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Abstract. In this article, we introduce spyro, a software stack
to solve wave propagation in heterogeneous domains and
perform full waveform inversion (FWI) employing the finite-
element framework from Firedrake, a high-level Python
package for the automated solution of partial differential
equations using the finite-element method. The capability of
the software is demonstrated by using a continuous Galerkin
approach to perform FWI for seismic velocity model build-
ing, considering realistic geophysics examples. A time do-
main FWI approach that uses meshes composed of variably
sized triangular elements to discretize the domain is detailed.
To resolve both the forward and adjoint-state equations and
to calculate a mesh-independent gradient associated with the
FWI process, a fully explicit, variable higher-order (up to de-
gree k = 5 in 2D and k = 3 in 3D) mass-lumping method
is used. We show that, by adapting the triangular elements
to the expected peak source frequency and properties of
the wave field (e.g., local P -wave speed) and by leverag-
ing higher-order basis functions, the number of degrees of
freedom necessary to discretize the domain can be reduced.
Results from wave simulations and FWIs in both 2D and 3D
highlight our developments and demonstrate the benefits and
challenges with using triangular meshes adapted to the mate-
rial properties.

1 Introduction

The construction of models consistent with observations of
Earth’s physical properties can be posed mathematically as
solving an inverse problem referred to as full waveform in-
version (FWI) (Lines and Newrick, 2004; Virieux and Op-
erto, 2009; Fichtner, 2011; Brittan et al., 2013). FWI is used
extensively in geophysical exploration studies in the search
for raw materials such as oil and gas (Gras et al., 2019;
Fruehn et al., 2019). The attraction of the FWI approach
is the promise of deriving higher-fidelity models from ac-
quired seismic data as compared to other less complex and
less costly methods, for instance, time travel tomography
(Lines and Newrick, 2004), normal moveout (NMO), Kirch-
hoff migration (Yilmaz, 2001), wave equation migration ve-
locity analysis (WEMVA) (Sava and Biondi, 2004a, b), and
wave field extrapolation migrations (Robein, 2010). How-
ever, the FWI problem is challenging to apply in practice
since there exists a non-unique configuration of data that can
best explain the observations. This is due to the nonconvex
nature of the objective function usually employed in FWI,
namely the L2 norm of the residuals between the recorded
field data and the synthetic modeled data. A common mani-
festation of this nonconvexity is cycle skipping, which occurs
when the phase match between the observed field data and
modeled data is greater than half a wavelength, causing erro-
neous model updates in the optimization process (Yao et al.,
2019). Besides this, the associated computational cost to sim-
ulate wave propagation in expansive 2D and 3D domains can
quickly become extremely demanding.
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The basic method of FWI requires several computation-
ally and memory expensive components that need to be ex-
ecuted iteratively potentially dozens of times to arrive at an
optimized model (Virieux and Operto, 2009; Fichtner, 2011;
Pratt and Worthington, 1990; Bunks et al., 1995; Jones, 2019;
Basker et al., 2016). Each iteration of FWI requires the sim-
ulation of acoustic or elastic waves in an arbitrarily heteroge-
neous medium, which can only be accomplished via numer-
ical approaches. Further, in order to sufficiently illuminate a
given domain and provide sufficient information to produce
a solution to the inverse problem, many wave simulations are
often required. As a result, the primary computational ex-
pense of the FWI scales with the cost to numerically simulate
wave propagation. Thus, by more efficiently modeling wave
propagation, the process of FWI can be accelerated.

Considering the computational cost of solving the wave
equation is important to efficiently performing FWI, finite-
difference methods are often used to model wave propa-
gation. Finite-difference methods are well studied in the
context of seismic application in part because they can
be highly optimized for computational performance, espe-
cially so with the help of recent packages such as Devito
(Louboutin et al., 2019; Witte et al., 2019). However, canon-
ical finite-difference methods use structured grids to repre-
sent the domain and inefficiently represent irregular geome-
tries and/or large regional/global domains without the use of
more sophisticated methods (e.g., Liu et al., 2008). Conse-
quently for these cases, approaches such as finite-element
methods (FEMs) are often preferred as they discretize the
domain with an unstructured mesh of, most commonly,
variably sized quadrilaterals/hexahedrals or triangles/tetrahe-
drals (e.g., Krischer et al., 2015; Modrak et al., 2018; Zhang,
2019; Peter et al., 2011; Anquez et al., 2019; van Driel et al.,
2020; Thrastarson et al., 2020; Trinh et al., 2019). The ele-
ment size can be adapted to the variation of the local short-
est wavelength when the seismic velocity field is spatially
variable (e.g., Etienne et al., 2009) or to the source location
(e.g., van Driel et al., 2020; Thrastarson et al., 2020) to re-
duce the number of degrees of freedom (DoFs). For this rea-
son in part, spectral element methods (SEMs) using tensor-
based quadrilaterals/hexahedrals are widely used in geophys-
ical applications for expansive regional and global domains
(Modrak et al., 2018; Fichtner, 2011; Lyu et al., 2020; Fathi
et al., 2015; Patera, 1984; Seriani and Priolo, 1994). Further-
more, since the stability condition for explicit time-marching
schemes depends on the maximal local ratio of velocity to
mesh size, local mesh size adaptation can decrease the over-
all workload associated with the wave propagation.

Despite the advantage unstructured meshes appear to of-
fer to FWI, there are several major difficulties associated
with using them that we attempt to address in this work: (1)
the computational burden associated with solving a sparse
system of equations arising from the discretization with fi-
nite elements, (2) the generation and distribution of variable-
resolution unstructured meshes, and (3) code complexity and

optimization associated with programming finite-element
methods themselves. Unlike in the case of SEMs, in which
the domain is discretized using tensor-based hexahedral el-
ements that result in diagonal mass matrices (e.g., mass
lumped) and can be efficiently time marched (Peter et al.,
2011; Patera, 1984), standard conforming simplex finite el-
ements produce a large sparse system of equations, even for
explicit time stepping. Although well conditioned, solving
this linear system at each time step easily dominates the rest
of the computation in terms of cost. This makes the method
unattractive for FWI.

To address the first issue, we point out that certain triangu-
lar finite-element spaces do admit diagonal approximations
to mass matrices. These spaces contain the standard set of
polynomials of some degree k, enriched with certain bub-
ble functions (Chin-Joe-Kong et al., 1999). For each such
space, it is possible to identify a set of interpolation nodes
that also can be combined with appropriate weights to define
a sufficiently accurate quadrature rule. Thus, the Kronecker
property of the basis functions at the quadrature points leads
to the quadrature rule delivering a diagonal mass matrix.
SEM uses the same principle, using Gauss–Lobatto quadra-
ture points as interpolation nodes on quadrilateral/hexahe-
drals meshes. Such sets of points are known up to k = 9 for
triangles and k = 4 for tetrahedra, and due to their diago-
nal mass matrix, they can be used for fast fully explicit nu-
merical wave simulations (Chin-Joe-Kong et al., 1999; Mul-
der et al., 2013; Geevers et al., 2018b, a; Cui et al., 2017;
Liu et al., 2017). These elements have been compared with
finite-difference schemes and have favorable results for the
forward wave propagation when interior complexity and to-
pography are present that can be adequately modeled with
unstructured tetrahedra (Zhebel et al., 2014). However, to
the authors’ knowledge these elements have not been used in
peer-reviewed literature to perform seismic inversions. Thus,
several questions remain on how these elements may benefit
the other components (e.g., discrete adjoint, sensitivity kernel
calculation) of the seismic inversion posed in a finite-element
framework.

A second major difficulty is the generation and design
of a variable-resolution triangular mesh. This can be a po-
tentially laborious mesh generation pre-processing step and
can strongly limit the applicability of the method, especially
in 3D (e.g., Anquez et al., 2019; Peter et al., 2011; Mo-
dave et al., 2015). To take full advantage of FEMs, elements
in the mesh must be sized in an optimal way to take into
account numerical stability criteria, the numerical methods
used, the seismic data (e.g., velocity model), and the char-
acteristics of the forcing mechanism simultaneously. Further
to this point, the most ubiquitous methods to triangulate the
computational domain with simplices (e.g., Delaunay trian-
gulation) suffers from the formation of degenerate elements
termed slivers (Tournois et al., 2009), which would otherwise
render a wave propagation simulation useless. Despite this,
triangular mesh generation is generally preferred over hexa-
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hedral mesh generation as triangular meshes offer, in general,
a greater degree of flexibility in resolving complex and irreg-
ularly shaped geometry. In this work, we explore the effect of
variable mesh resolution on the forward-state problem based
on the source’s peak frequency and seismic velocity medium
(e.g., waveform-adapted meshes) and use these mesh resolu-
tion guidelines to design meshes for FWI.

Third, the high complexity of implementing efficient un-
structured FEMs frequently discourages domain practition-
ers. Compared to finite-difference methods, FEMs require
additional levels of coding complexity associated with mesh
data structures, numerical integration, function spaces, ma-
trix assembly, and sophisticated code optimizations for loop-
ing over unstructured mesh connectivity (Luporini et al.,
2015, 2017). Re-implementing such tasks in a particular ap-
plication context (e.g., FWI) does not constitute a major ad-
vancement. Recognizing this issue, many advanced software
packages have been put forward, separating the concerns be-
tween low-level programming/implementation and the high-
level mathematical formulation to more confidently write
FEM codes for various application domains (Krischer et al.,
2015; Modrak et al., 2018; Alnæs et al., 2015; Witte et al.,
2019; Cockett et al., 2015; Rücker et al., 2017; Louboutin
et al., 2019; Rathgeber et al., 2017). These approaches often
present a programming environment in which data objects
correspond to higher-level mathematical objects inherent to
inverse problems and/or numerical discretizations such as the
finite-difference, finite-element, or finite-volume methods.
For example, packages have focused on creating high-level
abstractions for geophysical inversion problems (e.g., Witte
et al., 2019; Cockett et al., 2015; Rücker et al., 2017), while
others more generally deal with solving variational problems
using the finite-element method (Rathgeber et al., 2017) or
writing performant stencil codes for finite-difference meth-
ods (Louboutin et al., 2019).

The Firedrake project (Rathgeber et al., 2017) is one ex-
ample of a powerful programming environment that ade-
quately addresses the code complexity inherent to FEMs
and leads to the development of computationally performant
and highly technical FEM implementations in concise scripts
within the Python programming language. Firedrake, like
FEniCS (Alnæs et al., 2015), uses the Unified Form Lan-
guage (UFL, Alnæs et al., 2014) to describe variational prob-
lems in mathematical syntax. This high-level symbolic de-
scription can be manipulated as a first-class object so that
Jacobians and adjoint operators can be automatically de-
rived (Alnæs et al., 2014; Farrell et al., 2013) and, as re-
cently shown by Farrell et al. (2021), time discretization can
be automated from a semi-discrete problem description. Al-
though written in Python, Firedrake internally generates effi-
cient low-level code and interfaces to advanced solver pack-
ages and hence can scale to billions of DoFs (Kirby and
Mitchell, 2018; Farrell et al., 2019). This combination of
high-level features and performance makes Firedrake an in-
teresting candidate for developing an extensible and main-

tainable code stack for performing FWI with finite-element
methods.

The aim of this paper is to address the issues associ-
ated with the application of triangular, unstructured FEMs to
perform FWI with the higher-order mass-lumped elements
of Chin-Joe-Kong et al. (1999) and Geevers et al. (2018b).
We demonstrate the concept that waveform-adapted meshes
combined with a discrete adjoint technique lead to an FWI
implementation that requires significantly fewer computa-
tional resources while maintaining the accuracy of the result.
Several technical aspects of the methods are detailed includ-
ing mesh dependency, domain truncation, efficient mesh de-
sign, and gradient-based adjoints providing practical infor-
mation for FWI implementations using finite-element meth-
ods and making triangular finite-element methods more at-
tractive for future applications in seismic imaging applica-
tions. All developments detailed in this work are available
in an open-source Python implementation using the Fire-
drake programming environment named spyro (Roberts et
al., 2021a).

The article is organized as follows: first we introduce
the FWI algorithm and discuss the continuous formulation.
Thereafter, we focus on the discretization of the governing
equations in both space and time. Following this, we discuss
our Firedrake implementation. Then we study the error asso-
ciated with discretizing the domain with variable-resolution
triangular meshes. Lastly, we demonstrate computational re-
sults in both 2D and 3D, discuss, and conclude the work.

2 Full waveform inversion

Figure 1 shows a basic overview of an experimental config-
uration used in FWI in a marine environment. FWI is de-
signed to simulate a geophysical survey and estimate the
model parameters (e.g., seismic velocity) to explain the ob-
served waveforms in a way that minimizes a measure of error
(e.g., misfit). This process is known as inversion. In contrast
to less computationally expensive tomography methods that
use only the phase information of recorded signals, FWI uti-
lizes both amplitudes and phase information from recorded
data and can thus image higher-resolution targets to half the
spatial wavelength of the source frequency (Fichtner, 2011).

In a typical field setup in an offshore/marine environment,
a ship tows a cable potentially several kilometers long with
hundreds of microphones (Fig. 1). Near the ship, small con-
trolled explosions known as shots or sources are created.
These shots propagate sound waves that interact with the sub-
surface medium and produce signals recorded by the micro-
phones. The collection of seismic signals for a particular shot
explosion event is referred to as a shot record, and the quan-
tity and the location of the sources with respect to the loca-
tion of the receivers are referred to as acquisition geometry.

FWI can either be posed in the time domain or frequency
domain (Virieux and Operto, 2009; Pratt and Worthington,
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Figure 1. A simplified illustration of a marine seismic survey with relevant components annotated. Courtesy from João Baptista Dias Moreira.

1990). In 2D, the frequency domain approach is regarded as
the more computationally efficient approach (Brossier et al.,
2009; Virieux and Operto, 2009). In 3D, however, the com-
putational effort and memory requirements associated with
solving the system of equations in the frequency domain can
become prohibitive and negatively affect parallel scaling effi-
ciency. Thus, the time domain approach for FWI is still used
in applications and remains technically relevant.

One key challenge associated with FWI and inverse prob-
lems in general is that they require an adequate starting ve-
locity model to converge toward the global minimum of the
misfit. In other words, the initial model should be able to
predict the travel time of any arrival involved in the inver-
sion to within half a period of the lowest inverted frequency
when a classical least-squares misfit function based on the
data difference is used; otherwise, the FWI will converge to
a local minimum (e.g., Virieux and Operto, 2009). Typically
these initial models are created through time travel tomog-
raphy methods with manual inspection and edits (Lines and
Newrick, 2004).

2.1 Forward wave simulation in a perfectly matched
layer (PML) truncated medium

In this work, the acoustic wave equation in its second-order
form is considered in either a 2D or 3D physical domain �0.
The acoustic wave equation has one free parameter c that
is the spatially variable compressional wave speed otherwise
referred to as the P -wave speed. The acoustic wave equation
is frequently used in FWI applications because its numeri-

cal solution is computationally inexpensive compared to the
solution of the elastic wave equation while still yielding prac-
tically useful inversion results in some scenarios (Gras et al.,
2019).

When simulated waves reach the extent of the domain,
they create reflections generating signals that are deleterious
for FWI applications since field data do not contain these sig-
nals. Thus, in this work an absorbing boundary layer referred
to as a perfectly matched layer (PML) is included as a small
domain extension �PML to attenuate the propagation of the
outgoing waves and � ∈�0∪�PML. Note that the PML sur-
rounds �0 on all but the water layer of the domain, shown
in Fig. 1. The domain is truncated with a non-reflective Neu-
mann boundary condition in order to absorb some remaining
oscillations there (Clayton and Engquist, 1977). All exam-
ples in this text rely on the usage of this acoustic wave equa-
tion in this configuration, and further technical details about
the PML formulation used can be found in Kaltenbacher
et al. (2013).

The coupled system of equations for the modified acoustic
wave equation with the PML is given by the residual opera-
tors Ru, Rp, and Rω as

Ru(u,p,ω,f )≡
∂2u

∂t2
+ tr91

∂u

∂t
+ tr93u+ det91ω (1)

−∇ · (c2
∇u)−∇ ·p− f = 0,

Rp(u,p,ω)≡
∂p

∂t
+91p+92(c

2
∇u) (2)

−93(c
2
∇ω)= 0,
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Rω(u,p,ω)≡
∂ω

∂t
− u= 0, (3)

∂tu
∣∣
t0
= v

∣∣
t0
= 0, (4)

p
∣∣
t0
= 0, (5)

ω
∣∣
t0
= 0, (6)

(∂tu+ c∇u ·n)|∂� = 0, (7)

where u(x, t): (0,T )×�→ R is the pressure at time t and
position x = (z,x,y)∈�; ω(x, t) : (0,T )×� → R is an
auxiliary scalar variable; p(x, t)= (px,py,pz) : (0,T )×�
→ R3 is an auxiliary vector variable; px , py , and pz are the
vector components; c(x) is the P -wave speed; f (x, t) is the
source term; and 9i are the damping matrices. These damp-
ing matrices are calculated using damping functions, which
are referred to as σi . Note that 9i , p, and ω only need to
be calculated in the PML. We remark that this formulation
of the modified acoustic wave equation with the PML is the
same as that originally designed by Grote and Sim (2010) and
Kaltenbacher et al. (2013), and these formulations differ by
what constitutes the spatially varying velocity model, which
comes from either the variation in density or the variation in
bulk modulus.

In 2D, the modified acoustic wave formulation is simpli-
fied since pz, ω, and σz vanish, and it becomes

Ru(u,p,f )≡
∂2u

∂t2
+ tr91

∂u

∂t
+ tr92u−∇ · (c

2
∇u) (8)

−∇ ·p− f = 0,

Rp(u,p)≡
∂p

∂t
+91p+92(c

2
∇u)= 0, (9)

where the boundary conditions remain unchanged. Only one
vector-valued variable (e.g., p) is additionally solved for
each time step. In both 2D and 3D for all experiments in
this work, quadratic polynomial exponents are used to con-
trol the variations in the damping layer functions σi which
are used to form the damping matrices (e.g., 91, 92, 93)
(Kaltenbacher et al., 2013). Note that σi are zero inside the
physical domain �0.

All sources f are forced with a time-varying Ricker
wavelet with a specified peak frequency in hertz. More de-
tails regarding the implementation of the source are provided
later in Sect. 4.2.

2.2 Continuous optimization problem formulation

In this section, the optimization components of the FWI pro-
cess are detailed. Experimental data are generated by excit-
ing a physical domain�0 byNs independent shots, which are
located at points {xs

i }i=1,...,Ns . For each shot xi , data are col-
lected at an array of Nm measurement points (for receivers,
see Fig. 1) {xm

j }j=1,...,Nm for a time interval of length T –
for instance, ui(xm

j , t) for t ∈ [0,T ). As mentioned earlier,
the collection of this time series data at an array of receivers
produces what is commonly referred to as a shot record. The

cost functional that represents the error between a given nu-
merical experiment and the reference data (denoted here by
ũ) is given by

J =
1
2

Ns∑
i=1

Nm∑
j=1

T∫
0

(ui(xj , t)− ũi(xj , t))
2dt

=
1
2

Ns∑
i=1

Nm∑
j=1

T∫
0

∫
�

(ui(x, t)− ũi(x, t))
2δxj dxdt, (10)

where the last equality is obtained by using the following
property of the Dirac masses δxj , acting on the points xj
(see Brezis, 2011):∫
�

f (x)δxj dx = f (xj ), (11)

where f is a function smooth enough for the pairing to make
sense.

For a given velocity model c upon integration of Eqs. (1),
(2), and (3) or (8) and (9), we can compute the cost func-
tional J . The goal of FWI is to find a velocity model c that
minimizes J . This problem is a partial differential equation
(PDE)-constrained optimization problem that will be solved
using a gradient-descent method. The gradient of J with re-
spect to c otherwise referred to as the sensitivity kernel or the
gradient can be posed in the Lagrangian formalism. For that,
the Lagrangian is defined as

L({ui ,ωi ,pi}, {u
†
i ,ω

†
i ,p

†
i },c)= J (ui)

+

Ns∑
i=1

T∫
0

u
†
iRu(ui ,pi ,ωi ,fi)

+

Ns∑
i=1

T∫
0

∫
�

p
†
i ·Rp(ui ,pi ,ωi)

+

Ns∑
i=1

T∫
0

∫
�

ω
†
i Rω(ui ,pi ,ωi). (12)

This Lagrangian is dependent on the forward solution
{u,pi,ωi}, on the velocity model c (e.g., the control vari-
able), and also on the adjoint solution {u†,p

†
i ,ω

†
i }. The op-

timal condition is verified if the variation of the above La-
grangian with respect to the forward, adjoint, and control
variable is zero. The variation of the Lagrangian with respect
to the adjoint field will lead to the Eqs. (1)–(3). Setting the
variation of the Lagrangian with respect to the forward field
to zero (see Appendix A) will lead to the adjoint equations:
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R†
u(u,p,ω,f )≡

∂2u†

∂t2
− tr91

∂u†

∂t
+ tr93u

†
−ω† (13)

−∇ · (c2
∇u†)−∇ · (c292p

†)

+

Nm∑
j=1
(u(t)− ũ(t))δxm

j
= 0,

R†
p(u,p,ω,f )≡−

∂p†

∂t
+91p

†
+∇u

†
i = 0, (14)

R†
ω(u,p,ω,f )≡−

∂ω†

∂t
+ det91u

†
+∇ (15)

· (c293p
†)= 0.

In 2D, these equations become

R†
u(u,p,ω,f )≡

∂2u†

∂t2
− tr91

∂u†

∂t
+ tr92u

† (16)

−∇ · (c2
∇u†)−∇ · (c292p

†)

+

Nm∑
j=1
(ui(t)− ũi(t))δxm

j
= 0,

R†
p(u,p,ω,f )≡−

∂p†

∂t
+91p

†
+∇u

†
i = 0. (17)

In addition to these volume equations, we can deduce the
boundary and initial/final conditions for their variables. One
can verify that a homogeneous final condition (on t = T ) has
to be imposed in all variables u†, p†, and ω†. Also, since the
forward solution needs to satisfy the boundary conditions n ·

∇u= 0 and n·p = 0 (which also has to be verified for the test
functions δu,δp), the adjoint variables admit the boundary
conditions, which are the same for 2D and 3D:

n · ∇u†
+n92p†

= c−1∂tu
†, n · (93p†)= 0, x ∈ ∂�. (18)

So the variation of the Lagrangian with respect to the con-
trol variable c, while keeping all the other variables constant,
leads to the sensitivity kernel (or the gradient) dJ/dc:

lim
ε→0

L(c+ εδc)−L(c)
ε

=
dL
dc
δc ≡

∫
�

dJ
dc
δcdx (19)

=

Ns∑
i=1

T∫
0

∫
�

2c∇u†
i · ∇ui δcdx dt,

where the terms involving the PML are not present in the
physical domain �0 since the damping functions σi are zero
outside of the PML where we perform the optimization. The
calculation of the sensitivity kernel and cost functional can
then be used in an optimization algorithm of choice.

3 Numerical discretization

3.1 Spatial discretization

We have discretized the modified acoustic equation (Eqs. 1–
3 and 8–9) and their respective discrete adjoints (Eqs. 13–15
and 16–17) with a continuous Galerkin (CG) FEM. While the
physical features of the velocity model in reality are likely
discontinuous, CG FEMs can still provide good approximate
solutions to velocity modeling building, which often com-
mence from smooth initial material parameters.

CG methods actually provide a family of methods, pa-
rameterized over the choice of approximating spaces rather
than a single method. Frequently, the choice of approximat-
ing spaces only affects the overall accuracy – by choosing
standard P k elements based on polynomials of degree k,
one obtains a certain order of convergence. However, spe-
cial choices of these approximating spaces may affect other
aspects of the method. In particular, by using the elements
that we describe later on, we obtain a so-called lumped mass
matrix on each simplex, which obviates the need to solve a
linear system for each explicit time step.

Regardless of the particulars, we denote the finite-element
function space used within our CG method as V C, spanned
by some locally constructed basis {φi(x)}. This will be used
to discretize the pressure u, together with each component of
the auxiliary vector pi and possibly the variable ω if a 3D
domain is considered. If we let U , P , Y , and F be the vec-
tors containing the weights of the projection of u,p,ω and f
onto the FEM space V C, the space-discrete equations can be
cast in the following general matrix form (here only the 3D
equations are presented, but the 2D case is analogous):

MuÜi +Mu,1U̇i +Mu,3Ui +Mω,1Yi +KUi +DPi
=MuFi, (20)

MpṖ +Mp,1P +Du,2Ui −Dω,3Yi = 0, (21)
MωẎi −MωUi = 0, (22)

where the matrices Mu, Mu,1, Mu,3, Mp, Mp,1, Mω, and
Mω,1 are mass-like matrices that do not involve any spatial
derivative. The matrix D is the discrete divergence operator,
and Du,2 and Dω,3 are gradient-like discrete operators. The
matrix K is the stiffness matrix. The precise mathematical
definitions of the matrices are given in Appendix B.

3.2 Higher-order mass lumping

For linear triangular elements, mass lumping can be ac-
complished using the standard Lagrange basis functions and
vertex-based Newton–Cotes integration rule. However, for
higher-degree (k > 1) triangular elements, a similar approach
leads to unstable and/or inaccurate methods. Higher-order
triangular elements and associated quadrature rules that do
admit a lumping quadrature scheme are given in Geevers
et al. (2018a), Chin-Joe-Kong et al. (1999), and Geevers et al.
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(2018b). The function spaces for these elements do not con-
sist solely of polynomials of degree k, but also include cer-
tain higher-order bubble functions. These higher-order bub-
ble functions increase the total number of degrees of freedom
per element relative to traditional Pk elements, but in explicit
time-stepping contexts, the gain of having a diagonal mass
matrix more than offsets this cost (e.g., Geevers et al., 2018b;
Mulder and Shamasundar, 2016).

The aforementioned concept of using higher-order bubble
functions to achieve these elements is illustrated and com-
pared with standard Lagrange elements in both 2D and 3D
in Figs. 2 and 3, respectively. These elements are referred to
here as mass-lumped (ML) elements. For example, ML1tri
and ML1tet denotes degree-1 triangular and tetrahedral ele-
ments where the “tri” or “tet” refers to a triangular or tetra-
hedral element, respectively.

3.3 Waveform-adapted triangular meshes

In order to efficiently discretize the domain, a triangular
mesh of conforming elements interchangeably referred to as
a mesh has to be generated. The major benefit of this ap-
proach is that mesh elements range in size according to sev-
eral aspects elaborated below (e.g., Fig. 4), reducing the total
number of DoFs. On the contrary, for structured grids the de-
sign of the elements is fully controlled using a regular struc-
tured mesh. While a structured grid greatly simplifies appli-
cations, it imposes the additional computational cost of dra-
matically over resolving some areas of the domain from the
standpoint of minimizing numerical error and dispersion. We
note that the mesh is built by adapting elements according to
the initial velocity model and is static throughout the inver-
sion process.

The design of a so-called optimal mesh in a way that
maximizes accuracy while minimizing computational cost
through mesh size variation represents a challenging task.
One crucial aspect is the numerical stability condition, which
puts constraints on meshing because the time step is affected
by the smallest cell via the Courant–Friedrichs–Lewy (CFL)
condition (e.g., Mulder et al., 2013). It is crucial therefore
that the mesh generation program ensures elements are as
large as possible to avoid prohibitively small simulation time
steps. Mesh size variation must also be gradual in order to
minimize numerical error (Persson, 2006).

In this work, variable-resolution element sizes are based
on the acoustic wavelength, the CFL condition, and a mesh
gradation rate. Altogether the design of resolution becomes
proportional to the wavelength of the acoustic wave, hence
the phrase waveform adapted. The assumption is made that
all triangles will be nearly equilateral, which is necessary
for accurate simulation with FEMs. The mesh can be the
result of any external mesh generator; in this work we use
a domain-specific mesh generator tool called SeismicMesh
(Roberts et al., 2021b) that is capable of generating 2D/3D
triangular meshes with the vast majority of triangles that are

approximately equilateral and with elements sized according
to the local seismic velocity. The desired distribution of tri-
angular edge lengths le in our meshes is calculated using a
ratio of the local seismic velocity (e.g., P -wave speed) and
the representative frequency of a source wavelet:

le(x)∝
c(x)

C · fsource
, (23)

where c(x) is once again the spatially variable P -wave speed,
fsource is the representative frequency of a source wavelet,
and C denotes the number of cells per wavelength. An ex-
ample of a typical mesh size distribution for the synthetic P -
wave speed model Marmousi2 (Martin et al., 2005) is shown
in Fig. 4. In the case of a marine domain such as Marmousi2,
the layer of water along the top of the model must contain
the finest mesh resolution since the acoustic wavelength is
the shortest there. It is also important to point out that mesh
sizes must be smoothly varying (otherwise referred to as a
graded) to avoid numerical errors when simulations are per-
formed. In this work, we use a mesh gradation rate of 15 %,
which was obtained through trial and error.

The length of the element’s edges le can be related to the
cells-per-wavelength parameter C = λ/le, which in turn af-
fects the number of grid points per wavelength G of a given
problem. The parameters C and G are related to one another
through

G= α(P ) · C, (24)

where α(P ) is a constant coefficient that is a function of
the spatial polynomial degree k. ML elements have a higher
number of nodes per element; therefore, they have a higher
α per polynomial degree than standard Lagrange elements.
Padovani et al. (1994) refer to G as the average number of
grid points per space and not the maximum value of grid
spacing inside the element between all possible pairwise
nodal combinations. Therefore, α(P ) is calculated based on
the root of the number of DoFs (nDoF) per number of ele-
ments (ne) in the mesh,

√
nDoF/ne, in 2D, and 3

√
nDoF/ne,

in 3D. When this metric is applied to SEM quadrilateral ele-
ments, it gives results that match the values reported in Lyu
et al. (2020).

The selection of C, and consequentlyG, raises several im-
portant questions such as what is the minimalG that can min-
imize numerical dispersion error and how does the choice of
G affect the total DoFs for a given problem? These are im-
portant aspects as they yield significant effects on both the
runtime and computational requirements of FWI with FEMs
and are later investigated in Sect. 5.2.

3.4 Time discretization

A second-order accurate fully explicit central finite-
difference scheme was used to discretize all time derivative
terms. While higher-order time-stepping schemes such as a
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Figure 2. Some two-dimensional Lagrange and ML elements.

Figure 3. Some three-dimensional Lagrange and ML elements.

Figure 4. The Marmousi2 P -wave speed model (Martin et al.,
2005) discretized using a graded mesh with four cells per wave-
length (C = 4) for a Ricker source with a peak frequency of 5 Hz.
The mesh contains 3022 vertices and 5743 elements. The element
size is the circumdiameter of each enclosed circle of each triangle.

Dablain scheme (Dablain, 1986) or a Lax–Wendroff proce-
dure (Lax and Wendroff, 1960) can be used, these methods
were not pursued in this work to better focus the paper on
the aforementioned issues concerning the spatial discretiza-
tion and the usage of variable-resolution triangular meshes.
As a result, due to the usage of a relatively low-order time-
stepping scheme, we are required to select relatively small
time steps (1t ≤ [1]ms) ms to ensure the error from the time
discretization is sufficiently small to study the effects on the
spatial discretization on the forward-state wave propagation
and FWI.

For a given variable vn = v(tn) and for a given discrete
time series tn = n1t , we have

dv
dt
(tn)≈

vn+1
− vn−1

21t
,

d2v

dt2
(tn)≈

vn+1
− 2vn+ vn−1

1t2
. (25)

Using this discretization and also defining a state vector as
a concatenation of all the variables Qn

i = [U
n
i ,P

n
i ,Y

n
i ]

T, the

system of equations can be recast as

An+1Qn+1+AnQn+An−1Qn−1 =MFn, (26)

where those new matrices are given by

An+1 =

1t−2Mu+ (21t)−1Mu,1 0 0
0 (21t)−1Mp 0
0 0 (21t)−1Mω

 ,

An =

−21−2Mu+Mu,3+K D Mω,1
Du,2 Mp,1 −Dω,3
−Mω 0 0

 ,
An−1 =

1t−2Mu− (21t−1)Mu,1 0 0
0 −(21t)−1Mp 0
0 0 −(21t)−1Mω

 .
In order to solve for the variables at time step n+1 given the
previous ones, we need to invert An+1, which is a mass-like
matrix. While this requires significant work for standard Pk
elements, it is trivial for ML elements with the specialized
quadrature rules discussed in Sect. 3.2.

In a practical application, it remains important to be able to
determine a numerically stable time step for this discretiza-
tion, and this depends on element degree k and the quality
of the mesh’s elements. The maximum stable time step can
be estimated a priori by calculating the spectral radius of the
scalar waves spatial operator while ignoring the contribution
from the PML terms:

L=M−1
u K. (27)

A reasonable upper bound for the maximum stable time step
can then be found through (e.g., Mulder et al., 2013)

1tCFL ≤
2

√
ρ(L)

, (28)
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where ρ is the spectral radius estimated via Gershgorin’s disk
theorem (Geršgorin, 1931) and the subscript CFL implies an
upper bound on the time step. This is possible to do explicitly
for ML elements since M is diagonal and can be inverted
onto K by just scaling rows.

In practice, a time step 10 % to 20 % lower than the esti-
mate provided by Eq. (28) remains stable and helps ensure
numerical stability can be maintained throughout the inver-
sion process as the seismic velocity is inverted. In 3D, the
spectral radius ρ(L) and consequently the maximum numer-
ically stable time step are highly sensitive to the minimum di-
hedral angle in the mesh (Tournois et al., 2009). Thus, degen-
erate triangles termed slivers can result in exceedingly small
numerically stable time steps and must be removed from the
mesh. In practice, a minimum dihedral angle bound greater
than 15◦ is often desired in order to maximize the stable time
step. However, this can be difficult to achieve in practice
due to mesh generation challenges with variable-resolution
meshes. The minimum dihedral bound can be enforced in the
mesh connectivity through a sliver-removal algorithm imple-
mented in Roberts et al. (2021b). All 3D meshes used in this
work feature a minimum dihedral angle at least greater than
12◦.

3.5 The adjoint-state and gradient problems
discretized

The numerical implementation of the adjoint problem and the
gradient computation are detailed in this section. From the
adjoint equations presented in their strong form (Eqs. 13–15
and 16–17), we then derive the associated variational formu-
lation through the canonical procedure:∫
�

∂2

∂t2
u†v−

∫
�

∂

∂t
tr91u

†v+

∫
�

(
tr93u

†
−ω†

)
v (29)

+

∫
�

c2
∇u†
· ∇v,

+

∫
�

c2(92p
†) · ∇v−

∫
∂�

c∂tu
†v (30)

=−

Nm∑
j=1
(u(t,xm

j )− ũ(t,x
m
j ))v(x

m
j ),

−

∫
�

∂

∂t
p†
· q +

∫
�

(91p
†) · q +

∫
�

∇u
†
i · q = 0, (31)

−

∫
�

∂

∂t
ω†γ +

∫
�

det91u
†γ −

∫
�

c293p
†
· ∇γ = 0. (32)

The discretization of this variational formulation can be cast
as

MuÜ
†
i −Mu,1U̇

†
i +Mu,3U

†
i −MT

ωY
†
i +KU†

i (33)

+DT
u,2P

†
i =HTH(Un− Ũn),

−MpṖ
†
+Mp,1P

†
+DTU

†
i = 0, (34)

−MωẎ
†
i +MT

ω,1U
†
i −DT

ω,3Y
†
i = 0, (35)

where H is the discrete version of the Dirac operator applied
on all the measurement points in the domain. We remark that
all the matrices used before (see Appendix B) are reused but
transposed (if not symmetric) both at the level of their entries
and at the level of the equations. By discretizing the contin-
uous equations with the FEM, we obtain the discrete adjoint.
This is further clarified when discretizing Eq. (33) in time
using the same procedure as before with central differences
(e.g., Eq. 25), which leads to the system for the variables in
compact notation Q†

= (U†,P †,Y †)T:

AT
n+1Q

†
n−1+AT

nQ
†
n+AT

n−1Q
†
n+1 =HTH(Qn

− Q̃n).

In addition to the adjoint, the gradient is computed by dis-
cretizing Eq. (19) by letting the function δc to be the trial
function. The resulting linear system for the gradient, de-
noted G in its discrete form, is written as

MG =R, where Rl =

Ns∑
i=1

Nt∑
n=1

∫
�

2c∇u†
i (tn) (36)

· ∇ui(tn) δcl dx.

In order to derive the discrete adjoint and gradient, the time
integrals appearing in the continuous formulation (i.e., in the
cost functional J , and in the definition of the inner product, in
the Lagrangian functional L) were all replaced with discrete
sums that did not consider a time integration. This is a similar
approach to what was performed in Bunks et al. (1995). For
this reason, no 1t factor (or other time integration methods
such as trapezoidal or Simpson’s rule) is present.

Also, we stress here that, in order to obtain the gradient
G, we need to solve Eq. (36) by inverting a mass matrix.
This matrix comes from the fact that, in the continuous gra-
dient derivation, Eq. (19), the inner product is chosen to be
the classical L2 inner product, which is represented by the
mass matrix in the discrete framework. This choice of inner
product ensures that the gradient will be mesh-independent
(e.g., Schwedes et al., 2017) in the sense that local mesh re-
finements will not produce differences in the gradient (if the
problem is sufficiently mesh-converged). For example, if the
right-hand-side expression in Eq. (36) is readily used as the
gradient, the mesh dependency would be present as the space
integration would only be present on the right-hand side.

3.6 Gradient subsampling

Numerical simulations often require several thousand time
steps integrating over several seconds with the aforemen-
tioned numerical approaches to compute the discrete gradi-
ent. As a result, there are significant memory requirements
for storing the forward-state solution that is necessary to cal-
culate Q̃ and subsequently G. By considering that the numer-
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ically stable time step given by the CFL condition is gener-
ally much shorter than the Nyquist sampling frequency dic-
tated by the maximum source frequency, our implementation
allows for a subsampling approach to calculate G to reduce
memory overhead. In other words, the forward state can op-
tionally be saved at every r time steps (r � 1), where r is the
subsampling ratio, and subsequently the gradient is calcu-
lated every r time steps. It is noted that this is known to lead
to artifacts and inexact gradients and requires careful tuning
to ensure feasible memory runtime requirements while bal-
ancing the accuracy of the gradient. The r subsampling factor
is noted in the results. These aspects were extensively studied
in Louboutin et al. (2019).

4 Computer implementation

In this section, important components of our implementa-
tion are explained. The Firedrake package is used to imple-
ment the numerical developments. The code (Roberts et al.,
2021a) and data sets (Roberts, 2021) together with Firedrake
(firedrake-zenodo, 2021) were used for all experiments.

An additional layer of implementation is necessary for
applications in seismic problems as there are operations to
execute FWI that fall outside of the capabilities within the
Firedrake package. It is important to mention that Firedrake
has components that allow us to compute the gradient with
automatic differentiation (AD) (e.g., dolfin-adjoint, Mitusch
et al., 2019), and we have made the necessary additions to
spyro that enable the use of this functionality to perform
FWI. However, at the time the results for this paper were
generated, that was not ready yet, and we have performed all
calculations solving the adjoint equations inserted directly in
the algorithm.

The Rapid Optimization Library (ROL; Cyr et al., 2017)
is used to solve the inverse problem given a gradient, a
cost functional, and a method to update the velocity model.
The ROL library provides interfaces to and implementations
of various algorithms for gradient-based, unconstrained and
constrained optimization coupled with line-search conditions
that satisfy the strong Wolfe conditions (Wolfe, 1969). This
improves the robustness of our FWI code by using well-
developed and tested algorithms. The C++ library ROL is
called in our Firedrake Python codes via a Python wrapper
code called pyROL (Wechsung and Richardson, 2019). ROL
was preferred over SciPy’s optimization library because the
Firedrake development team is actively involved with the de-
velopers of the ROL interface. Further, the usage of ROL al-
lowed for more advanced optimization methods than SciPy
offered.

As mentioned earlier in this work, we exclusively rely on
the second-order optimization method L-BFGS (Byrd et al.,
1995), which includes information about the curvature of the
misfit function in the optimization process (Eq. 10). The ben-
efit of using second-order optimization methods in FWI has
been studied previously and shown to benefit the computa-
tional efficiency of FWI (e.g., Castellanos et al., 2014). Us-
ing pyROL and Firedrake, a conventional FWI approach can
be written in several dozen lines of Python.

Given the gradient subsampling (see Sect. 3.6), the preci-
sion of the gradient was not severely damaged by subsam-
pling. This aspect was verified to ensure that the shape of the
gradient remained essentially the same as without the sub-
sampling. It is true, however, that if the frequency of the sub-
sampling is not high enough, the gradient can be damaged,
typically when the wave traveling one mesh element of size h
and experiencing a wave speed c is sampled with fewer than,
say, five points, leading to a condition of the form dt < 5h/c.

4.1 Implementation of higher-order mass-lumped
elements

Five triangular elements for spatial polynomial degrees k ≤ 5
from Chin-Joe-Kong et al. (1999) and three tetrahedral el-
ements for spatial polynomial orders up to k = 3 (Geevers
et al., 2018b) were implemented inside the Finite element
Automator Tabulator package (FIAT, Kirby, 2004). In par-
ticular, we use the latest documented k = 3 3D tetrahedral
element ML3tet from Geevers et al. (2018b) with 32 nodes.
This program FIAT is used by the Firedrake package to tab-
ulate a wide variety of finite-element bases.

The quadrature rules are key to defining the finite-element
basis, so we began by implementing these within FIAT. Then,
to define the finite elements themselves, we must first con-
struct the function space. This is done using two particular
FIAT features described in Kirby et al. (2012). First, we use
the RestrictedElement operation on a Lagrange element to
remove bubbles from facets where enrichment occurs, and
then we use a NodalEnrichedElement operation to introduce
higher-order bubbles into those facets. Second, we must pro-
vide the dual basis, which is just a list of pointwise evaluation
functionals associated with the ML quadrature points. In ad-
dition to these, like all other FIAT elements, we also provide
a topological association of the degrees of freedom to facets,
and this information is used at a higher abstraction level by
Firedrake to build local-to-global mappings.

Certain standard boilerplate is required to expose a new
FIAT element to the rest of Firedrake. First, the element,
along with certain metadata, must be announced within the
Unified Form Language. Then, it must also be wrapped into
FInAT (Homolya et al., 2017), which is a layer that provides
abstract syntax for basis evaluation and supports higher-order
operations, such as tensor products of elements or making
vector-valued spaces such as used for our p variable. It is this
layer, rather than FIAT itself, that interacts with Firedrake’s
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form compiler, tsfc (Homolya et al., 2018). Within tsfc, we
must also provide a binding between UFL names and FInAT
classes. Hence, although we make changes to several pack-
ages, they are rather superficial beyond the FIAT implemen-
tation.

4.2 Receivers and sources

To probe the computational domain, functionality is required
to both record the solution at a set of points (i.e., receivers)
and to inject the domain with a time-varying wavelet (i.e.,
sources; Fig. 1). Since the location of receivers does not nec-
essarily match vertices exactly inside the mesh connectivity,
the wave solution must be interpolated to the receiver loca-
tions. Interpolation of the wave solution to the receivers is
carried out in the same space of the finite elements used to
discretize the domain.

Source injection is the adjoint operator of interpolating the
solution to the receivers. To execute both, a Dirac mass is
integrated against the finite-element basis functions in the
form of weights equal to the basis functions evaluated at
the source (receiver) position inside the element that contains
the source (receiver). This point force source is of the form
f = w(t)δx(x), where w(t) denotes the wavelet and xs the
source or receiver position. For the 2D case, the contribution
to fg(js,k),l is

∫
Tjs
f φjs,kdx = w(t)φjs,k(xs). Here g(js,k) de-

fines the local-to-global map from node k in element j con-
taining the s source/receiver to the global set of DoFs. For the
adjoint calculation, the source is forced at the receiver loca-
tions that recorded the solution in the forward-state problem.

4.3 The inversion process

We start with an initial distribution of P -wave speed c and
solve the forward-state problem to obtain Q. With the mis-
fit known, we then solve the adjoint-state problem and ob-
tain Q†. With both Q and Q† known the discrete gradient G
can be computed. Thus, the updated velocity model c can be
computed by

ck+1
= ck +αksk, (37)

where αk is the step length, sk is the search direction, and
the superscript k denotes the iteration. In the L-BFGS algo-
rithm, the computation of the descent direction sk is done
using an approximation of the Hessian matrix, computed by
finite difference of previous gradient evaluations. Also, the
step length is computed satisfying the Wolfe conditions (see
Byrd et al., 1995). Both are automatically taken care of by
the implementation in ROL.

The discussed inversion process is shown in Algorithm 1.
In order to ensure a sufficient decrease of the objective func-
tional at each inversion iteration k, line-search conditions are
employed that satisfy the strong Wolfe conditions (Wolfe,
1969). This line search is implemented inside the ROL li-
brary.

4.4 Wave propagators

The spatial and temporal discretizations detailed in Sect. 2.1
are programmed with Firedrake. Figure 5 illustrates the main
functions – forward.py and gradient.py – and how they work
together. The forward wave propagator called forward.py re-
turns two quantities for a given source configuration: the Q
at the time steps determined by the subsampling ratio r (see
Sect. 3.5) and the forward-state solution HQ at the receivers
for all time steps. The adjoint-state propagator takes as input
the difference between measured and modeled data at the re-
ceiver locations (otherwise referred to as the misfit) and the
forward-state solutionQ. To conserve virtual memory, while
the adjoint-state propagator executes, the function called gra-
dient.py discards Q as the adjoint Q† and subsequently G
(Eq. 36) is calculated backward in time. Note that the adjoint
wave propagator returns the gradient summed over the time
steps dictated by the subsampling ratio r (see Sect. 3.5).

We point out that all spatial discretizations are performed
using matrix-free approaches, which are available in the
Firedrake computing environment, and this reduces runtime
memory requirements (e.g., Homolya et al., 2017; Kirby and
Mitchell, 2018).

4.5 Two-level parallelism strategy

A two-level parallelism strategy is implemented over both
the sources and spatial domain decomposition. In space, do-
main decomposition parallelism is handled by the Firedrake
library, which automatically handles setting up halo/ghost
zones around each subdomain and performing the necessary
communication at each time step via the Message Passing
Interface (MPI). In addition, Firedrake also provides options
to configure the depth of the ghost layer for performance as
needed. In this work, no ghost layers are added to the subdo-
mains, and instead the solution is shared only at the boundary
nodes of each subdomain. At the source level, parallelism is
trivial and handled by splitting the MPI communicator into
groups of processes at initialization and assigning each group
to simulate one source. Due to the usage of Firedrake, no ad-
ditional code is required for parallelism as compared to the
sequential version of the code.

We do note a significant benefit from using both shot-level
and domain decomposition parallelism simultaneously, espe-
cially in 3D, which is later detailed in Sect. 5.3.

4.6 Meshes and file I/O

Mesh files are read in from disk sequentially and then dis-
tributed in parallel if necessary; this functionality is handled
latently by Firedrake. External seismic velocity models are
read in from disk from an H5 file format at execution time.
Gridded velocity data are bi-linearly interpolated onto the
nodal DoFs of the elements of the mesh at runtime. In this
way, seismic velocities can vary inside the element in the
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Figure 5. The functionality of the forward-state, adjoint-state, and
gradient Python codes.

event higher-order elements are used. Gridded seismic veloc-
ity files can be prepared using SeismicMesh (Roberts et al.,
2021b)

5 Computational results

5.1 Numerical verification of discrete gradient

The accurate computation of the discrete gradient is cru-
cial for the robustness of Algorithm 1. Through a numeri-
cal experiment, we demonstrate that the gradients computed
through the optimize-then-discretize approach (see Sect. 3.5)
are approximately equal to the discrete gradients computed
by the discrete gradients of the discrete objective functional.
In this way, we compare the directional finite difference of
the discrete objective functional. The finite-difference direc-
tional derivative is given as a forward finite difference:

dfd
h (c)(c̃) :=

J (c+hc̃)− J (c)

h
, (38)

where c̃ is the discrete direction for c and h is an arbitrarily
small step size. The directional derivative obtained via the

control problem is

dco(c)(c̃)= c̃T M G. (39)

Next, we verify that Eqs. (38) and (39) produce accurate val-
ues for an arbitrary choice of c̃ considering the test problems
displayed in Fig. 6. For this test, the direction c̃ to test is that
of the gradient G.

The considered 2D test problem to verify the numerical
gradients was a physical domain�0 = 1.0× 1.0 km that fea-
tures half the domain with a P -wave speed of 4.0 km s−1 and
the other half with a P -wave speed of 1.0 km s−1 (Fig. 6a).
The physical domain was truncated with a 200 m PML on
the sides while a non-reflective Neumann boundary con-
dition was applied at the top. A 5 Hz source is injected
at (−0.1,0.50) km, and the solution is recorded at 100 re-
ceivers equispaced along a horizontal line at the bottom of
the domain between (−0.90,0.1) and (−0.90,0.90) km. In
this configuration, the problem models a transmission of an
acoustic wave. The domain was discretized with uniform-
sized ML2tri elements with le = 20 m in length yieldingG>
10 given the 5 Hz peak source frequency, which we found is
sufficient for this experiment. The total duration of the sim-
ulation is 1.0 s, which is long enough for the wave to be ab-
sorbed in the PML and transmitted to the receivers. A com-
putational time step1t = 0.50 ms was used, and the gradient
was computed with all time steps (r = 1). Note that the direc-
tional derivative (Eq. 39) was integrated only in�physical and
masked in �PML.

In 3D a similar problem to the 2D case was considered
within a physical domain �0 = 1.0× 1.0× 1.0 km. Note the
orientation of the axes is z, x, and then y. A 5 Hz source
located was injected at (0.1,0.50,0.50) km, and the solu-
tion was recorded at a 2D grid of 100 receivers equispaced
apart in both x and y directions at the bottom end of the do-
main between (0.90,0.1,0.1) km and (0.90,0.90,0.90) km
(Fig. 6(b)). The domain was discretized with uniform ML2tet
with le = 20 m in length yielding G> 10. A computational
time step 1t = 0.50 ms is used, and the gradient was com-
puted with all time steps (r = 1). Similar to the 2D case, the
gradient was masked in �PML.

For both 2D and 3D cases, an initial velocity model with a
uniform velocity of 4.0 km s−1 was used; however, we simu-
lated both the exact and initial models with the same mesh.
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Table 1. Comparison of directional derivatives for 2D and 3D cases between the finite-difference approximation (fd) and our discrete gradient
(co).

Case dco dfd
h

h= 1× 10−3 h= 1× 10−4 h= 1× 10−5

2D 0.0681 0.0665 0.0664 0.0664
3D 62.7069 65.4222 63.1321 62.9094

We point out that relatively good agreement was found be-
tween the two derivatives in which the wave field was re-
solved with at least G= 10 (Table 1), especially in the 2D
case where the maximum relative difference between the gra-
dients was less than 0.03 %. In the 3D case, the discretiza-
tion error becomes somewhat larger and results in maximum
relative differences of approximately 4.0 %, decreasing with
smaller h.

5.2 On the design of waveform-adapted meshes

To effectively apply higher-order mass-lumped methods with
unstructured meshes, it is important to understand the re-
quired mesh resolution for a given desired accuracy (Lyu
et al., 2020; Geevers et al., 2018c). As mentioned in Sect. 4.1,
ML elements contain a greater number of DoFs per element
than standard CG Lagrange or spectral/hp collapsed trian-
gular elements. This does not imply, however, that a given
problem would contain a greater number of DoFs when dis-
cretized with ML elements since mesh resolution require-
ments for each method and element type vary widely (Lyu
et al., 2020). Similar to the works of Geevers et al. (2018c)
and Lyu et al. (2020), we investigate the accuracy of ML el-
ements for forward-state wave propagation to guide their ap-
plication in FWI.

5.2.1 Reference wave field solution

The implementation of the forward-state wave propagator
in 2D and 3D was first verified in order to reliably inter-
compare solutions between elements. An equivalence was
demonstrated between a converged numerical result com-
puted on a highly refined mesh in 2D and 3D and com-
pared with their analytical solutions, respectively. Following
that, the assumption was made that equivalence holds for all
our subsequent tests, implying that all the reference wave-
forms are converged numerical solutions, given sufficiently
fine mesh resolution and sufficiently small numerical time
steps.

The method of manufactured solutions (MMS) was used
to verify the implementation in accordance with a manu-
factured analytical solution. The manufactured 2D analytical
solution was chosen as t2 sin(x)sin(y). In 3D the analytical
solution was t2 sin(x)sin(y)sin(z). Both analytical solutions
are defined on a unit square and unit cube with a 250 m wide

PML layer. Numerical solutions were calculated on highly
refined reference meshes built with G= 14.07 using ML5tri
in 2D andG= 9.30 using ML3tet in 3D. The velocity model
was homogeneous with [1.43] kms−1. The simulations used
a time step of 1t = 1 ms and were integrated for 0.10 s. The
MMS error was represented as the L2 norm between the an-
alytical and numerical solution normalized by the analytical
solution and only measured in the physical domain.

Our experiments demonstrated good agreement between
the analytical and modeled solutions with a relative error for
the 2D reference homogeneous case of 0.34 %, and for the
3D homogeneous case the relative error was 0.90 %. These
error values indicate the reference solutions represent numer-
ically converged results given the spatial discretization, and
the forward-state code implementation is producing correct
solutions.

5.2.2 Homogeneous 2D P -wave speed model

A 2D wave propagation experiment in a domain with a
homogeneous velocity field was configured to quantify the
accuracy of the forward-state solution with ML elements
(Fig. 7). The experiment is similar in design to that analyzed
in Lyu et al. (2020), which an SEM of variable space or-
der. A domain of 40.0λ by 30.0λ (i.e., 11.4 km by 8.57 km)
was generated, where λ is the wavelength of the acoustic
wave given the model’s wave speed. The model had a uni-
form wave P -wave speed of 1.43 km s−1, which is approx-
imately the speed of sound in water. A Ricker wavelet with
a peak source frequency of 5.0 Hz was injected at the cen-
ter of the domain, and a grid of 36 receivers was placed at
a 10.0λ (i.e., 2.86 km) offset to the right of the source loca-
tion in order to record and intercompare solutions (Fig. 7). A
0.28 km PML layer was added to absorb outgoing waves. The
time step used for each simulation was 20.0 % less than the
1tCFL estimated maximum stable time step (see Sect. 3.4).
Meshes were generated for each element type by varying the
C, which resulted in G that ranged from G= 2 to G= 10.5.
Results were compared against the solutions computed on
the so-called reference meshes.

Error was calculated based on the simulated pressure
recorded at the receiver locations with

E =

√√√√∑Nr
r=1
∫ tf

0 (pr−prref)
2dt∑Nr

r=1
∫ tf

0 p
2
rref

dt
× 100%, (40)
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Figure 6. Problem configuration for verification of the discrete gradient in (a) 2D and (b) 3D. Note not all receiver positions are shown for
visualization purposes.

where Nr denotes the number of receivers, tf is the final sim-
ulation time in seconds, pr is the pressure at the receivers
for a given mesh, and pref denotes the pressure at the re-
ceivers computed with a reference mesh. The time integra-
tion in Eq. (40) was computed using the trapezoidal rule.
Eq. (40) is a measure in percent difference between two so-
lutions at the same set of receivers. It is important to point
out that measuring E in this way combines the error associ-
ated with receiver and source interpolation as well as from
the wave propagation. When E is measured at one receiver
at a particular offset coordinate x, this is referenced by a sub-
script (e.g., Ex=(0.5,0.5)); otherwise, the quantity E considers
all receivers.

The space of E for several values of C and subsequently
G was explored for different ML elements in a process re-
ferred to as a grid sweep (Table 2). The objective of the grid
sweep is to find the smallest G (i.e., lowest grid point den-
sity) that can produceE at or below a specified threshold. An
allowable tolerance of E = 5.0 % for each ML element was
selected. While the E = 5.0 % threshold chosen is arbitrary,
it represents a measurement that can be used to intercompare
solutions and, as we later show through application, to be
sufficiently accurate for robust FWI. Further, smaller target
thresholds for E led to non-convergence for some elements.
To execute the grid sweep, the value of G was varied within
a range of values depending on the change in E in a similar
manner to a back-tracking line search.

Overall, the homogeneous grid sweep results demonstrate
that elements with spatial order k > 2 required fewer G to
achieve the same E than ML2tri. As expected, the neces-
sary C in order to maintain the target E decreases as spatial
polynomial order is increased (Fig. 8b). The relationship be-
tween C and G is not linear due to the higher-order bubble
functions inside the ML elements (see Sect. 3.2). Thus, the

convergence rate of E with respect to G is not as consistent
as it is for C (Fig. 8a).

Applying the results from the homogeneous grid sweep,
the values for G and C that achieved E = 5.0 % are shown
in Table 2. The variation inC that could achieve theE thresh-
old was C = 1.69 to C = 5.85 for ML5tri to ML2tri, respec-
tively, while forG it varied betweenG= 7.36 andG= 10.1.
The ML element that led to the smallest problem (e.g., min-
imum G) while satisfying the target E was ML4tri with
G= 7.36, whereas ML2tri required G= 10.01. It is impor-
tant to note that the lowest-order ML1tri element performed
poorly and did not achieve the target for E with any configu-
ration of C tested.

5.2.3 Heterogeneous 2D P -wave speed model

In addition to generating a mesh that meets the requirements
of the technique used to numerically discretize the PDE, the
mesh must also account for local variations in the seismic
velocity, which can have significant effects on the simulation
of acoustic waves. In the case of simulation with a hetero-
geneous velocity model, E combines errors associated with
how the mesh discretely represents the local variations in
velocity and errors associated with numerical discretization
techniques. Thus, it is often necessary to add additional DoFs
into the design of the unstructured mesh above what would
be required for a homogeneous seismic velocity model to ac-
curately represent local seismic features (e.g., Anquez et al.,
2019; Seriani and Priolo, 1994; Lyu et al., 2020). However, it
is important to point out that in FWI applications, the inver-
sion commences from a smooth, initial velocity model (e.g.,
Fathi et al., 2015; Thrastarson et al., 2020; Trinh et al., 2019),
with locations of velocity interfaces that are not generally not
known prior.
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Figure 7. The experimental configuration to calculate the grid-point-per-wavelength G values. In panel (a) the source is shown as a green
circle and the receivers are denoted as white triangles with a close-up of the bin of receivers shown in panel (b). In both panels, the normalized
wave field is colored at t = 2.25 s.

Figure 8. Panels (a) and (b) depict results for the homogeneous velocity model experiment to find the minimum G (Sects. 5.2.2 and 5.2.3).
Panel (a) shows C as a function of E (Eq. 40). Panel (b) illustrates the E as a function ofG. Panels (c) and (d) show the same thing as panels
(a) and (b) but for the heterogeneous velocity model experiment. Colored lines represent the spatial polynomial order of the element. The
E = 5 % threshold is drawn as a horizontal dashed black line on all panels.

As a result, in this experiment we added an additional per-
cent to the parameter values of C obtained from the homo-
geneous test case (Sect. 5.2.2). The percent difference in C
between homogeneous and heterogeneous results is defined
as 1C:

1C =
(Chet−Chom)

Chom
, (41)

where the subscripts “het” and “hom” denote the heteroge-
neous and homogeneous grid sweep results, respectively.

For triangular meshes, the 1C that is necessary to mini-
mize E when simulating with heterogeneous velocity mod-

els has not been investigated in prior scientific literature to
the authors’ knowledge. It is also important to determine how
the previously described homogeneous results can be applied
to a heterogeneous seismic velocity model.

In a similar manner to the experiment with the homo-
geneous velocity model, a 2D experiment with a heteroge-
neous velocity model was performed for the BP2004 P -
wave speed model (Billette and Brandsberg-Dahl, 2005)
(Fig. 9). The BP2004 model represents geologic features in
the eastern/central Gulf of Mexico and offshore Angola and
is characterized by several salt bodies with P -wave speeds>
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Table 2. Results from the grid sweep for both the homogeneous and heterogeneous experiment to identify efficient values for G using ML
elements of varying spatial degree k that maintain an error threshold of E = 5 %, as compared to a highly refined reference solution (see
Sect. 5.2). Note that DNF stands for did not finish.

Homogeneous Heterogeneous 1C

Element minimum G minimum C minimum G minimum C %

ML1tri DNF DNF DNF DNF DNF
ML2tri 10.1 5.85 11.6 6.70 14.9 %
ML3tri 7.86 3.08 9.06 3.55 15.3 %
ML4tri 7.36 2.22 7.99 2.41 8.56 %
ML5tri 7.88 1.69 8.54 1.84 8.38 %

4 km s−1. The domain is 12.0 km by 67.0 km with an addi-
tional 1.00 km PML. A Ricker source was injected at (−1.0,
34.5) km, and a horizontal line of 500 receivers from (−1.0,
36.5) to (−1.0, 44.5) km was used to record the wave field
solution. The acquisition geometry led to a near offset of
2.00 km and a far offset of 10.0 km from the source loca-
tion, which are common dimensions in marine FWI applica-
tions for seismic velocity building (e.g., Virieux and Operto,
2009). Each simulation lasted 9.0 simulation seconds, which
was sufficient time for reflected waves to reach the receivers
with the largest offsets.

In the mesh generation process, a mesh gradation rate of
15.0 % was enforced to bound the element size transitions
(Fig. 9). As with the homogeneous experiment, G= 6 to
G= 12 were evaluated by comparing to the reference case.
The reference case used a highly refined mesh constructed
with G= 15.0 and simulated with ML5tri elements, which
could correctly resolve all interfaces (Fig. 9).

As shown by Fig. 8c–d, the experiments with the BP2004
model consistently exhibited greater E and slower conver-
gence rates as compared to the values from the homoge-
neous experiment given the same G (see Fig. 8a). As a re-
sult, the values for C used to generate the meshes were in-
creased from what was found in the homogeneous experi-
ment by 1C = 20.0 % and resulted in acceptable errors of
E = 3.45 %, E = 3.82 %, E = 3.44 %, and E = 3.38 %, for
ML2tri, ML3tri, ML4tri, and ML5tri elements, respectively.
1C less than 20.0 % did not sufficiently reduce the error to
under the E = 5.0 % threshold.

Wave propagation errors can be the result of dispersion
and also show how well the mesh represents the local seis-
mic wave speed variations. In our mesh design, exact fault
locations were not resolved with edge-orientated elements
(e.g., Anquez et al., 2019), and our numerical discretization
used elements from a continuous function space; thus, er-
ror associated with the propagation of the reflected wavelet
in the sharp contrast of the salt layer is expected. This er-
ror becomes more pronounced when using larger element
sizes associated with the higher-order (k > 2) ML elements.
As an example of this, in Fig. 10 E is calculated individu-
ally for each receiver as a function of offset for ML5tri. A

peak of E = 7.71 % occurred at the offset of 2.21 km that is
associated with the reflection brought on by the salt layer
Fig. 11 and results in the peak E not only in ML5tri but
also in ML3tri and ML4tri. Neglecting the E associated with
the salt body reflection in this receiver location would re-
duce the error fromE = 7.71 % toE = 2.02 %. Furthermore,
even though E was kept below the previously defined thresh-
old, a small dispersion error still exists and can be noted in
receivers at the far offset in all cases. Dispersion error was
the most prevalent error only in the lower-order ML2tri el-
ement, whereas in ML3tri, ML4tri, and ML5tri the greatest
error came from the wavelet reflected by the salt layer.

For ML3tri, ML4tri, and ML5tri elements, peak E

stemmed from the reflected wave associated with the salt
body due to the enlargement of element sizes near the salt
body (Fig. 11). Figure 11b illustrates the moment when the
wave reflects off of the salt body and this reflected wave ac-
counted for 73.8 % of the total error at this receiver.

5.2.4 Homogeneous 3D P -wave speed

A similar experiment to that described Sect. 5.2.2 was used
to assess 3D ML elements. The focus was placed on find-
ing suitable values for C and G that minimize error for the
ML2Tet and the ML3Tet elements that were discovered in
Geevers et al. (2018c). Therefore, a homogeneous 3D model
was created with a uniform P -wave speed of 1.43 km s−1 in a
15.0λ×30.0λ×15.0λ (i.e., 4.29 km by 8.57 km by 4.29 km)
domain with an added 0.28 km PML layer to absorb outgo-
ing waves on the sides and bottom. A Ricker wavelet source
was added at the coordinate (2.14, 0.43, 2.14 km), and 216
point receivers were arranged in a cubic grid with a width of
5λ (i.e., 1.43 km) that was placed at a center offset of 10λ
(i.e., 2.86 km) to the right of the source coordinate, as illus-
trated in Fig. 12. The time step used for each simulation was
20.0 % less than the1tCFL (maximum stable time step based
on an estimate) (see Sect. 3.4). As with Sect. 5.2.2, meshes
were generated by varying C, and a back-tracking line search
was executed to reach an error threshold of 5.0 % calculated
using Eq. (40).
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Figure 9. The reference problem configuration for the BP2004 seismic velocity model. Panel (a) shows the P -wave speed data. Panel (b)
shows the mesh resolution (circumcircle diameter) based on local adaptation of the mesh resolution to the P -wave data from the BP2004
velocity model shown in panel (a). The parameters used for mesh generation were C = 2.03, ML5tri, a velocity gradation rate of 15.0 %,
and an anticipated time step of 1t = 0.001 ms.

Figure 10. E (Eq. 40) as a function of the offset distance for ML5tri in the heterogeneous model setup. Peak E is annotated with dashed
orange lines.

The results are shown in Fig. 13. The C values necessary
to achieve E = 5.0 % were C = 5.1 and C = 3.1 for ML2tet
and ML3tet, respectively. These results are similar in mag-
nitude to the values found in C for the 2D grid sweep for
the ML3tri of C = 3.08 but less than for ML2tri, which was
C = 5.85.

5.3 Computational performance

Simulations were executed on a cluster called Mintrop at the
University of São Paulo. Experiments used four Intel-based
computer nodes. Each Intel node was a dual-socket Intel
Xeon Gold 6148 machine with 40 cores clocked at 2.4 GHz
with 192 GB of RAM. Nodes were interconnected together
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Figure 11. Panel (a) shows time series of pressure for several el-
ements measured at a receiver with an offset of 2.00 km. The dif-
ference (MLxtri− reference) in signals from the reference case is
shown in panel (b), where x varies from 2 to 5. Panel (c) is the wave
field at t = 2.53 s with the receiver at 2.00 km emphasized with a
triangular glyph. The difference in the signals is greatest when the
wave reflected by the salt body (indicated by darker blue in panel c)
passes through the receiver also illustrated in panel (c).

with a 100 Gb s−1 InfiniBand network. While each node con-
tained 40 cores, only a maximum of 15 cores were used per
node to minimize the effects of memory bandwidth on the
performance of the wave propagation solutions.

The parallel efficiency of our forward propagator was as-
sessed in Intel-based CPUs (see Fig. 14). For the 2D bench-
mark, the domain contains a uniform velocity of 1.43 km s−1

and spans a physical space of 114 km by 85 km. The 2D
domain was discretized using the homogeneous cell den-
sities from Table 2, resulting in 18804171, 11295747,
9929409, and 11204136 DoFs for ML2tri, ML3tri, ML4tri,
and ML5tri, respectively. In addition to the physical domain,
a 0.287 km wide PML was included on all sides of the do-
main except the free surface. A source term with a time-
varying Ricker wavelet that had a central frequency of 5.0 Hz
was injected into the domain, and a line of 15 receivers with

offset varying from 2.0 to 10.0 km recorded the solution. The
2D simulations were executed for 4.0 s with a time step of
0.5 ms.

The 3D domain was 8 km by 8 km by 8 km with an addi-
tional 0.287 km wide PML included on all sides of the do-
main except the free surface. The domain was discretized
using cell densities calculated in Sect. 5.2.4, resulting in
447430835 and 288233805 for ML2tet and ML3tet, respec-
tively. A source term with a time-varying Ricker wavelet that
had a central frequency of 5.0 Hz was injected into the do-
main, and a cubic grid of 216 receivers was placed with a
2.86 km offset. The 3D simulations were executed for 1.0 s
with a time step of 0.5 ms.

Overall, nearly ideal strong scaling was observed in both
2D and 3D cases for most of the elements tested up to 60
computational cores. Since the ML elements admit diagonal
mass matrices that avoid the need to solve a linear system, ad-
ditional MPI communication is circumvented, which greatly
improves parallel scalability. We point out that this analysis
considers the grid-point-per-wavelength results when design-
ing the mesh sizes and thus represents a practical workload
configuration. Weak scaling is also observed out to an av-
erage of 165490 DoFs in 2D and 4803896 DoFs using 60
cores. With that said in 2D, scaling deviates somewhat from
the ideal curve for ML4tri between 40 and 60 cores. With
60 cores, the ML4tri features the smallest problem in terms
of average number of DoFs per core, and symbolic opera-
tions can begin to inhibit parallel scalability. It is important
to note that similar parallel performance was also obtained
for the adjoint-state wave propagator as it is highly similar in
operations to the forward-state propagator.

5.4 Experiment with Marmousi2

To investigate FWI (Algorithm 1) with variable unstructured
meshes, several 2D inversions were performed using the
Marmousi2 model (Martin et al., 2005) (Fig. 15). The objec-
tive of this experiment was to intercompare the performance
of FWI in terms of wall-clock time, peak memory usage, and
final inverted model. All inversions used meshes with vari-
able elemental resolution based on the results with the ho-
mogeneous velocity model detailed in Sect. 5.2.2. The Fire-
drake programming environment enables us to flexibly select
the variable space order at runtime.

FWIs commenced from an initial P -wave speed model ob-
tained by smoothing the ground truth Marmousi2 model with
a Gaussian blur that had a standard deviation of 100 grid
points (Fig. 15a–b). The water layer (i.e., region of the ve-
locity model with P -wave speed< 1.51 km s−1) was made
exact in the initial seismic velocity model and was fixed
throughout the inversion process by setting the gradient to
zero there.
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Figure 12. The 3D experimental configuration to calculate the grid-point-per-wavelength G values. The Ricker source is represented as a
green sphere, and the receivers are denoted as white pyramid glyphs.

Figure 13. The 3D grid sweep, similar to Fig. 8 but for 3D elements. The E = 5 % threshold is drawn as a horizontal dashed black line on
all panels.

Each inversion used an acquisition geometry setup of 40
sources equispaced in the water layer between the coordi-
nates (−0.01,1.0) and (−0.01,15.0) km. A horizontal line
of 500 receivers were placed at 100.0 m deep below the water
layer between (−0.10,0.10) and (−0.10,17.0) km. Simula-
tions were integrated for 5.0 s with a noiseless Ricker wavelet
that had a peak frequency of 5 Hz. A PML was added to
the domain with a width cmax/fmax = 900 m (Kaltenbacher

et al., 2013), and the non-reflective boundary was used to
suppress free-surface multiplies (Eq. 6).

The FWI setup described in Algorithm 1 was run for a
maximum of 100 iterations itermax = 100. Note that an iter-
ation is only counted if it reduces the cost functional. The
inversion process was terminated if either (a) the norm of
G was less than 1× 10−10 or (b) a maximum of five line
searches were unable to reduce J . However, neither criterion
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Figure 14. Strong scaling curves for solving the acoustic wave equation with a PML in spyro for 2D (a) and 3D (b) cases given a range of
computational resources using Intel nodes. The dashed lines represent ideal scaling for each element, and the average number of degrees of
freedom per core is annotated.

Figure 15. The Marmousi2 model setup described in Sect. 5.4. Panel (a) shows the target model, and panel (b) shows the guess velocity
model. On both panels, sources and receivers are annotated. The �0 is the region inside the solid black line.

was reached in this experiment. A lower bound on the con-
trol c of 1.0 km s−1 and an upper bound of 5.0 km s−1 were
enforced throughout the optimization to ensure the result re-
mained physical. Simulations were executed in serial using a
numerical stable time step of 0.001 s with a subsampling ra-
tio r = 10, which yields a gradient calculation frequency 10
times less than the Nyquist frequency as determined by the
5 Hz peak source frequency.

Except for the ML1tri experiment, all meshes for the ini-
tial velocity model were generated using the C from Table 2
with an additional 20 % to take into account the heteroge-
neous velocity model of Marmousi2 Table 3. It is general
practice to increase the C for heterogeneous velocity mod-
els (Lyu et al., 2020; Anquez et al., 2019). In the case of
ML1tri, the only possible mesh configuration that was capa-
ble to maintain the threshold error below 30% was C = 20.
The so-called ground truth shot records that were used to
drive the inversion process were simulated with a separate
mesh discretized using the ground truth velocity model (see

Table 3. The number of degrees of freedom (DoFs) for each exper-
iment, the cells per wavelength C used to generate the mesh, the
total wall-clock time to run each FWI discretized with a different
element type, and the final cost functional Jfinal.

Element DoFs C Runtime Jfinal
(minutes)

ML1tri 139605 20.0 505 4.59× 10−2

ML2tri 103877 7.02 647 4.88× 10−3

ML3tri 71561 3.96 572 4.34× 10−3

ML4tri 54592 2.67 472 5.08× 10−3

ML5tri 56995 2.03 564 5.21× 10−3

Figure 15a) with ML5tri elements using C = 2.03. Ground-
truth-simulated shot records used a smaller time step than
what was used in FWI of 2.5 ms to minimize error associated
with the time discretization.
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The simulations were performed using one shot per
core using the shot-level ensemble parallelism described in
Sect. 5.3 with 40 computational cores of one Intel node.
Throughout each inversion, the total random access mem-
ory (RAM) as a function of iteration, the total wall-clock
time spent performing the inversion, the cost functional J
(Eq. 10) at each iteration, and the total number of iterations
were recorded and documented.

5.4.1 Results

The number of DoFs varied by approximately a factor of 2
over the range of ML elements tested. As expected, the
ML1tri produced the largest problem size with 139605
DoFs, whereas ML4tri produces the smallest problem size
with 54592 DoFs. Note that all discretizations used a 1C =
20.0% (Eq. 41) to take into account heterogeneity in the ve-
locity model. It is interesting to point out that ML5tri had a
greater number of DoFs in the problem than ML4tri despite
containing both higher-order basis functions and a lower C.
We also note that in spite of going up to ML5tri, the variable
mesh resolution enabled all FWIs to be simulated at a 1 ms
time step.

The final inverted models are shown in Fig. 16 and are
qualitatively highly similar to each other. Given that all for-
ward discretizations were constructed with the same toler-
ance for E, this is to be expected. All experiments exhibited
between 6 and 11 failed line searches during the course of the
100 iterations demonstrating no clear dependence between
the number of failed line searches and the element type. With
the exception of ML1tri, all results converged to a similar fi-
nal cost functional between 4.88×10−3 and 5.21×10−3 after
exhausting the iteration set. As compared to the other FWIs,
the final cost functional for ML1tri was largely greater by an
order of magnitude (J = 4.59× 10−2), but still the inverted
velocity model for ML1tri qualitatively resembled the true
velocity model.

The total runtime memory and wall-clock varied substan-
tially (Fig. 17, Table 3). For example, ML4tri produced the
fastest FWI result completing in 472 min, whereas in com-
parison ML2tri produced the slowest result of 647 min. There
was also a marked increase in total wall-clock time going
from ML1tri to ML2tri. Wall-clock runtimes are primarily
a result of right-hand side assembly time since solving the
linear system with ML elements is pointwise division. Fur-
thermore, the higher k degree results in more shared nodes
per element leading to more memory access and slower per-
formance per DoF, which offsets the performance gains from
reducing the problem size with variable mesh resolution. In
regard to virtual memory usage, however, there was a clear
reduction in the peak random access memory (RAM) when
ML elements were used, which was also noted in Lyu et al.
(2020). For comparison, the ML1tri element produced a peak
RAM of 7.5 GB, whereas ML4tri required the least peak

RAM of 3.1 GB. The ML5tri required slightly more than
ML4tri with 3.13 GB.

5.5 Overthrust 3D section

As a demonstration of all the previous developments,
the FWI implementation was applied to invert a sec-
tion of the Overthrust3D P -wave speed model (herein
Overthrust3D) (Aminzadeh et al., 1996). Considering that
the Overthrust3D is substantial in spatial extent (5.0 km
deep× 20.0 m× 20.0 km), the focus of this section is to in-
vert a still considerable 5.175 km by 7.5 km by 7.5 km sec-
tion of the model (Fig. 18a–b). The initial velocity model
used to perform the inversion was obtained by smoothing the
true velocity model using a Gaussian kernel with a standard
deviation of 100 (Fig. 18b). Similar to the other 2D FWI, the
water layer (i.e., region of the velocity model with P -wave
speed < 1.51 km s−1) was made exact in the guess velocity
model and was fixed throughout the inversion process by set-
ting the gradient in the water layer to zero. Finally, a 750 m
PML is included on both true and guess models to absorb
outgoing waves.

For the inversion, 20 sources were used that were laid out
in a 2D grid composed of five lines equispaced along the
y axis with each line containing four shots equispaced along
the x axis (Fig. 18c). All sources were located at the sur-
face of the domain, and the wave solution was recorded at a
2D grid of 900 receivers laid out 100 m below the surface.
Each shot was simulated for 4.0 s, which was sufficient for
the wave to spread out through the domain. A 5 Hz noiseless
Ricker wavelet was injected at each source location.

Both the guess and true velocity models were dis-
cretized with ML3tet elements. Each model featured ele-
ments adapted in size to the true and guess model’s local
seismic velocity given a 5 Hz Ricker wavelet with a C = 3.0
that yielded G= 6.97 (see Sect. 5.2.4). With this discretiza-
tion, the guess problem contained 5.3 million DoFs, whereas
the true velocity model contained approximately 5.5 million
DoFs.

Similar to the 2D FWI experiment, the 3D FWI ran for
a maximum of 100 iterations itermax = 100. The inversion
process is terminated if either (a) the norm of G was less
than 1× 10−10 or (b) a maximum of five line searches were
unable to reduce J ; however, neither criterion was reached in
this experiment. A lower bound on the control c of 1 km s−1

and an upper bound of 6 km s−1 were enforced throughout
the optimization to ensure the result remained physical. A
numerical time step of 0.75 ms was utilized, and a gradient
subsampling rate of r = 20 was used to conserve memory.

Simulations were performed using the two-level paral-
lelism strategy with two AMD nodes. Each AMD-based
node had an AMD EPYC 7601 machine with 64 cores
clocked at 2.2 GHz with 512 GB of RAM. Specifically, each
of the 20 shots used 6 cores for spatial parallelism requiring
in total 120 computational cores.
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Figure 16. The final result for each FWI using different ML elements. The total number of iterations (including both iterations that reduced
the cost functional and the ones that did not) are indicated in each figure along with the final J and number of degrees of freedom N .

5.5.1 Results

The final inversion results along several cross-sectional slices
along the x axis and y axis are compared with the true
and guess velocity model (Figs. 19 and 20). Overall, the in-
verted model demonstrates convergence to the true veloc-
ity model. After 100 FWI iterations, the cost functional re-
duced by nearly 1 order of magnitude, from 4.76× 10−1 to

6.62×10−2. Stratified layers appeared in the inverted veloc-
ity model that match structures and shapes in the true model,
which are not present in the initial model. Overall, the in-
verted result appears more accurate near the surface closer
to the sources than with depth. Noise appears in the final in-
verted model, however, which motivates the use of a regu-
larization scheme in future FWIs. Another issue present in
the final model is aliasing artifacts, caused by the large inter-
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Figure 17. Comparing the performance of FWIs computed with different ML elements. Panel (a) shows the cost functional evolution, and
panel (b) shows the peak memory usage.

Figure 18. The Overthrust3D setup described in Sect. 5.5. Panel (a) shows the true model, and panel (b) shows the initial model. Panel (c)
shows the location of sources and receivers.

val between sources of 1750 m. Ideally this interval would be
λ/2 but can go up to 3λ/2 (Brenders and Pratt, 2007), which
for this model and source frequency is 653 m.

Even with the use of mass-lumping elements and variable
mesh resolution, 3D FWI remains computationally challeng-
ing on a relatively small-scale cluster with 120 cores. In this
case, each FWI iteration took approximately 4.8 h, leading to
a total continuous execution time of 20 d to perform 100 FWI

iterations. Peak memory usage was significantly larger than
in the 2D case at approximately 200 GB.

6 Conclusions

We have discussed a methodology for imaging regional seis-
mic velocity in two- and three-dimensional, arbitrarily het-
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Figure 19. A comparison of cross-sectional slices along the x axis in the Overthrust3D experiment between the true model, guess model,
and reconstructed wave field (control) after 100 FWI iterations.

Figure 20. Same as Fig. 19 but for the y axis.
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erogeneous, semi-infinite domains in a process commonly
referred to as full waveform inversion (FWI). The FWI pro-
cess involves solving a PDE-constrained optimization prob-
lem to minimize the misfit between the collected data and the
computed response of the forward equations starting from
some initial distribution of seismic velocity. To solve this
problem, a continuous Galerkin (CG) finite-element method
(FEM) approach was developed using unstructured triangu-
lar (i.e., in 2D and tetrahedral in 3D) meshes with elements
adapted in size to local seismic velocity. The forward, the
adjoint-state wave fields, and the gradient are computed on
the same unstructured triangular mesh. The FWI was im-
plemented using the Firedrake package (Rathgeber et al.,
2017), which enables us to represent the FEM discretization
at a near-mathematical level, simplifying our computer im-
plementation. To solve the optimization problem, the Rapid
Optimization Library (ROL; Cyr et al., 2017) was used and
called directly from Python using pyROL (Wechsung and
Richardson, 2019).

Five triangular 2D elements and three tetrahedral 3D ele-
ments that were originally detailed in Chin-Joe-Kong et al.
(1999) and Geevers et al. (2018c) (referred to here as ML
elements) that yield diagonal mass matrices (mass lumping)
with special quadrature rules were implemented inside the
Finite Element Automated Tabulator (FIAT, Kirby, 2004).
These elements were used to form a fully explicit time-
marching scheme for wave propagation with a second-order
accurate-in-time scheme. Higher-order ML elements of vari-
ous orders led to similar final results in a synthetic 2D FWI.
As the spatial order increased, we observed a small speedup
to perform a fixed number of FWI iterations and a signifi-
cant reduction in peak memory usage. We also demonstrated
that a 3D forward wave simulation could be scaled up in a
distributed memory sense with close to ideal strong scala-
bility. To provide practical guidance for subsequent appli-
cation in FWI, specific mesh resolution requirements were
investigated to achieve a fixed error threshold of 5.0 % for
2D/3D forward wave propagation simulations using the ML
elements. The usage of higher-order ML elements enabled
us to greatly expand the element size while maintaining our
desired accuracy. In practical experience, the expansion of
the element size can make the removal of degenerate sliver
tetrahedral elements far easier, thus encouraging more nu-
merically stable results with larger potentially numerically
stable time steps. We highlight that in order to successfully
implement FWI with variable-resolution meshes, automated
(scripted) mesh generation tools are critically important (e.g.,
SeismicMesh, Roberts et al., 2021b).

The work presented in this article presents several new
directions for FWI with triangular FEM. In the course of
the FWI process, the physical model incrementally evolves,
and to aid convergence towards the global minimum of the
cost function, a multi-scale reconstruction is often used by
increasing step by step the frequency of the simulated phe-
nomena. In the case of multi-scale FWI, an automated mesh-

ing process in the FWI loop is then crucial to deal with the
variations of the physical parameters and the increase of the
frequency component of the waves simulated. Waveform-
adapted meshes could be used for each frequency of interest
so as to obtain an accurate solution while using the coarsest
mesh possible.

The current package enables developers to implement for-
ward wave solvers that each make different physical as-
sumptions (variable density acoustic, elastic, visco-elastic,
etc.) and discretize them using Firedrake within the current
API. In this extensible environment, automatic differentia-
tion (AD) (e.g., dolfin-adjoint, Mitusch et al., 2019) can be
used to derive the gradient directly from the forward dis-
cretization. We envision future iterations of the package in
which the user can readily control the physics and be able
to solve more complex, multivariate FWIs without having to
focus much effort on repeatedly deriving and implementing
adjoint and gradient operators.

Appendix A: Continuous adjoint derivation

In this section, we include a few steps on the continuous ad-
joint derivation, given in the body of the text in Eqs. (13),
(14), and (15), where, for clarity, the formulation will be
given for one short only. This is done by differentiating the
Lagrangian (Eq. 12) with respect to the forward state, leading
to

T∫
0

∫
�

∂L
∂(u,ω,p)

(δu,δω,δp)=
T∫

0

∫
�

∂J

∂u
δu

+

T∫
0

∫
�

u†

(
∂2δu

∂t2
+ tr91

δ∂u

∂t
+ tr93δu+ det91δω

−∇ · (c2
∇δu)−∇ · δp

)
+

T∫
0

∫
�

p†
·

(
∂δp

∂t
+91δp+92(c

2
∇δu)

−93(c
2
∇δω)

)
+

T∫
0

∫
�

ω†
(
∂δω

∂t
− δu

)
, (A1)

which has to vanish to guarantee the optimality conditions for
every trial function (δu,δω,δp). To do so, we isolate them by
performing successive integration by parts, leading to
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T∫
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+
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(
−c2
∇δu ·nu†

+ (c2
∇u†
·n+n · c292p

†)δu

−u†δp ·n−n · (c293p
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. (A2)

The first three terms of the last equation represent three dif-
ferent integrals on�×(0,T ), which vanish for all trial func-
tions if and only if the residuals R†

u, R†
p, and R†

ω vanish, es-
tablishing the adjoint Eqs. (13), (14), and (15). The last two
terms are related to the initial/final conditions and bound-
ary conditions respectively. Setting them to zero leads to the
boundary conditions for the adjoints discussed in the body of
the text.

Appendix B: Discretization details for the forward-state
and adjoint-state equations

B1 Expressions for the matrices

The expression of the matrices used in the forward discrete
problem is

Mu =Mω =Mxk
p =

∫
�

φi(x)φj (x)dx Mu,1

=

∫
�

tr91φi(x)φj (x)dx+
∫
∂�

c(x)φi(x)φj (x)ds

Mu,3 =

∫
�

tr93φi(x)φj (x)dx Mxk,xl
p,1

=

∫
�

ψi(x)9k,l1 ψj (x)dx

K=
∫
�

c2(x)∇φi(x) · ∇φj (x)dx Dxk =
∫
�

φi(x)
∂φj

∂xk
dx

Du,2 =
∫
�

∑
k,l

ψi(x)9k,l2
∂ψj (x)
∂xl

dx Dω,3

=

∫
�

∑
k,l

ψi(x)9k,l3
∂ψj (x)
∂xl

dx,

where Mxk
p is the diagonal block of matrix Mp corresponding

to each entry on the (two- or three-dimensional) vector P .

Also, the indices k, l represent the lines/rows in the matrices
01,2,3.
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