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Abstract. The latest operational National Air Quality Fore-
cast Capability (NAQFC) has been advanced to use the
Community Multiscale Air Quality (CMAQ) model (version
5.3.1) with the CB6r3 (Carbon Bond 6 revision 3) AERO7
(version 7 of the aerosol module) chemical mechanism and
is driven by the Finite-Volume Cubed-Sphere (FV3) Global
Forecast System, version 16 (GFSv16). This update has been
accomplished via the development of the meteorological
preprocessor, NOAA-EPA Atmosphere–Chemistry Coupler
(NACC), adapted from the existing Meteorology–Chemistry
Interface Processor (MCIP). Differing from the typically
used Weather Research and Forecasting (WRF) CMAQ sys-
tem in the air quality research community, the interpolation-
based NACC can use various meteorological outputs to drive
the CMAQ model (e.g., FV3-GFSv16), even though they

are on different grids. In this study, we compare and eval-
uate GFSv16-CMAQ and WRFv4.0.3-CMAQ using obser-
vations over the contiguous United States (CONUS) in sum-
mer 2019 that have been verified with surface meteorological
and AIRNow observations. During this period, the Fire In-
fluence on Regional to Global Environments and Air Quality
(FIREX-AQ) field campaign was performed, and we com-
pare the two models with airborne measurements from the
NASA DC-8 aircraft. The GFS-CMAQ and WRF-CMAQ
systems show similar performance overall with some differ-
ences for certain events, species and regions. The GFSv16
meteorology tends to have a stronger diurnal variability in the
planetary boundary layer height (higher during daytime and
lower at night) than WRF over the US Pacific coast, and it
also predicted lower nighttime 10 m winds. In summer 2019,
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the GFS-CMAQ system showed better surface ozone (O3)
than WRF-CMAQ at night over the CONUS domain; how-
ever, the models’ fine particulate matter (PM2.5) predictions
showed mixed verification results: GFS-CMAQ yielded bet-
ter mean biases but poorer correlations over the Pacific coast.
These results indicate that using global GFSv16 meteorol-
ogy with NACC to directly drive CMAQ via interpolation is
feasible and yields reasonable results compared to the com-
monly used WRF approach.

1 Introduction

Traditionally, mesoscale meteorological models such as the
Weather Research and Forecasting (WRF) model (Powers et
al., 2017) are used as the meteorological drivers for air qual-
ity models (AQMs) on the same (“native”) model grid, such
as the Community Multiscale Air Quality (CMAQ) model
(Byun and Schere, 2006). The National Air Quality Fore-
cast Capability (NAQFC) of the NOAA National Weather
Service (NWS) has historically used a different approach
in which the hourly meteorological outputs from prior op-
erational models, such as the North American Mesoscale
(NAM) model, are interpolated to the CMAQ grid to drive
its air quality prediction. Prior to this work, a “PREMAQ”
coupler (Otte et al., 2004) combined both meteorological
processing and Sparse Matrix Operator Kernel Emissions
(SMOKE) (Houyoux et al., 2000) processes, such as point-
source plume rise effects. However, since the release of
CMAQ version 5, the meteorology-dependent plume rise, sea
salt and dust emission processes are included as in-line mod-
ules in CMAQ; thus, the corresponding emission processes
are no longer needed in PREMAQ. Furthermore, PREMAQ
has no built-in interpolator and, thus, relies on external inter-
polators to remap the non-native-grid meteorological inputs,
such as NAM, to the targeted CMAQ domain, although it
does perform vertical layer collapsing/interpolation to reduce
vertical layers for CMAQ. The interpolation approach allows
more flexibility for using different meteorological data (i.e.,
besides just WRF) to drive CMAQ; however, this may cause
mass-consistency issues between models. It should be noted
that mass-consistency issues may also exist using native-grid
couplers (Byun, 1999a, b) and can stem from the original
mass-inconsistent meteorological model outputs or arise due
to the temporal interpolation of the meteorological data. The
well-developed offline AQMs, such as CMAQ, have already
considered such mass-consistency treatments using different
meteorological inputs (Byun and Ching, 1999).

To upgrade the NAQFC system with the latest CMAQ
model and NOAA operational meteorology, we devel-
oped an updated interpolation-based meteorological coupler,
the NOAA-EPA Atmosphere–Chemistry Coupler (NACC)
(Campbell et al., 2022), adapted from version 5 of the US
EPA’s Meteorology–Chemistry Interface Processor (MCIP)

(Otte and Pleim, 2010; https://github.com/USEPA/CMAQ,
last access: 24 October 2022). The NACC system effectively
couples the Global Forecast System version 16 (GFSv16)
(Yang et al., 2020; Harris et al, 2021) with the Finite-Volume
Cubed-Sphere (FV3) dynamical core to CMAQv5.3.1 (here-
after referred to as GFS-CMAQ). Campbell et al. (2022) de-
scribed the development and application of the GFS-CMAQ
system using NACC (referred to as “NACC-CMAQ” in their
work) and provided a comprehensive comparison between
the current (GFS-CMAQ since 20 July 2021) and previ-
ous (NAM-CMAQv5.0.2) operational NAQFC model perfor-
mance.

In this study, we analyze the impacts of the meteoro-
logical model drivers, and we compare GFS-CMAQ using
NACC interpolation to the commonly used native-grid WRF-
CMAQ application and its impact on air quality predictions
in summer 2019. Yu et al. (2012a, 2012b) had previously
compared the CMAQ performance driven by Weather Re-
search and Forecasting (WRF) with two dynamic cores –
the Non-hydrostatic Mesoscale Model (NMM) (Janjic, 2003)
and the Advanced Research WRF (ARW) (Skamarock et al.,
2005) – during the 2006 Texas Air Quality Study/Gulf of
Mexico Atmospheric Composition and Climate Study (Tex-
AQS/GoMACCS) field campaign, and they found that the
NMM-CMAQ and ARW-CMAQ showed overall similar per-
formance with some differences for certain events, chemical
species and regions. Similarly, this study focuses on the com-
parison of GFS-CMAQ with WRF-CMAQ (see Sect. 2) and
verifies the model performance against the aircraft observa-
tions from the Fire Influence on Regional to Global Environ-
ments and Air Quality (FIREX-AQ) field experiment during
summer 2019 (Sect. 4). Surface verification is also performed
using AIRNow data for August 2019 (Sect. 3), serving as a
benchmark for the new NAQFC versus the traditional WRF-
CMAQ used in the air quality modeling community. This
study focuses on the period of summer 2019, and Campbell
et al. (2022) evaluated the GFS-CMAQ for longer periods.

2 Methodology

Here, we compare the two CMAQ (version 5.3.1) runs driven
by the interpolated GFSv16 meteorology (GFS-CMAQ) and
WRF meteorology (WRF-CMAQ). All other settings, such
as emissions and lateral boundary conditions are the same.
The meteorology-related physics is discussed in the follow-
ing sections to address the models’ performance discrepan-
cies. Both the GFS-CMAQ and WRF-CMAQ simulations are
run for a period covering 12 July to 31 August 2019, each us-
ing the last 10 d in July as the model spin-up periods that are
not included in the analyses.
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2.1 GFS meteorological inputs

The GFSv16 is the current operational global forecast sys-
tem in NOAA/NCEP using the FV3 dynamical core. Its de-
tailed configuration can be found in Campbell et al. (2022)
and Yang et al. (2020). Compared with the previous version
(v15), GFSv16 updated many physical schemes (Table 1)
and added the parameterization for sub-grid-scale nonsta-
tionary gravity-wave drag. To use the GFS’s meteorology to
drive CMAQ, a meteorological coupler, NACC, is developed
(Campbell et al., 2022). Differing from the original MCIP,
which was developed to process WRF/ARW meteorology
for CMAQ, the NACC coupler interpolates non-native-grid
meteorology to a user-defined grid and has parallel pro-
cessing capability, which drastically reduces its run time
for operational forecasts (Campbell et al., 2022). Currently,
NACC employs two horizontal interpolation methods: bilin-
ear and nearest neighbor. In this study, we use the nearest-
neighbor method for categorical (discontinuous) variables
that include land use types, vegetation fraction, terrain el-
evation, Monin–Obukhov length, friction velocity and soil
temperatures, whereas the bilinear interpolation is used for
mainly smoothly varying (continuous) meteorological vari-
ables that include wind fields, temperature, pressure and spe-
cific humidity. The CMAQ model is defined in the Arakawa
C-grid (Arakawa and Lamb, 1977); thus, the GFSv16 hori-
zontal wind components (U , V ) need to be interpolated to the
perpendicular cell faces instead of the cell center (Otte and
Pleim, 2010) after rotation to the defined map projection. The
scalar variables are defined in the cell centers of the targeted
grid; thus, their interpolations are more straightforward: from
GFSv16 A-grid to CMAQ A-grid. The NACC coupler can
either use the native layers or interpolate inputs to a set num-
ber of user-defined CMAQ vertical layers. The GFSv16 has
127 vertical layers with global coverage at roughly a 13 km
horizontal resolution, where the targeted CMAQ domain is
in 12 km× 12 km grids over the contiguous United States
(CONUS) with 35 vertical layers (Campbell et al., 2022).
Here, we use 24 h GFSv16 forecasts starting at 12:00 UTC
each day.

Most variables needed by CMAQ are directly interpolated
from the GFSv16 hourly outputs. The NACC processor has
options to calculate diagnostic variables, such as the plane-
tary boundary layer (PBL) height, if they are needed. In this
study, we use the interpolated GFSv16 PBL height instead
of the diagnostic one. It also has an option to import the ex-
ternally provided land surface variables. Here, we import the
updated the 2018–2020 climatological averaged leaf area in-
dex (LAI) and NOAA near-real-time (NRT) greenness veg-
etation fraction (GVF) from satellite-based Visible Infrared
Imaging Radiometer Suite (VIIRS) retrievals (Campbell et
al., 2022). The updated satellite-based LAI and GVF impact
CMAQ’s biogenic emissions and dry-deposition processes,
which were described in detail in Campbell et al. (2022).

2.2 WRF meteorology

For comparison with GFSv16 meteorology processed by
NACC, a corresponding WRF version 4.0.3 (Skamarock et
al., 2021) simulation is run covering the NAQFC’s native
grid, which is a 12 km horizontal resolution with Lambert
conformal map projection over the CONUS. Table 1 shows
the WRF configuration, which is commonly employed in
CONUS meteorological and air quality studies in the com-
munity, versus the current NOAA/NWS operational global
model GFSv16. GFSv16 uses the NOAA/NCEP’s Global
Data Assimilation System (GDAS) (https://www.emc.ncep.
noaa.gov/data_assimilation/data.html, last access: 24 Octo-
ber 2022) for its initial conditions and runs on its own global
dynamics and physics without any other constraints. The re-
gional WRF simulation uses GFSv16 for its initial condi-
tions. In this study, GFSv16 was re-initialized with GDAS
every 24 h, and WRF conducted the continuous run after
its spin-up period. Furthermore, WRF also takes its lateral
boundary conditions from GFSv16 every 6 h. For the WRF
run, we have enabled 4D data assimilation (FDDA) for the
horizontal winds, temperature and humidity (Table 1) every
6 h, thereby nudging towards GFSv16. This nudging method
used in WRF runs can help reduce the difference between
two meteorological models, although its effect may vary
depending on events because WRF and GFS use different
physics.

WRF and GFSv16 have similar settings for the land sur-
face model, surface layer and radiation schemes; however,
their microphysics and PBL schemes are different (Table 1).
Compared with the 35-layer WRF model with a 100 hPa do-
main top, GFSv16 has a much higher domain top (0.2 hPa)
and 127 vertical layers, which are interpolated by NACC to
35σ layers up to 14 km for CMAQ. We use NACC (inherited
from MCIP version 5.0) to process WRF hourly meteorology
while also maintaining the 35-vertical-layer structure. Thus,
in contrast to GFS-CMAQ, the WRF-CMAQ system uses the
native grid without interpolation.

2.3 CMAQ configuration

Here, CMAQ version 5.3.1 (Appel et al., 2021) is used
with the Carbon Bond 6 revision 3 (CB6r3; Yarwood et al.,
2010, 2014; Luecken et al., 2019) chemical mechanism and
AERO7 (version 7 of the aerosol module) treatment of sec-
ondary organic aerosols (CB6r3_AE7_AQ). CMAQv5.3.1
includes a series of scientific updates from the previous ver-
sion (Appel et al., 2021), such as the updated air–surface ex-
change and deposition modules, which showed a significant
impact on ozone (O3) prediction compared with the previous
NAQFC (Campbell et al., 2022). We also include the bidi-
rectional NH3 (BIDI-NH3) exchange model for NH3 surface
fluxes. An updated Biogenic Emissions Landuse Dataset v5
(BELD5) is used in this study to drive the in-line Biogenic
Emissions Inventory System (BEIS) version 3.61. The an-
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Table 1. The two meteorological datasets used in this study.

Model settings FV3-GFSv16/NACC WRF-ARW/MCIP

Domain Global C768L127 (∼ 13 km horizontal resolu-
tion in six cubic spherical tiles with 127 vertical
layers up to 80 km), interpolated to the 12 km
CONUS domain with 35 layers up to about
14 km (60 hPa)

The 12 km CONUS domain with 35 vertical
layers up to 100 hPa

Dynamic core Finite-Volume Cubed-Sphere (FV3), non-
hydrostatic (Putman and Lin, 2007)

WRF-ARW dynamic in hybrid vertical coordi-
nate (Skamarock et al., 2021)

Initial condition FV3-GFSv16 analysis (GDAS) using the local
ensemble Kalman filter (Ott et al., 2004) with
4D incremental analysis update

FV3-GFSv16 analysis (GDAS)

Lateral boundary
condition

n/a FV3-GFSv16 analysis (GDAS)

Cloud microphysics GFDL six-category cloud microphysics scheme
(Lin et al., 1983; Lord et al., 1984; Krueger et
al., 1995; Chen and Lin, 2011, 2013)

Morrison two-moment scheme (Morrison et al.,
2009)

PBL physics scheme Scale-aware (sa) turbulent kinetic energy (TKE)
based moist eddy diffusivity mass flux (EDMF)
scheme (sa-TKE-EDMF) (Han and Bretherton,
2019)

Yonsei University (YSU) scheme (Hong et al.,
2006)

Shallow/deep cumulus
parameterization

Simplified Arakawa–Schubert scheme (Han
and Pan, 2011; Han et al., 2017)

Kain–Fritsch multiscale (Kain, 2004)

Shortwave and longwave
radiation

Rapid Radiative Transfer Model for General
Circulation Models (RRTMG) (Mlawer et al.,
1997; Clough et al., 2005; Iacono et al., 2008)

RRTMG (Iacono et al., 2008).

Land surface model Noah land surface model (Chen and Dudhia
2001; Ek et al., 2003; Tewari et al., 2004)

Noah (Tewari et al., 2004)

Surface layer Monin–Obukhov (Monin and Obukhov, 1954;
Grell et al., 1994; Jimenez et al., 2012)

Jimenez et al. (2012)

Other treatment FDDA nudging is enabled for temperature and
specific humidity over the whole domain as well
as for wind components (U , V ) outside the
PBL.

n/a denotes not applicable.

thropogenic emissions are provided by the National Emis-
sions Inventory Collaborative (NEIC) with base year 2016
version 1 (NEIC, 2019). We replace the US EPA default
CMAQ dust emissions model with an in-line windblown dust
model known as “FENGSHA” (Fu et al., 2014; Huang et al.,
2015; Dong et al., 2016). The FENGSHA dust scheme uses
the sediment supply map and magnitude of the friction ve-
locity (USTAR) compared with a threshold friction velocity
(UTHR) to calculate the potential of dust emission flux. The
UTHR depends on the land cover, soil type (clay fraction)
and soil moisture (Campbell et al., 2022).

We have updated the wildfire emissions system in
CMAQv5.3.1 based on the Blended Global Biomass Burn-

ing Emissions Product (GBBEPx) (Zhang and Kondragunta,
2006; Zhang et al., 2011). The GBBEPx uses satellite-
detected fire radiative power (FRP) to estimate wildfire
smoke emissions for a number of species: CO (carbon
monoxide), NOx (nitrogen oxides), SO2 (sulfur dioxide), el-
emental carbon, primarily emitted organic aerosols and fine
particulate matter (PM2.5). We derive the wildfire volatile or-
ganic compound (VOC) emissions from GBBEPx CO emis-
sions based on the emission ratios of Fire INventory from
NCAR (FINN) data (Wiedinmyer et al., 2011), and the split-
ting factors from the SMOKE model (Baker et al., 2016) are
used to further split the total fire VOC emissions to speci-
ated hydrocarbon emissions. The satellite FRP is estimated
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from the satellite brightness temperature anomaly, and the
GBBEPx processor assumes that the wildfire emissions are
proportional to the FRP over certain land use types in certain
regions. The GBBEPx emissions are based on polar orbit-
ing satellites: MODIS (Aqua and Terra satellites) and VIIRS
(Suomi NPP and NOAA-20 satellites) instruments, which
are updated once per day. A wildfire emission preprocessor
converts the GBBEPx emissions to CMAQ-ready input files
using emission speciation and diurnal profiles (high during
daytime and low at night), which are adopted from US EPA-
based profiles (Baker et al., 2016), and a daily scaling fac-
tor. Here, we classify the wildfire into either a long-lasting
fire (longer than 24 h) or a short-term fire (shorter than 24 h)
based on land use types and regions. As historic statistics
show that most fires (> 95 %) in the region east of 110◦W
last less than 24 h, only fires west of 110◦W that have a
model grid cell total forest fraction > 0.4 are assumed to be
long-lasting fires. All other short-term GBBEPx fires are as-
sumed to have smoke emissions for 24 h (i.e., day 1 only).
Burning area could be highly uncertain, as GBBEPx data do
not include this information. One grid cell could have multi-
ple fires, and some big fires could appear in several grids.
Here, we carry the previous NAQFC’s method and apply
a constant ratio, 10 % of the grid cell, as the burning area
(Pan et al., 2020), according to Rolph et al. (2009). CMAQ
treats wildfire emissions as point sources that undergo in-
line plume rise to distribute the smoke vertically. The default
CMAQ plume rise used here is based on Briggs (1965) and
is driven by fire heat flux (converted from FRP with a ra-
tio of 1) and fixed burning area (assumed to be 10 % of the
0.1◦× 0.1◦ grid cell).

3 Model evaluations over the US for August 2019

In this section, in order to first gain a general picture
and compare the overall GFS-CMAQ and WRF-CMAQ
model performance, we evaluate the near-surface meteo-
rological and air quality predictions during the FIREX-
AQ August 2019 period against NOAA’s METeorological
Aerodrome Report (METAR; https://madis.ncep.noaa.gov/
madis_metar.shtml, last access: 24 October 2022) and the
US EPA’s AIRNow (https://www.airnow.gov, last access: 24
October 2022) observation networks. All of the comparisons
of meteorological variables are for those actually used in
CMAQ. For GFS-CMAQ, it refers to the interpolated GFS
data. Campbell et al. (2022) included the detailed compar-
isons before and after interpolation, showing that the inter-
polated meteorology was very consistent with the original
meteorology. In this study, the model results are spatiotempo-
rally interpolated to the corresponding observation locations
for comparison.

3.1 Domain-wide meteorology against the METAR
network

Figure 1 shows the mean bias (MB) of interpolated GFS-
and WRF-predicted surface meteorological variables com-
pared to METAR data during August 2019. Both meteoro-
logical models have a cool bias over the western and north-
eastern US and a warm bias over the western Rocky Moun-
tains region and southeastern US (Fig. 1a, b). Similar temper-
ature predictions are expected because WRF uses the FDDA
method, nudging toward GFS data. However, GFS tends to
be cooler than WRF over the Rocky Mountains and in the
central and northeastern USA due to their different dynamics
and physics. The GFSv16 cold bias in the lower troposphere
is impacted by excessive evaporative cooling from rainfall
(personal communication with NOAA/NCEP, 2021). Camp-
bell et al. (2022) provides detailed discussions about GFSv16
biases.

Both the GFSv16 and WRF models have similar and rather
significant dry biases for specific humidity (SH) predictions
across the CONUS domain (Fig. 1c, d). Qian et al. (2020) in-
vestigated this common dry bias in many models and found
that neglecting an irrigation contribution could cause this dry
bias. Besides this issue, WRF’s dry bias could also be af-
fected by its nudging toward GFS, as GFS has widespread
dry biases (Campbell et al., 2022). Their biases also have
some noticeable differences over certain regions. For in-
stance, WRF has less dry bias over southern Texas than GFS.

Both models underestimate the mean 10 m wind speeds
compared with METAR stations over the western US: WRF
has stronger underpredictions over the Rocky Mountains
and overpredictions over northeastern US, whereas GFS has
stronger underpredictions over the Appalachian Mountains
and overpredictions over Texas and Oklahoma. GFSv16’s
operational verification (https://www.emc.ncep.noaa.gov/
gmb/emc.glopara/vsdb/v16rt2/g2o/g2o_00Z/index.html, last
access: 24 October 2022) also shows that it tends to under-
predict the 10 m wind speed over the western US during both
daytime and nighttime, but it shows overpredictions over the
eastern US. Besides the difference in physical schemes (Ta-
ble 1), for example, other possible reasons causing this sur-
face wind difference could be effect of gravity-wave drag
(GFSv16 includes it, but the WRF run here does not) and
vertical resolutions (GFS’s 127 layers versus WRF’s 35 lay-
ers, although they have similar vertical layers below 1 km)
(Campbell et al., 2022). Some studies (Skamarock et al.,
2019) have revealed the necessity for a fine vertical resolu-
tion for atmospheric simulations, especially within the PBL,
near the tropospheric top and during convective events. In-
sufficient vertical resolution could also cause plume dilution
in chemical transport modeling (Zhuang et al., 2018). The
gravity-wave drag is also known to influence the synoptic-
scale dynamics of the atmospheric flow over irregularities at
the Earth’s surface, such as mountains and valleys, and the
uneven distribution of diabatic heat sources associated with
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Figure 1. GFS and WRF surface meteorological biases for METAR (METeorological Aerodrome Report) stations averaged over Au-
gust 2019.

convective systems (Kim et al., 2003). Its parameterization is
needed for large-scale models.

There are strong regional variabilities in the monthly mean
PBL height differences between GFS and WRF during nor-
mal daytime (represented by 18:00 UTC) and nighttime (rep-
resented by 06:00 UTC) (Fig. 2). During daytime, GFS has
a higher PBL height compared with WRF over the US Pa-
cific coast, northern Rocky Mountains, and northeastern and
southeastern US, but it becomes lower over the central US
(e.g., Texas, Oklahoma and Kansas). At night, however, most
of these regional differences between GFS and WRF are re-
versed. This diurnal difference is mainly driven by the dif-
ferent PBL schemes employed in GFS (Han and Bretherton,

2019) and WRF (i.e., YSU) and the associated other physi-
cal suites, including the land surface data. Hence, this PBL
difference has strong regional variations depending on geo-
graphic differences. The GFS’s PBL height has a strong di-
urnal variation over these regions, including the western and
northeastern US, and it shows a sharp rise and collapse af-
ter sunrise and sunset, respectively (Campbell et al., 2022).
These two selected times (18:00 and 06:00 UTC) are not in
the transition periods for fast diurnal changes in the PBL.

Geosci. Model Dev., 15, 7977–7999, 2022 https://doi.org/10.5194/gmd-15-7977-2022
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Figure 2. Monthly mean PBL height difference (GFS−WRF) for
daytime (a) and nighttime (b) in August 2019.

3.2 Evaluation of regional meteorology and air quality
against the AIRNow Network

The US EPA AIRNow network provides hourly observa-
tions of near-surface O3, PM2.5 and meteorology. Campbell
et al. (2022) showed detailed verification of GFS-CMAQ
with the surface AIRNow data. Here, we focus on the dif-
ference between the interpolation-based GFSv16 and WRF
downscaling as well as the impacts on meteorological and
chemical model performance. Figure 3 shows a comparison
of these two models over two specific regions, the western
US (CA, OR and WA) and the northeastern states (CT, DE,
MA, MD, ME, NH, NJ, NY, PA, RI, VT and the District of
Columbia) (Fig. S1 in the Supplement), where the two mod-
els have relatively large differences for some meteorological
variables. GFS and WRF predict very similar 2 m temper-
atures over the Pacific coast states: WA, OR and CA, and
both of them had a similar cool bias (around 1 K), R value
and RMSE (Fig. 3a). However, these two models show sig-
nificant differences with respect to the 10 m wind speed pre-
diction over the Pacific coast (Fig. 3c), where WRF over-
predicts the wind speed, especially at night and in later Au-
gust. Most AIRNow stations are located near urban or subur-
ban areas, which generally have a weaker 10 m wind speed

than those at the METAR aviation weather stations near air-
ports. For this reason, although Fig. 1e and f show that GFS
and WRF underpredict the monthly mean wind speed over
the METAR stations in the west, they still tend to overpre-
dict wind (Fig. 3c) over AIRNow stations, especially for the
WRF 10 m wind speed at night. Considering that the model
grid cells represent 12× 12 km2 averages, the true model–
observation comparisons likely fall somewhere between the
urban/suburban AIRNow stations and METAR stations, de-
pending on the land use fractions of each grid. Obviously
the representation characteristics of observations could af-
fect the verification results. Compared with AIRNow obser-
vations, GFSv16 has overall better scores for surface wind
speed predictions over the western US, where the WRF’s
higher surface wind speed overprediction is associated with
its PBL height predictions (Fig. 3e, f). During the night-
time, GFS has a lower PBL height (10 %–50 % lower than
WRF) and weaker vertical mixing, which tends to bring less
momentum flux from the upper layers to the surface, lead-
ing to lower nighttime wind and better agreements with the
AIRNow wind speed observation.

Over the northeastern US, the mean bias (MB) of GFS
temperature is about −1 K, whereas the WRF model has a
slightly warm MB of about 1.53 K (Fig. 3b). However, the
GFS’s temperature prediction has a better correlation coeffi-
cient (R) and RMSE, implying that it better captures some
events, such as the storm on 28–29 August. Both models
overpredict 10 m wind speeds in the northeast, but the GFS
model yields better results due to a slightly lower PBL height
at night (Fig. 3f) compared with WRF, which had significant
overpredictions, especially during 25–29 August (Fig. 3d)
when tropical storm Erin approached this region. Especially
on 28 August, when the storm was centered near the east
coast of North Carolina, WRF significantly underpredicted
the 2 m temperature (Fig. 3b) and overpredicted the 10 m
wind speed (Fig. 3d). In the west around the same period,
tropical storm Ivo appeared southwest of the Baja Califor-
nia Peninsula, bringing heavy rainfall to Mexico. Associated
with this storm, a low-pressure system expanded over most of
the western US. Differing from GFSv16, which is designed
for the operational meteorological forecast, the WRF config-
uration used in this study is normal for driving CMAQ, but it
is not tuned for storm weather prediction.

Figure 4a and b show the O3 predictions of the two mod-
els over these two regions, and GFS-CMAQ yields predomi-
nantly lower O3 than WRF-CMAQ, especially at night. Over
the west, the lower O3 in GFS-CMAQ is associated with their
PBL height difference. First, with a certain dry-deposition
velocity between the models, it is easier to deplete O3 given
the smaller volume of a shallower PBL. Second, the shal-
lower PBL results in higher surface NOx concentrations (not
shown) and O3 titration rates near NOx source regions, con-
sequently resulting in lower O3 in these areas at night. Last,
the lower PBL could decouple from the residual layer and
result in weaker or no vertical O3 exchange with the resid-
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Figure 3. The WRF and GFS time series comparison for AIRNow stations over the western and northeastern US for 2 m temperature (a, b),
10 m wind speed (c, d) and PBL height (e, f).

ual layer at night (Caputi et al., 2019). All of these factors
contribute to the lower nighttime O3 of GFS-CMAQ com-
pared with WRF-CMAQ. As GFS-CMAQ already underpre-
dicts O3 due to combined meteorological factors, such as
the temperature underprediction (Fig. 4a), the GFS-CMAQ’s
further O3 reduction (possibly due to its lower PBL height
at night) exacerbates its low bias. However, over the north-
eastern US, the similar impacts help the GFS-CMAQ yield a
much better MB due to its better agreement with the observed
nighttime low O3 over this region. Over the entire CONUS
domain, the situation is similar, and the GFS-CMAQ has
a lower ozone MB (1.1 ppb) compared with WRF-CMAQ
(4.7 ppb). Figure 5 shows that both models have similar day-
time O3 prediction over the CONUS. However, GFS-CMAQ
better captures low nighttime O3 over the eastern US than
WRF-CMAQ (Fig. 5c, d).

GFS-CMAQ has substantially higher PM2.5 mean con-
centrations over the western US but lower mean concentra-
tions over the northeastern US compared with WRF-CMAQ
(Fig. 4c, d). These model differences are also related to their
interpolated GFSv16 versus downscaled WRF meteorolog-

ical drivers. Because both models use the same emissions
under relatively clean background conditions in the west
(i.e., prevailing westerly flow from the Pacific Ocean), the
PBL and wind speed differences have significant impacts
on their near-surface pollutant concentrations, especially at
night. Both models show strong PM2.5 diurnal variations
(high at night and low during daytime), driven by the meteo-
rological diurnal variation (e.g., PBL), which overcomes the
emission diurnal variation (usually high during daytime and
low at night). Compared with WRF-CMAQ, GFS-CMAQ
has a lower nighttime PBL height and a weaker wind speed
at night, which lead to weaker vertical mixing and venting,
increasing the pollutant concentrations near the surface and
yielding higher surface PM2.5 over the western US (Fig. 4c).
Its higher surface PM2.5 could also result in stronger lo-
cal dry deposition. In contrast to the local vertical mix-
ing and venting effects on PM2.5 discussed above, there are
strong (and potentially counterbalancing) impacts of model
PBL and horizontal wind speed differences on downstream
PM2.5 concentrations at night. WRF-CMAQ’s deeper PBL
and stronger wind speeds at night (Fig. 3c, d, e, f) tend
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Figure 4. Same as Fig. 3 but for O3 (a, b) and PM2.5 (c, d).

to transport aerosols and their precursors more efficiently
downstream via the dominant advection pathway. Figure 6
shows that these monthly mean background PM2.5 differ-
ences appear east of the Rocky Mountains (WRF-CMAQ
is about 2 µg m−3 higher) during both daytime and night-
time. This effect is very prominent in the northeastern re-
gion. Although both models predicted a similar PM2.5 mag-
nitude over the northeastern US, GFS-CMAQ yields an over-
all PM2.5 underprediction, and its monthly mean PM2.5 is
2.6 µg m−3 lower than the WRF-CMAQ prediction (Fig. 4d).
Especially during the 1–9 August period, WRF-CMAQ had
about a 4 µg m−3 higher surface PM2.5 background than that
of GFS-CMAQ. In this case, the WRF-CMAQ model shows
better agreement with observations (Fig. 4d). It is possible
that the GFS-CMAQ’s nighttime PBL heights (wind speeds)
are too shallow (weak) in this case, which does not allow
enough transport of pollutants downstream (to the eastern
USA). Overall, GFS-CMAQ and WRF-CMAQ show mixed
performance with respect to PM2.5 predictions during the
August 2019 period: GFS-CMAQ has better PM2.5 predic-
tion over the western US, and WRF-CMAQ yields better re-
sults over the region east of the Rocky Mountains (Fig. 6).

4 Model comparisons against the FIREX-AQ aircraft
data

From late July to early September 2019, the joint NOAA–
NASA FIREX-AQ field campaign (https://csl.noaa.gov/
projects/firex-aq/, last access: 24 October 2022) employed
a suite of satellites, aircraft, vehicles and ground site plat-
forms aimed at observing, analyzing and characterizing air

pollutants emitted from wildfire sources over the CONUS
(Ye et al., 2021). The FIREX-AQ airborne measurements
provide a 3D dataset from various meteorological, gas and
aerosol instruments that can be used to verify the GFS-
CMAQ and WRF-CMAQ model performance while also elu-
cidating reasons for any model differences. Here, the fo-
cus of the FIREX-AQ model comparison and verification is
against observations taken primarily from the NASA DC-
8 aircraft, which include meteorological variables, gaseous
and aerosol concentrations, and aerosol optical properties
merged at a 1 min temporal resolution. The model data are
spatiotemporally interpolated to the flight paths for com-
parison. The majority of the FIREX-AQ flights were over
the western US, and they sampled within environments
that both were and were not (see Sect. 4.1) influenced by
wildfire emissions (https://daac.ornl.gov/MASTER/guides/
MASTER_FIREX_AQ_JulySept_2019.html, last access: 24
October 2022). During a cluster of major wildfire events
(see Sect. 4.2), the DC-8 sampled both near-source and
aged smoke plumes between 2 and 8 August 2019 (i.e., the
Williams Flats, Snow Creek and Horsefly fires) across the
states of ID, WA and MT.

4.1 Comparison of the 22 July non-wildfire event over
the central California Valley

On 22 July, the DC-8 aircraft flew from California to Boise,
ID, while maintaining a relatively low altitude (< 1 km a.s.l.,
above sea level) over the California Central Valley (Fig. 7).
This flight was not impacted by any major wildfire event and
was mainly controlled by anthropogenic emissions and local
meteorological conditions. Figure 7 shows that the GFSv16
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Figure 5. Monthly mean surface O3 predictions by GFS-CMAQ (a, c) and WRF-CMAQ (b, d) for daytime (a, b) and nighttime (c, d)
compared with the corresponding AIRNow observations for August 2019.

and WRF models had similar meteorological temperature
and humidity predictions and that both models have dry
and warm biases over the Central Valley at lower altitudes
(Fig. 7d, e) (Qian et al., 2022). GFS’s horizontal wind speeds
tend to have a stronger variability than WRF (Fig. 7b), es-
pecially in high altitudes. With respect to wind direction,
WRF shows a better prediction than GFS around 20:00 and
24:00 UTC (Fig. 7c).

Both GFS-CMAQ and WRF-CMAQ underestimate the
vertical wind (W ) variability by at least 1 order of magni-
tude, and WRF-CMAQ has weaker W variability than that
of GFS-CMAQ, especially at high altitudes (Fig. 7f). The
model vertical velocities are not directly from the GFS nor
the WRF model; rather, they are re-diagnosed in CMAQ to
conserve mass (Otte and Pleim, 2010) and, thus, represent the
whole layer’s vertical movement across the 12 km× 12 km
grid cell. With its flight speed of around 80 to 240 m s−1, the
DC-8 aircraft’s 1 min average sampling frequency results in
an approximate 4.8 to 14 km horizontal scale, respectively,
which is comparable with the 12 km CMAQ model resolu-
tion. The aircraft observations, however, include turbulence

effects during its 1 min averages, which may not be tempo-
rally resolved by the models at this resolution. Thus, both the
GFS-CMAQ and WRF-CMAQ vertical velocities are much
lower and have almost no correlation with the aircraft obser-
vations.

Although both GFS-CMAQ and WRF-CMAQ have rea-
sonable comparisons for most meteorological variables, in-
cluding the horizontal winds, it continues to be a challenge
to compare them with the observed vertical velocities. Thus
to further elucidate the model–observation differences in ver-
tical motion, Fig. 8 shows a curtain plot of vertical velocities
along the flight path from the two models. As WRF-CMAQ
remains on a native grid, its wind fields tend to be more bal-
anced and have lower variability compared with the GFS-
CMAQ wind fields. The stronger variability in W for GFS-
CMAQ could be caused by GFS’s non-hydrostatic dynamics
or CMAQ’s effort to counteract mass-inconsistency effects
from the interpolated horizontal wind fields (Byun, 1999b).
Our comparison shows that the first factor should be the ma-
jor one (Fig. S2) for this event, as the GFS-CMAQ-diagnosed
W is very similar to that from the original GFSv16 around
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Figure 6. Same as Fig. 5 but for surface PM2.5.

1 km a.g.l. (above ground level). As the original GFSv16 also
has similar stronger vertical velocities compared with the
original WRF, the W difference between GFS-CMAQ and
WRF-CMAQ is unlikely to be due to interpolation error in
the horizontal winds.

GFS-CMAQ and WRF-CMAQ yield similar results over-
all for specific chemical species during this DC-8 flight
(Fig. 9). Both models underestimate CO, O3 and ethane
(C2H6) concentrations over the lower altitudes in the Califor-
nia Central Valley. Over the same flight segment, they have
better NOx (NO + NO2) and ethene (C2H4) predictions, im-
plying that the emissions of these two species have better
accuracy than those of CO and C2H6. Figure 9f shows that
the two models also underestimate NOz (NOy–NOx), or the
oxidized nitrogen species besides NOx , indicating that pho-
tochemical O3 production may also be underestimated. NOz
is a good indicator of the O3 photochemical formation (Sill-
man et al., 1997), where the O3/NOz ratio represents the O3
photochemical efficiency per NOx oxidation product. Thus,
NOz and O3 are typically highly correlated over regions with
active photochemical production. Our later analysis shows
that the models tend to underestimate certain hydrocarbons,
such as C2H6, which is likely linked to O3 and NOz underes-

timations, as the hydrocarbons are photochemical precursors
of O3 and NOz.

The two models show slight differences in peak values of
CO, C2H4 and NOx around 23:30 UTC: the GFS-CMAQ-
predicted concentrations are slightly higher and closer to
observations (Fig. 9). These differences are due to their
PBL predictions (both from the corresponding meteorolog-
ical model outputs): GFS-CMAQ has a lower PBL height
and weaker emission vertical dilution compared with WRF-
CMAQ (Fig. 8). However, GFS-CMAQ tends to underpre-
dict O3 more (Fig. 9b) due to its higher NOx titration. This
implies that the effects of the transport and nonlocal transfor-
mation of O3 could be stronger than that of local precursor
emissions. WRF-CMAQ has higher NOz (Fig. 9f) but lower
NOx compared with GFS-CMAQ due to the time lag of O3
and NOz photochemical formation. Consequently, the peak
O3 values may not be well correlated with the emitted pre-
cursors, such as NOx and VOCs. Furthermore, the modeled
peak C2H6 and C2H4 concentrations do not occur at the same
time around 23:30 UTC, whereas observations indicate that
these two species should be highly correlated in this region.
This model mismatch implies that the VOC speciation fac-
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Figure 7. Modeled meteorological variables compared with observations for the DC-8 flight on 22 July 2019 (b–f). Panel (a) shows the flight
path color-coded by altitude above sea level with the UTC time given in red text. Base map credits: © OpenStreetMap contributors 2022.
Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

tors for a certain area or emission sector need to be improved
over Southern California.

4.2 Comparison of the 6 August wildfire events over
the northwestern US

On 6 August, the DC-8 observed a cluster of three wildfires:
the Williams Flats fire (47.98◦ N, 118.624◦W; 80 km to the
northwest of Spokane, WA), the Snow Creek fire (47.703◦ N,
113.4◦W; 32 km northeast of Condon, MT) and the Horse-

fly fire (46.963◦ N, 112.441◦W; 24 km east of Lincoln, MT).
Figure 10a shows the flight path on that date: the DC-8 air-
craft departed from Boise, ID; flew over the Williams Flats
fire region; flew to Montana to sample the Snow Creek and
Horsefly fires (i.e., Montana fires); and finally returned to
the Boise base. The aircraft flew below 8 km for most flight
segments near the fire plumes. Figure S3 shows the corre-
sponding GOES-16 satellite true-color image, where these
6 August fires and the associated smoke plumes are visible
and can be distinguished from the cloud bands to the south

Geosci. Model Dev., 15, 7977–7999, 2022 https://doi.org/10.5194/gmd-15-7977-2022



Y. Tang et al.: NAQFC comparison with WRF-CMAQ during Summer 2019 FIREX-AQ 7989

Figure 8. Curtain plots of the vertical velocity (W ) predicted by
GFS-CMAQ (a) and WRF-CMAQ (b) along the DC-8 flight on
22 July 2019. The colored dots show the DC-8-measured vertical
velocities, and the solid lines show the predicted PBL heights of
these two models.

that move northward later that day (Fig. S3). The Williams
Flats fire was ignited by lightning and was the largest fire
event sampled during the FIREX-AQ campaign, burning
from about 2–8 August 2019.

Both models significantly underpredicted CO (Fig. 10c),
submicron (aerosol diameter < 1 µm) organic aerosol (OA)
(Fig. 10e) and the aerosol optical extinction coefficient
(AOE) (Fig. 10f), suggesting an issue with the GBBEPx
gas and aerosol emissions. The models performed well
for NO2 during the Williams Flats and Montana fires be-
low 6 km a.s.l., but there were prominent underestimations
for the high-altitude flight segments (Fig. 10d). However,
as the NO2 instrument (the NOAA NOyO3 four-channel
chemiluminescence instrument) had an NO2 detection limit
of around 0.01 ppb (https://airbornescience.nasa.gov/sites/
default/files/documents/NOAANOyO3_SEAC4RS.pdf, last
access: 24 October 2022), the models might not truly under-
estimate NO2 for these flight segments with extremely low
NO2. WRF-CMAQ predicted higher O3 values than the GFS-
CMAQ, which generally agreed better with observations for

the Williams Flats fire (Fig. 10b). However, for the Montana
fires (∼ 23:00–24:00 UTC), WRF-CMAQ has higher O3 bi-
ases, and GFS-CMAQ yields better results. The difference in
O3 is largely driven by the regional background concentra-
tion difference between the two models: WRF-CMAQ tends
to have higher domain-wide O3 concentrations than GFS-
CMAQ due to the meteorological effects discussed in Sect. 3,
even though they used the same lateral boundary conditions.

Figure S4 shows the spatial overlay comparison of ver-
tically averaged GFS-CMAQ predictions at 21:00 UTC and
the DC-8 flight observations for the altitude of 1–3 km a.g.l.
on 6 August 2019. The peak NO2 observation around 48◦ N,
118.5◦W indicates the general location of the Williams Flats
fire. The GBBEPx emissions and GFS-CMAQ prediction
showed shifted peak-value locations driven by the westerly
modeled winds. For this flight, the GBBEPx had stronger
NOx fire emissions over two Montana locations than that
over Williams Flats. The model overpredicts the column-
averaged NO2 concentrations, especially over the Montana
fires, which can not be reflected by the point-by-point NO2
comparison result in Fig. 10d. For this flight, the mean
GFS-CMAQ NO2 along the flight path for 1–3 km a.g.l. is
about 0.125 ppbv compared with the observed mean NO2 of
0.169 ppbv, and the model indeed showed an NO2 underpre-
diction along the flight path. However, in this case, the flight
path did not encounter the locations with modeled peak NO2
values, as the model misplaced the plumes, especially over
the Montana fires, leading to this inconsistency. With respect
to the O3 comparison (Fig. S4b), this inconsistency could
also exist, although it may not be as significant as the in-
consistency for the high-gradient NO2 concentrations. In the
GFS-CMAQ prediction, the high O3 concentrations are al-
most co-located with high NO2 concentrations (Fig. S4b),
but the observations did not show this feature. Instead, some
high-O3 flight segments had relatively low NO2 concentra-
tions, such as those circled in the black rectangle in Fig. S4b.
The observed NOx titration was not able to be produced by
the 12 km models. Wang et al. (2021) used a 100 m hori-
zontal resolution large-eddy simulation and demonstrated the
capability of using such techniques to capture some high-
resolution features of fire plumes and the associated chemi-
cal behavior. While such high-resolution techniques are not
currently feasible for the operational NAQFC, they demon-
strate the limitation of using regional-scale (12 km× 12 km)
models to capture such fine-scale features of the fire plume.

GFS-CMAQ has higher wildfire-related CO, NO2, OA
and AOE values that are closer to observations than WRF-
CMAQ for the Montana fires between 23:00 and 24:00 UTC
at flight altitudes of ∼ 4–5 km (Fig. 10c, d, e, f). As these
two models use the same GBBEPx emissions and wildfire
plume rise algorithm (Briggs, 1965), the differences should
be due to other reasons. To help explain these model differ-
ences, Fig. 11a and b show the aerosol backscatter coeffi-
cients (ABCs) retrieved by the differential absorption high-
spectral-resolution lidar (DIAL-HSRL) aboard the DC-8 air-
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Figure 9. Model-predicted chemical concentrations compared with observations along with the DC-8 flight on 22 July 2019.

craft without and with cloud screening, respectively. It shows
that the major fire plumes of the William Flats fire were
below 4 km (∼ 19:00–22:00 UTC), but the Montana fires
(∼ 23:00–24:00 UTC) extended from the surface up to 6 km,
with some detached plumes reaching 10 km. The model-
predicted AOEs have an overall similar pattern, with major
plumes below 4 km for the Williams Flats fire (Fig. 11c, d).
Over the Montana fires, the GFS-CMAQ predicts a slightly
higher PBL height, thereby allowing the fire plume to reach
a higher height near the DC-8 cruising altitude. In contrast,
the WRF-CMAQ wildfire plumes are slightly lower than the
aircraft flight path around 23:00–24:00 UTC, which leads to
underpredictions of the fire-emitted species (Fig. 11d).

An interesting feature in the DIAL observations is the de-
tached plume from 8 to 10 km altitude (Fig. 11a): some cirrus
clouds existed in this region, and the DIAL retrieval could not
distinguish whether they were pure clouds or clouds mixed
with elevated aerosols above 8 km. The cloud-screened im-
age (Fig. 11b) mainly showed the enhanced aerosols be-
low 7 km and some scattered signals near the high cloud
edges. Cloud mixing with aerosols was usual for fire-induced

clouds, or pyrocumulonimbus (Peterson et al., 2021). Al-
though, in this event, the middle-sized fires did not show
evidence of inducing high-altitude clouds, the indicators of
mixed clouds and aerosols at high altitudes still existed: both
OA measured in situ (Fig. 10e) and the AOE (Figs. 10f; 11c,
d) showed the enhanced aerosols around 01:00 UTC of the
next day above 8 km. This elevated plume was generally cap-
tured by the GFS-CMAQ simulation, although its strength
was underestimated (Fig. 11c); however, this feature was
completely missed in WRF-CMAQ (Fig. 11d). Considering
the altitude range of the detached plume, the major model
disparities are likely due to model convection differences
in the free troposphere. To further investigate this impact,
Fig. 11e and f show curtain plots of relative humidity (RH)
predicted by the two models. GFS-CMAQ yields higher
RH at such altitudes (10 km) compared with WRF-CMAQ
around 23:00–24:00 UTC, indicating that GFS-CMAQ has a
stronger convection. The CMAQ model uses input meteorol-
ogy to diagnose convection activity and drive its Asymmet-
ric Convective Model, version 2 (ACM2) convection scheme.
This convective activity is apparent in GOES-16 satellite im-
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Figure 10. The DC-8 flight path (a) as well as model–observation comparisons for O3 (b), CO (c), NO2 (d), submicron organic aerosol
(OA) (e) and the aerosol optical extinction coefficient (AOE) at a wavelength of 550 nm (f) on 6 August 2019. Base map credits: © Open-
StreetMap contributors 2022. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

ages (Fig. S3), as more fractional clouds appeared ahead of
the northward-moving frontal band. Both the GFSv16 and
WRF models used here do not consider the fire heat feedback
effect; thus, their predicted convection and clouds are only
driven by the synoptic weather conditions. If such synoptic-
to-mesoscale weather models consider wildfire heat feed-
back effects, their predictions may result in stronger convec-
tion and help correct their underpredictions of PBL heights.

4.3 Statistical results of model performance for
FIREX-AQ

4.3.1 Meteorological statistics

During the FIREX-AQ field campaign, the DC-8 aircraft per-
formed more than 20 flights over the CONUS with detailed

observations of various chemical compounds. Tables 2 and
3 show the statistical results of the mean bias (MB), nor-
malized mean bias (NMB), root-mean-square error (RMSE),
correlation coefficient (R) and linear regression/slopes for
the two models’ performance over the western US (west of
110◦W) only at low altitudes (< 3 km a.s.l.) for both non-
fire and fire flight segments. The FIREX-AQ aircraft data in-
cluded the smoke flag to mark the sampling times associated
with fire plumes, identified by CO and aerosol enhancement
over background levels in downwind areas of specific fires.
This smoke flag is used to distinguish the flight segments
with and without fire influences. Most of these flights de-
parted from Boise, ID, except for the 22 July flight that flew
from California to Idaho. As a result, they mainly flew over
Idaho and its surrounding regions. The GFS tends to have
a slightly higher wind speed with a positive MB, whereas
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Figure 11. The differential absorption high-spectral-resolution lidar (DIAL-HSRL) retrieved aerosol backscatter coefficients (ABCs) at a
532 nm wavelength in steradians per kilometer (a), the cloud-screened ABCs (b), curtain plots of the AOEs (b, c), and relative humidity
(RH) predicted by (d) GFS-CMAQ and (e) WRF-CMAQ along the DC-8 flight on 6 August 2019. The colored dots show the corresponding
measured values, and the solid lines show the predicted PBL heights of these two models.

WRF has a small negative wind speed bias. Most of the DC-
8 flights are during the daytime, and the GFS has a higher
daytime wind speed than WRF at low altitudes. The GFS and
WRF have very similar temperature predictions. For the RH,
the GFS predictions are slightly dryer than those of WRF,
especially for non-fire events. The meteorological models do
not consider wildfire heat effects and, thus, may have (in part)
led to slightly warm MBs for the non-fire events (Table 2)
and slightly cool MBs for the fire events (Table 3). Because
both the GFSv16 and WRF models have similar MB shifts
from an average temperature overprediction (Table 2; non-
fire events) to an underprediction (Table 3; wildfire events),

we can estimate that the fire effects cause roughly a 1–2 K
temperature enhancement to the background along the DC-
8 flight paths below 3 km. This estimate assumes that the
model temperature biases are generally representative of the
western US (west of 110◦W) and are independent of the av-
eraged flight segments that have different locations and pe-
riods in Tables 2 and 3. Correspondingly, the air masses are
dryer in the sampled wildfire plumes, as shown by the large
reduction in the RH underpredictions (i.e., negative MBs)
from Tables 2 to 3.
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Table 2. Statistics of the two models compared to the observations for DC-8 flight segments without fire influences below 3 km a.s.l. over the
region west of −100◦W. All aerosols have a diameter of less than 1 µm. The normalized mean bias (NMB) is given as a percentage.

Variables Obs mean GFS-CMAQ WRF-CMAQ

MB NMB RMSE R Slope MB NMB RMSE R Slope

Temperature (K) 295 0.979 0.332 2.04 0.988 1.13 1.16 0.393 2.28 0.989 1.17
RH (%) 35.6 −7.3 −20.5 11.8 0.781 0.717 −6.05 −17 12.6 0.677 0.598
Wind speed (m s−1) 4.81 0.758 15.8 3.25 0.432 0.473 −1.11 −23.1 2.4 0.666 0.524
O3 (ppbv) 57.9 −10.7 −18.5 15 0.651 0.34 −10.4 −17.9 14.1 0.717 0.413
CO (ppbv) 134 −37.6 −28 53.2 0.654 0.573 −37.1 −27.7 52.9 0.652 0.572
NOx (ppbv) 1.11 0.507 45.6 2.9 0.704 1.15 0.345 31.1 2.86 0.695 1.12
NOy (ppbv) 2.56 −0.0418 −1.63 3.07 0.743 0.892 0.055 2.15 3.14 0.724 0.86
NOz (ppbv) 1.63 −0.465 −28.6 1.17 0.782 0.553 −0.125 −7.66 1.08 0.788 0.721
HONO (ppbv) 0.00432 0.012 279 0.0438 0.379 0.444 0.0134 311 0.0487 0.358 0.48
HNO3 (ppbv) 0.291 0.154 53.1 0.421 0.683 1.34 0.337 116 0.65 0.708 1.89
PAN (ppbv) 0.399 −0.251 −63 0.416 0.675 0.221 −0.222 −55.6 0.386 0.681 0.284
NH3 (ppbv) 3.55 −0.801 −22.6 5.26 0.0481 0.038 −1.58 −44.5 4.37 0.304 0.155
C2H4 (ppbv) 0.121 0.0582 48.1 0.189 0.702 0.869 0.0385 31.9 0.187 0.682 0.836
C2H2 (ppbv) 0.146 −0.0734 −50.3 0.137 0.784 0.496 −0.0696 −47.7 0.137 0.771 0.494
SO2 (ppbv) 0.342 −0.235 −68.8 0.567 0.0238 0.00835 −0.221 −64.5 0.568 −1.26× 10−3

−0.00047
Acetone (ppbv) 2.74 −2.28 −83.1 2.45 0.686 0.192 −2.2 −80.4 2.38 0.668 0.199
HCHO (ppbv) 2.1 −0.972 −46.4 1.26 0.559 0.447 −0.909 −43.4 1.25 0.513 0.442
CH3CHO (ppbv) 0.736 −0.326 −44.2 0.538 0.647 0.386 −0.349 −47.4 0.554 0.643 0.38
Benzene (ppbv) 0.0449 −0.0193 −43 0.057 0.398 0.385 −0.0191 −42.6 0.0564 0.397 0.375
Toluene (ppbv) 0.039 0.0409 105 0.153 0.759 1.74 0.0352 90.1 0.14 0.762 1.63
Isoprene (ppbv) 0.073 0.0361 49.4 0.174 0.6 0.838 0.00661 9.06 0.145 0.648 0.797
EC (µg m−3, STP) 0.108 0.191 177 0.572 0.518 2.09 0.228 211 0.609 0.455 1.88
OA (µg m−3, STP) 10.9 −7.15 −65.7 9.72 0.565 0.263 −6.48 −59.5 9.45 0.495 0.243
Sulfate (µg m−3, STP) 1.31 −0.781 −59.7 1.11 0.0856 0.0188 −0.773 −59 1.11 0.0322 0.00677
NH+4 (µg m−3, STP) 0.745 −0.615 −82.5 0.805 0.416 0.103 −0.596 −79.9 0.778 0.509 0.145
Nitrate (µg m−3, STP) 1.22 −1.08 −88.1 1.49 0.562 0.229 −1.04 −85.3 1.45 0.57 0.279
AOE (Mm−1) 54.5 −29.3 −53.8 47 0.593 0.227 −27.4 −50.2 45.9 0.588 0.227

STP denotes standard temperature and pressure.

4.3.2 Chemical statistics for flight segments without
fire influences

For most chemical species, the two models also have similar
performance, indicating that the emissions and chemistry are
major driving forces. For flight segments not encountering
fire plumes, both models overpredict NOx , HNO3, toluene,
elemental carbon (EC) and ammonium (NH+4 ), but they
underestimate peroxyacetyl nitrate (PAN), benzene, C2H2,
SO2, and submicron sulfate and OAs (Table 2). The SO2
and submicron sulfate underprediction may be impacted by
underestimated NEIC2016v1 SO2 emissions over the west-
ern US. As point sources, including power plant emissions,
are the SO2 sources, this comparison implies that the point
sources for 2019 events have large uncertainties.

Although the models agree well with NOy observations,
they disproportionately underestimate NOz (non-NOx reac-
tive nitrogen species, or NOy–NOx), as shown by the re-
gression slopes and MBs. The NOx and NOy observations
have different missing data, and NOz is calculated when
both NOx and NOy observations are available at certain sam-
pling times. Due to the different sample number issues, their
observed averages may not exactly match well (averaged
NOx +NOz 6=NOy in observations), although their corre-

sponding modeled relationship are well balanced. Gaseous
NOz species can be split into inorganic NOz (e.g., HNO3,
HONO, HNO4, NO3, ClNO3 and N2O5) and organic NOz
(e.g., PAN, methyl peroxyl acetyl nitrate – MPAN and the
other organic nitrate – RNO3). The precursors of organic
NOz include hydrocarbons. One of the important organic
NOz species is PAN, and both models underestimate PAN for
the flight segments without fire influences (Table 2). The car-
bonyl precursors of PAN include acetaldehyde (CH3CHO)
(44 % of the global source), methylglyoxal (30 %), acetone
(7 %), and a suite of other isoprene and terpene oxidation
products (19 %) (Fischer et al., 2014). CH3CHO and ace-
tone are also underestimated (Table 2), which helps to ex-
plain the underestimation of PAN. For the oxidized hydrocar-
bons, like aldehydes (e.g., HCHO and CH3CHO), their main
atmospheric sources come from the oxidation of highly reac-
tive VOCs, including alkanes, alkenes and aromatics, instead
of direct emissions (Parrish et al., 2012). Therefore, the un-
derestimations of HCHO and CH3CHO are associated with
the underestimations of their precursor hydrocarbons, includ-
ing anthropogenic and biogenic VOCs. Our internal compar-
ison with some limited surface VOC observations indicated
that BEIS tends to underpredict biogenic emissions over the
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Table 3. Table 3 is the same as Table 2 except that it displays the wildfire-affected flight segments.

Variables Obs mean GFS-CMAQ WRF-CMAQ

MB NMB RMSE R Slope MB NMB RMSE R Slope

Temperature (K) 287 −0.389 −0.135 0.702 0.995 1.01 −0.688 −0.24 0.863 0.997 1.04
RH (%) 27.8 −0.761 −2.74 7.84 0.712 0.553 4.3 15.5 11.1 0.556 0.534
Wind speed (m s−1) 5.42 0.766 14.1 2.16 0.612 0.616 −0.811 −15 2.12 0.604 0.556
O3 (ppbv) 55.7 −6.61 −11.9 11.8 0.587 0.262 −7.01 −12.6 11.5 0.653 0.346
CO (ppbv) 486 −377 −77.6 873 0.596 0.0347 −383 −78.8 883 0.442 0.0242
NOx (ppbv) 2.63 0.06 2.28 6.41 0.465 0.231 −0.619 −23.5 7.02 0.31 0.153
NOy (ppbv) 7.32 −4.19 −57.3 13.3 0.507 0.123 −4.66 −63.7 14.2 0.31 0.073
NOz (ppbv) 5.7 −4.8 −84.3 10.2 −0.189 −0.0106 −4.68 −82 10.2 −0.204 −0.0121
HONO (ppbv) 0.283 −0.274 −96.8 1.18 0.355 0.0043 −0.274 −96.8 1.18 0.291 0.00457
HNO3 (ppbv) 0.148 0.148 99.7 0.256 0.532 1.07 0.179 121 0.28 0.402 0.768
PAN (ppbv) 0.971 −0.793 −81.7 1.63 0.27 0.0195 −0.765 −78.8 1.61 0.279 0.026
NH3 (ppbv) 17.7 −12.3 −69.3 28.3 0.379 0.0654 −13.7 −77.4 29.6 0.232 0.0386
C2H4 (ppbv) 4.5 −4.34 −96.3 10.2 0.421 0.00498 −4.36 −96.8 10.2 0.14 0.0018
C2H2 (ppbv) 1.04 −1.01 −96.9 2.08 0.534 0.00866 −1.01 −97 2.09 0.363 0.00623
SO2 (ppbv) 0.699 −0.322 −46.1 1.38 0.589 0.198 −0.392 −56.1 1.5 0.429 0.132
Acetone (ppbv) 3.54 −3.2 −90.3 4.56 0.13 0.00862 −3.18 −89.7 4.55 0.135 0.0112
HCHO (ppbv) 8.17 −7.13 −87.3 17.8 0.232 0.0062 −7.19 −88 17.8 0.119 0.00303
CH3CHO (ppbv) 3.65 −3.18 −87.4 9.13 0.186 0.00547 −3.21 −88 9.2 −0.027 −0.00097
Benzene (ppbv) 0.683 −0.67 −98.1 1.84 0.54 0.00432 −0.672 −98.3 1.84 0.367 0.00275
Toluene (ppbv) 0.451 −0.436 −96.6 1.36 0.402 0.00491 −0.438 −97 1.36 0.195 0.00245
Isoprene (ppbv) 0.095 −7.9× 10−3

−8.29 0.234 0.123 0.0579 −0.033 −34.7 0.242 −0.014 −0.00541
EC (µg m−3, STP) 1.89 −0.53 −28 3.28 0.612 0.295 −0.787 −41.6 3.7 0.448 0.195
OA (µg m−3, STP) 156 −146 −93.4 420 0.612 0.0174 −147 −94.2 423 0.472 0.0122
Sulfate (µg m−3, STP) 0.791 −0.116 −14.7 0.676 0.415 0.184 −0.214 −27.1 0.728 0.322 0.13
NH+4 (µg m−3, STP) 1 −0.591 −59.1 0.931 0.767 0.351 −0.615 −61.5 0.956 0.729 0.359
Nitrate (µg m−3, STP) 1.7 −0.56 −32.9 1.47 0.805 0.613 −0.634 −37.2 1.59 0.774 0.599
AOE (Mm−1) 391 −350 −89.3 994 0.688 0.027 −357 −91.1 1010. 0.532 0.0152

STP denotes standard temperature and pressure.

western US (e.g., isoprene in Table 2). In this comparison,
most anthropogenic hydrocarbons are disproportionately un-
derestimated, except toluene, implying a VOC speciation is-
sue in the NEIC2016v1 anthropogenic emissions (Table 2).
A previous study discovered that a model overprediction in
toluene was also related to the toluene speciation in the NEIC
emission inventory (Lu et al., 2020). In this comparison, both
models tend to underpredict organic NOz, which is likely
caused by the underestimation of certain VOCs.

Submicron ammonium (NH+4 ) and nitrate ion (NO+3 ) are
also underestimated by both models during non-fire events
(Table 2), suggesting there are NH3 underestimates due to ei-
ther insufficient NH3 emissions or exaggerated NH3 removal
processes. There are, however, overpredictions in the inter-
mediate species nitric acid (HNO3), indicating a shift in the
gas–aerosol equilibrium partitioning of the nitrate ion. This
implies that HNO3 accumulates in the atmosphere because
the modeled NOx and inorganic NOz (such as NO3) path-
ways toward the nitrate ion and organic NOz are reduced
due to underestimations of their other precursors (NH3 and
VOCs).

There are underestimations in the VOC and CO con-
centrations that contribute to the O3 underestimation dur-
ing non-fire flight segments (Table 2). These non-fire com-

parisons also highlight that both models have similar bi-
ases due to similar meteorology (Sect. 4.3.1) as well as the
use of the same anthropogenic emissions (NEIC2016v1),
BEIS biogenic emissions and chemical models/mechanisms
(i.e., CMAQv5.3.1). The differences in the two models’ bias,
error and correlation/slope are much smaller than their in-
dividual magnitudes. As discussed above, VOC speciation
in the emission inventory could be one issue, as the model
tends to overpredict C2H4 but underestimate species such as
C2H2 and C2H6. Some common biases over certain regions
could be related to certain common issues. For instance,
some power plants that were supposed to shut down in the
original NEIC2016 inventory might still have been emitting
pollutants during the flight observations, leading to the dis-
agreement with respect to SO2.

4.3.3 Chemical statistics for flight segments with fire
influences

The WRF-CMAQ and GFS-CMAQ models significantly un-
derestimate CO, VOC, HONO and OA for fire-influenced
flight segments at low altitudes (< 3 km) over the western
US (Table 3). In conjunction with underestimated GBBEPx
emissions during these wildfire events, other possible causes
for the average statistical underprediction are the CMAQ
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model’s 12 km horizontal resolution and the flight sampling
coverage. Most of the fires that are averaged in the statistics,
such as the Horsefly (5.5 km2 burning area) and Snow Creek
fires (7.3 km2 burning area), are at a much finer scale than the
model grid. Only the largest Williams Flats fire, with a total
burning area of 180 km2 (Ye et al., 2021), had a comparable
horizontal scale to the model resolution.

The DC-8 aircraft had many flight segments near wildfire
sources during the fire events in Table 3; thus, dilution of
the emissions due to the relatively coarse model resolution
may lead to underestimations in the predicted slope for most
wildfire-emitted pollutants, such as CO and OA (Table 3).
The O3 concentrations are also underestimated; however,
the O3 underpredictions are reduced from the non-fire (Ta-
ble 2) to fire events (Table 3). Abundant amounts of wildfire-
emitted NOx can titrate O3 near the fire source region, and
the models likely underestimate these titration effects due to
the 12 km model resolution (Fig. S4). Thus, the models can-
not capture the strong spatial O3 variability that is observed
due to both reduction near source regions and enhancement
in downstream areas. Again, for this fire event comparison,
both models showed similar behavior, and their differences
were relatively small compared with the overall model bi-
ases.

5 Summary and discussion

The operational NOAA/NWS National Air Quality Forecast
Capability (NAQFC) recently underwent a major upgrade
on 20 July 2021. The advanced NAQFC includes the recent
Community Multiscale Air Quality (CMAQ) model version
5.3.1 with the CB6 (carbon bond version 6) AERO7 (ver-
sion 7 of the aerosol module) chemical mechanism, and it is
driven by the latest operational Finite-Volume Cubed-Sphere
(FV3) Global Forecast System, version 16 (GFSv16) (Camp-
bell et al., 2022). Here, we analyze the impacts of the driving
meteorological models on CMAQ model performance with
the new GFSv16 interpolation-based meteorology versus the
commonly used native-grid Weather Research and Forecast-
ing (WRF) model version 4.0.3 meteorology. The meteoro-
logical and chemical analysis includes both 2D ground-based
and 3D aircraft measurements during summer 2019, which
encompasses the joint NOAA–NASA Fire Influence on Re-
gional to Global Environments and Air Quality (FIREX-AQ)
campaign. As CMAQ has existing mass conservation via
adjustments of the contravariant vertical velocity (Otte and
Pleim, 2010), the NACC interpolated GFSv16 wind field can
be well handled in CMAQ (i.e., GFS-CMAQ).

The different NOAA/NWS operational GFS and com-
monly chosen WRF physics schemes employed in this study
(Table 1) clearly have impacts on temperature, horizon-
tal/vertical wind fields, PBL heights and the corresponding
CMAQ model predictions. During this study period over the
western US, both models showed a moisture dry bias and a

temperature warm bias at low altitudes, which could be due
to the issue mentioned by Qian et al. (2020): the irrigation
contribution being neglected (Sect. 3.1) as well as impacts
from soil moisture deficits on surface fluxes in both mod-
els. Due to their different physics, GFS has a stronger diur-
nal variation in the PBL height (lower at night and higher
during daytime) over the western and northeastern US. The
differences in the GFS and WRF physics result in a larger
impact than the difference between interpolated and native
grids on the models’ meteorological and air quality predic-
tions, despite using FDDA to nudge WRF simulation toward
the GFSv16 data. Nudging toward observations or including
data assimilation may yield different results for the WRF run,
although this is not used here. In this study, FDDA nudging
was used in WRF to avoid growing errors across a continuous
1-month simulation. We note that if this method would have
been turned off, the differences between GFSv16 and WRF
predictions would have been even greater. This would further
substantiate the dominance of using different model physics
and their impacts on CMAQ model predictions. Campbell et
al. (2022) present detailed comparisons for interpolated and
original fields, and they are very consistent. In this study, we
further compare the CMAQ vertical velocity diagnosed from
the interpolated GFS horizontal wind, which is very consis-
tent with the original GFS vertical velocity. Overall, the re-
sults of this study further corroborate the use of the GFSv16
data and NACC interpolation-based methods (Campbell et
al., 2022) for regional CMAQ model applications in the sci-
entific community.

Over the CONUS, GFS-CMAQ demonstrated lower mean
surface O3 (by about 3 ppb) and PM2.5 (by about 1 µg m−3)
than WRF-CMAQ in August 2019 (Sect. 3). In the west-
ern US, the GFS has a stronger diurnal variability in the
PBL height and a better performance with respect to night-
time 10 m wind speeds compared with the WRF model. The
nighttime difference between these two models tends to be
more significant than the corresponding daytime difference.
Their difference is also impacted by both vertical/convec-
tive (mainly daytime) and upstream advective transport dif-
ferences in GFS-CMAQ and WRF-CMAQ, which somewhat
confounds the impact of different meteorological physics on
chemical predictions from region to region. This transport ef-
fect is more significant on PM2.5 than that on O3, as O3 has
a shorter lifetime and is more sensitive to local emissions
in summer. In this study, neither GFS-CMAQ nor WRF-
CMAQ show an overwhelming performance advantage over
the other, similar to the NMM-CMAQ and ARW-CMAQ
comparison in Yu et al. (2012a, b).

GFS-CMAQ and WRF-CMAQ demonstrated rather sim-
ilar performance for major chemical variables during both
FIREX-AQ non-fire (Table 2) and fire (Table 3) events. Both
models showed similar biases, indicating that other factors,
such as emissions, model resolution and chemistry, could
be more important for the model predictions compared with
the meteorological differences. The aircraft data compari-
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son reveals many common issues in both model systems.
One critical issue is whether the flight sampling coverage
is comparable to the 12 km model resolution, especially for
high-gradient fire emission, such as the case of the 6 August
flight (Fig. S4). The observation representation issue also ex-
ists in other places, such as the near-surface meteorological
comparison between AIRNow stations and METAR stations.
Emissions are the driving force for atmospheric composition
concentrations. The comprehensive aircraft measurements
help verify that the anthropogenic NEIC2016v1 inventory is
reasonable overall, except for SO2, NH3 and certain hydro-
carbons. The wildfire emissions have larger uncertainties, in-
cluding the emission intensities, pollutant specification and
plume rise, as shown by the both models’ results.

The NACC interpolation method is advantageous, as it en-
ables one to use the original meteorological driver directly
via interpolation, and it avoids running another model such
as WRF to drive regional CMAQ applications. It is also
faster and more consistent with the original meteorologi-
cal model (GFS) than using WRF (even with nudging), as
WRF’s own physics could have a stronger impact. In the cur-
rent NOAA/NCEP operational GFS-CMAQ system, NACC
only takes less than 5 min to process 72 h of data, which saves
enough time for CMAQ to forecast an extra 24 h. These as-
pects can simultaneously benefit real-time forecasting and
retrospective air quality applications in the scientific com-
munity. NACC can also adapt to quickly use any regional
domain globally and may also use other global meteorolog-
ical data including reanalysis products. This helps mitigate
the confounding factors of using different model configura-
tions across the myriad of WRF physics options while also
alleviating the difficulty in understanding their impacts on air
quality predictions. The operational GFSv16 and associated
reanalysis products are well vetted and evaluated across dif-
ferent global agencies and laboratories; thus, they are well
suited for regional CMAQ applications using NACC. In fact,
there is an ongoing project at NOAA to migrate both the
GFSv16 data and NACC software to the Amazon Web Ser-
vices (AWS) Cloud platform to provide a streamlined prod-
uct for the user to generate the model-ready meteorological
data for any regional CMAQ application globally.

Finally, we note that the current operational GFSv16 has
all of the required meteorological variables to drive CMAQ,
and users have the option to supply other data (e.g., frac-
tional land use and LAI). GFSv16’s C768 grid has a hori-
zontal resolution from 10.21 to 14.44 km, which is close to
the NAQFC’s 12 km horizontal resolution. One barrier to us-
ing this NACC approach is that the original-resolution GFS
data files with all of the required variables are very big, even
with compression (about 8 GB per time step), and may not
be accessible to community users. There is an ongoing effort
toward using cloud storage to solve this issue and making
this method available to the community. Traditional WRF-
CMAQ usually starts from commonly available global mete-
orological data, such as NCEP or ECMWF reanalysis data,

which have a relatively coarse resolution, and uses WRF
to generate all of the meteorological variables needed by
CMAQ on the native grid. In some cases, WRF may become
the only available method to drive a finer-scale CMAQ model
application. WRF’s various physics can also be customized
for CMAQ simulation over certain regions or under certain
meteorological conditions. Both methods have their pros and
cons. As shown in this study, GFS and WRF showed mixed
performance for driving CMAQ, although they were similar
overall.

Code and data availability. The FIREX-AQ field campaign data
used in this study are available from https://www-air.larc.nasa.
gov/cgi-bin/ArcView/firexaq (last access: 16 May 2022) and
https://doi.org/10.5067/ASDC/FIREXAQ_Analysis_Data_1
(NASA/LARC/SD/ASDC, 2021). The NACC code
used in this study is publicly available from
https://doi.org/10.5281/zenodo.5507489 (Campbell, 2021a)
and via GitHub from https://github.com/noaa-oar-arl/NACC.git
(last access: 5 April 2022). The modified CMAQv5.3.1 for GFS-
CMAQ is available from https://doi.org/10.5281/zenodo.5507511
(Campbell, 2021b) and via GitHub from https://github.com/
noaa-oar-arl/NAQFC (last access: 5 April 2022).
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