Articles | Volume 15, issue 20
https://doi.org/10.5194/gmd-15-7533-2022
https://doi.org/10.5194/gmd-15-7533-2022
Methods for assessment of models
 | 
17 Oct 2022
Methods for assessment of models |  | 17 Oct 2022

Recovery of sparse urban greenhouse gas emissions

Benjamin Zanger, Jia Chen, Man Sun, and Florian Dietrich

Related authors

Spatiotemporal modeling of air pollutant concentrations in Germany using machine learning
Vigneshkumar Balamurugan, Jia Chen, Adrian Wenzel, and Frank N. Keutsch
Atmos. Chem. Phys., 23, 10267–10285, https://doi.org/10.5194/acp-23-10267-2023,https://doi.org/10.5194/acp-23-10267-2023, 2023
Short summary
Quantification of methane emissions in Hamburg using a network of FTIR spectrometers and an inverse modeling approach
Andreas Forstmaier, Jia Chen, Florian Dietrich, Juan Bettinelli, Hossein Maazallahi, Carsten Schneider, Dominik Winkler, Xinxu Zhao, Taylor Jones, Carina van der Veen, Norman Wildmann, Moritz Makowski, Aydin Uzun, Friedrich Klappenbach, Hugo Denier van der Gon, Stefan Schwietzke, and Thomas Röckmann
Atmos. Chem. Phys., 23, 6897–6922, https://doi.org/10.5194/acp-23-6897-2023,https://doi.org/10.5194/acp-23-6897-2023, 2023
Short summary
Comparison of OCO-2 target observations to MUCCnet – is it possible to capture urban XCO2 gradients from space?
Maximilian Rißmann, Jia Chen, Gregory Osterman, Xinxu Zhao, Florian Dietrich, Moritz Makowski, Frank Hase, and Matthäus Kiel
Atmos. Meas. Tech., 15, 6605–6623, https://doi.org/10.5194/amt-15-6605-2022,https://doi.org/10.5194/amt-15-6605-2022, 2022
Short summary
Secondary PM2.5 decreases significantly less than NO2 emission reductions during COVID lockdown in Germany
Vigneshkumar Balamurugan, Jia Chen, Zhen Qu, Xiao Bi, and Frank N. Keutsch
Atmos. Chem. Phys., 22, 7105–7129, https://doi.org/10.5194/acp-22-7105-2022,https://doi.org/10.5194/acp-22-7105-2022, 2022
Short summary
Understanding greenhouse gas (GHG) column concentrations in Munich using WRF
Xinxu Zhao, Jia Chen, Julia Marschall, Michal Gałkowski, Stephan Hachinger, Florian Dietrich, Ankit Shekhar, Johannes Gensheimer, Adrian Wenzel, and Christoph Gerbig
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-281,https://doi.org/10.5194/acp-2022-281, 2022
Revised manuscript accepted for ACP
Short summary

Related subject area

Atmospheric sciences
Modelling concentration heterogeneities in streets using the street-network model MUNICH
Thibaud Sarica, Alice Maison, Yelva Roustan, Matthias Ketzel, Steen Solvang Jensen, Youngseob Kim, Christophe Chaillou, and Karine Sartelet
Geosci. Model Dev., 16, 5281–5303, https://doi.org/10.5194/gmd-16-5281-2023,https://doi.org/10.5194/gmd-16-5281-2023, 2023
Short summary
Simulation model of Reactive Nitrogen Species in an Urban Atmosphere using a Deep Neural Network: RNDv1.0
Junsu Gil, Meehye Lee, Jeonghwan Kim, Gangwoong Lee, Joonyoung Ahn, and Cheol-Hee Kim
Geosci. Model Dev., 16, 5251–5263, https://doi.org/10.5194/gmd-16-5251-2023,https://doi.org/10.5194/gmd-16-5251-2023, 2023
Short summary
J-GAIN v1.1: a flexible tool to incorporate aerosol formation rates obtained by molecular models into large-scale models
Daniel Yazgi and Tinja Olenius
Geosci. Model Dev., 16, 5237–5249, https://doi.org/10.5194/gmd-16-5237-2023,https://doi.org/10.5194/gmd-16-5237-2023, 2023
Short summary
Metrics for evaluating the quality in linear atmospheric inverse problems: a case study of a trace gas inversion
Vineet Yadav, Subhomoy Ghosh, and Charles E. Miller
Geosci. Model Dev., 16, 5219–5236, https://doi.org/10.5194/gmd-16-5219-2023,https://doi.org/10.5194/gmd-16-5219-2023, 2023
Short summary
Improved representation of volcanic sulfur dioxide depletion in Lagrangian transport simulations: a case study with MPTRAC v2.4
Mingzhao Liu, Lars Hoffmann, Sabine Griessbach, Zhongyin Cai, Yi Heng, and Xue Wu
Geosci. Model Dev., 16, 5197–5217, https://doi.org/10.5194/gmd-16-5197-2023,https://doi.org/10.5194/gmd-16-5197-2023, 2023
Short summary

Cited articles

Baraniuk, R., Davenport, M., DeVore, R., and Wakin, M.: A simple proof of the restricted isometry property for random matrices, Constructive Approximation, 28, 253–263, https://doi.org/10.1007/s00365-007-9003-x, 2008. a
Boche, H., Calderbank, R., Kutyniok, G., and Vybíral, J.: A survey of compressed sensing, in: Compressed sensing and its applications, 1–39, Springer, 2015. a
Candès, E. J.: The restricted isometry property and its implications for compressed sensing, Comptes Rendus Mathematique, 346, 589–592, https://doi.org/10.1016/j.crma.2008.03.014, 2008. a, b
Candès, E. J. and Tao, T.: Decoding by linear programming, IEEE T. Inform. Theory, 51, 4203–4215, https://doi.org/10.1109/TIT.2005.858979, 2005. a
Candès, E. J., Romberg, J. K., and Tao, T.: Stable signal recovery from incomplete and inaccurate measurements, Commun. Pure Appl. Math., 59, 1207–1223, https://doi.org/10.1002/cpa.20124, 2006. a
Download
Short summary
Gaussian priors (GPs) used in least squares inversion do not reflect the true distributions of greenhouse gas emissions well. A method that does not rely on GPs is sparse reconstruction (SR). We show that necessary conditions for SR are satisfied for cities and that the application of a wavelet transform can further enhance sparsity. We apply the theory of compressed sensing to SR. Our results show that SR needs fewer measurements and is superior for assessing unknown emitters compared to GPs.