Articles | Volume 15, issue 21
https://doi.org/10.5194/gmd-15-7977-2022
https://doi.org/10.5194/gmd-15-7977-2022
Model evaluation paper
 | 
07 Nov 2022
Model evaluation paper |  | 07 Nov 2022

Evaluation of the NAQFC driven by the NOAA Global Forecast System (version 16): comparison with the WRF-CMAQ during the summer 2019 FIREX-AQ campaign

Youhua Tang, Patrick C. Campbell, Pius Lee, Rick Saylor, Fanglin Yang, Barry Baker, Daniel Tong, Ariel Stein, Jianping Huang, Ho-Chun Huang, Li Pan, Jeff McQueen, Ivanka Stajner, Jose Tirado-Delgado, Youngsun Jung, Melissa Yang, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Donald Blake, Joshua Schwarz, Jose-Luis Jimenez, James Crawford, Glenn Diskin, Richard Moore, Johnathan Hair, Greg Huey, Andrew Rollins, Jack Dibb, and Xiaoyang Zhang

Data sets

The NOAA-EPA Atmosphere-Chemistry Coupler (NACC) (v1.3.2) Patrick Campbell https://doi.org/10.5281/zenodo.5507489

Model code and software

The Advanced National Air Quality Forecast Capability (NAQFC) (v1.1.0) Patrick Campbell https://doi.org/10.5281/zenodo.5507511

Download
Short summary
This paper compares two meteorological datasets for driving a regional air quality model: a regional meteorological model using WRF (WRF-CMAQ) and direct interpolation from an operational global model (GFS-CMAQ). In the comparison with surface measurements and aircraft data in summer 2019, these two methods show mixed performance depending on the corresponding meteorological settings. Direct interpolation is found to be a viable method to drive air quality models.