seismic inversion algorithms in Julia, Geophysics, 84,
F57–F71, https://doi.org/10.1190/geo2018-0174.1, 2019. a, b, c
Wolfe, P.: Convergence Conditions for Ascent Methods, SIAM Rev., 11, 226–235,
https://doi.org/10.1137/1011036, 1969. a, b
Yao, G., da Silva, N. V., Warner, M., Wu, D., and Yang, C.: Tackling cycle
skipping in full-waveform inversion with intermediate data, Geophysics, 84,
R411–R427, https://doi.org/10.1190/geo2018-0096.1, 2019. a
Yilmaz, Ö.: Seismic Data Analysis: Processing, Inversion, and
Interpretation of Seismic Data, Society of Exploration Geophysicists, 2065 pp.,
https://doi.org/10.1190/1.9781560801580, 2001. a
Zhang, W.: Elastic full waveform inversion on unstructured meshes by the finite
element method, Phys. Scr., 94, 115002, https://doi.org/10.1088/1402-4896/ab1ce5,
2019. a
Zhebel, E., Minisini, S., Kononov, A., and Mulder, W. A.: A comparison of
continuous mass-lumped finite elements with finite differences for 3-D wave
propagation: A comparison of mass-lumped FEM with FD for 3D,
Geophys. Prospect., 62, 1111–1125, https://doi.org/10.1111/1365-2478.12138, 2014. a
Short summary
Finite-element methods (FEMs) permit the use of more flexible unstructured meshes but are rarely used in full waveform inversions (FWIs), an iterative process that reconstructs velocity models of earth’s subsurface, due to computational and memory storage costs. To reduce those costs, novel software is presented allowing the use of high-order mass-lumped FEMs on triangular meshes, together with a material-property mesh-adaptation performance-enhancing strategy, enabling its use in FWIs.
Finite-element methods (FEMs) permit the use of more flexible unstructured meshes but are rarely...
Special issue