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Abstract. To localize and quantify greenhouse gas emissions
from cities, gas concentrations are typically measured at a
small number of sites and then linked to emission fluxes us-
ing atmospheric transport models. Solving this inverse prob-
lem is challenging because the system of equations often has
no unique solution and the solution can be sensitive to noise.
A common top–down approach for solving this problem is
Bayesian inversion with the assumption of a multivariate
Gaussian distribution as the prior emission field. However,
such an assumption has drawbacks when the assumed spa-
tial emissions are incorrect or not Gaussian distributed. In
our work, we investigate sparse reconstruction (SR), an al-
ternative reconstruction method that can achieve reasonable
estimations without using a prior emission field by making
the assumption that the emission field is sparse. We show
that this assumption is generally true for the cities we investi-
gated and that the use of the discrete wavelet transform helps
to make the urban emission field even more sparse. To eval-
uate the performance of SR, we created concentration data
by applying an atmospheric forward transport model to CO2
emission inventories of several major European cities. We
used SR to locate and quantify the emission sources by ap-
plying compressed sensing theory and compared the results
to regularized least squares (LSs) methods. Our results show
that SR requires fewer measurements than LS methods and
that SR is better at localizing and quantifying unknown emit-
ters.

1 Introduction

Understanding anthropogenic greenhouse gas (GHG) emis-
sions is important for scientists and decision makers fight-
ing climate change. Based on a growing amount of atmo-

spheric observations, studies estimating emission fields of
GHG sources and sinks from these observations have been
performed on local (Chen et al., 2016; Viatte et al., 2017;
Toja-Silva et al., 2017), metropolitan (Jones et al., 2021;
Turner et al., 2020; Hase et al., 2015), country (Miller et al.,
2013; Shekhar et al., 2020), and global (Hirsch et al., 2006;
Mueller et al., 2008; Turner et al., 2015; Jacob et al., 2016)
scales. One of the main reasons for such studies is to verify
and improve GHG emission inventories created by bottom–
up methods. Verification and improvements include but are
not limited to

– determining the difference between the real emissions
and the emissions captured by inventories

– determining differences between the real and bottom–
up estimated emissions for individual emitters

– finding emitters which are not captured by inventories
(unknown emitters).

Atmospheric inverse modeling methods use column or in
situ GHG concentration measurements to estimate emission
fields. Due to a lack of measurements and high modeling and
measurement uncertainties, estimating each grid cell of an
emission field independently is not possible. Instead, sec-
tors (Jones et al., 2021), spatial correlations (Wesloh et al.,
2020), and/or temporal correlations (Jones et al., 2021; Wes-
loh et al., 2020) are used to construct alternative parameteri-
zations of emission fields to prevent overfitting.

An alternative to overcoming these issues are sparse recon-
struction (SR) methods (Ray et al., 2015). SR methods can
use concentration measurements to estimate sparse emission
fields, meaning that only a small number of large emitters
contribute significantly to the total emissions. These meth-
ods determine the critical emission grid cells and adjust the
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emissions of only those cells until the model best matches the
observations. All other grid cells are set to zero. Once condi-
tions of compressed sensing (CS) are fulfilled, SR methods
are guaranteed to determine the best possible emission fields
and provide a good estimation of their emissions.

SR for the recovery of GHGs has been proposed by several
recent studies. Ray et al. (2014, 2015) used stagewise orthog-
onal matching pursuit (StOMP), a reconstruction method
known from compressed sensing, and modified it to en-
force positive emission estimates. To overcome the restric-
tion of sparse reconstruction of only being able to reconstruct
sparse fields, they used a multi-scale resolution field based
on wavelets. In Ray et al. (2015), StOMP has been modi-
fied so that prior information can be included. Both studies
reconstructed fossil fuel CO2 emissions in an idealized sce-
nario with synthetic measurements and very low measure-
ment noise (SNR > 40 dB). Hase et al. (2017) demonstrated
sparse reconstruction with enforced positive emission esti-
mates of anthropogenic CH4 emissions from synthetic ob-
servations in the US. To increase the sparsity of the emission
field, Hase et al. (2017) used a redundant dictionary repre-
sentation, where the representation of the emission field is
not unique. Yan et al. (2012) proposed compressed sensing,
i.e., sparse reconstruction with guaranteed best feature selec-
tion, for environmental monitoring with the focus on under-
sampling.

In this paper, we apply SR to assessing urban GHG emis-
sions. Current GHG emission monitoring systems in cities,
such as Dietrich et al. (2021), Shusterman et al. (2016)
and Sargent et al. (2018), acquire GHG concentration in
the atmosphere as column or in situ concentration measure-
ments. These measurements are then related to city emissions
and background concentrations, where the city emissions are
the unknowns of interest while the background is (partially)
known. Göckede et al. (2010) have shown that in smaller do-
mains, uncertainties in the background have a high influence
on the estimation of the city emissions. Therefore, modern
approaches, such as Jones et al. (2021) and Klappenbach
et al. (2021), use the measurements acquired to additionally
improve the certainty of background concentrations using a
Bayesian approach. In this work, we ignore the background
and make the assumption that it is known in full detail. Ex-
tending our approach to include background concentrations
is straightforward.

As urban emissions, we are using anthropogenic emission
inventories from multiple European cities. To overcome the
sparsity constraints of SR for non-sparse emissions, we use a
wavelet transformation.

We are the first to apply SR to the estimation of urban
GHG emissions. The findings of our work are the following:

– Urban emissions are mostly sparse and a third-level
wavelet transform performs well in sparsifying urban
emissions further.

– SR needs fewer measurements than Gaussian prior
methods to achieve a similar performance if the emis-
sions are sparse enough.

– SR performs well in localizing and quantifying large
emitters, leading to the application of finding unknown
emitters not captured by emission inventories.

The paper is structured as follows. Section 2 gives a for-
mulation of inverse problems, introduces the reader to sparse
reconstruction methods, compressed sensing, and compress-
ible emissions, and provides a description of the algorithms
used in this paper. The compressibility of the anthropogenic
emissions in European cities is discussed in Sect. 3. Sec-
tion 4 shows selected scenarios of our reconstruction method,
highlighting beneficial conditions and use cases of our recon-
struction method as well as discussing measurement noise. In
Sect. 5 we create case studies for different European cities in
an idealized and noisy case.

2 Methodology

This section gives the problem statement of atmospheric in-
verse problems (Sect. 2.1), provides an introduction to the
theory of sparse reconstruction (Sect. 2.2, Sect. 2.3, and
Sect. 2.4), and introduces measures (Sect. 2.5) and algo-
rithms (Sect. 2.6) for sparse reconstruction.

2.1 Inverse problems

An inverse problem is a problem in which input parame-
ters should be determined from the observation of a pro-
cess. For the problem in this paper, those input parameters
x ∈ Rn are the GHG emission fluxes for each grid cell in
an emission field and the measurements y ∈ Rm are in situ
or column measurements of GHG concentrations in the at-
mosphere. These quantities are connected by an atmospheric
process, referred to as forward model F : y = F(x). In prac-
tice, such a forward model can be a linear, non-linear, or
even a stochastic process. For this analysis, we limit the for-
ward model to linear cases. Therefore, we can write y = Ax,
where A ∈ Rm×n is called the sensing matrix. A least squares
estimation of the GHG emission fluxes x is given by

x̂ = argmin
x
‖Ax− y‖22. (1)

Often, however, such inverse problems are ill-posed, as in
the cases we deal with in this paper. In such cases, no or
no unique solution exists or the solution does not depend
smoothly on the data, therefore, being sensitive to noise. For
ill-posed inverse problems, the least squares estimation with-
out regularization does not provide a useful reconstruction
technique. For a more detailed discussion of ill-posed prob-
lems we refer to chap. 3 of Nakamura and Potthast (2015).
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2.2 Bayesian inversion

A typical approach in atmospheric sciences to solve inverse
problems is Bayesian inversion. In such a setup, the unknown
emissions are assumed to follow a known probability distri-
bution. This probability distribution is referred to as a pri-
ori. Measurements are used to update the a priori, which re-
sults in a new probability distribution referred to as a poste-
riori. From this posteriori distribution a parameter estimation
can be made using a maximum likelihood (ML) detector on
the a posteriori. Since the ML detector acts on the a poste-
riori, this is commonly referred to as Maximum a posteri-
ori (MAP) detector. Let us call the probability distribution of
the a priori pX(x). Furthermore, probability distributions are
assigned both to the observations and the model to account
for uncertainties. The measurement distribution is written as
pY (y) and the distribution which maps x to y is written as
pY |X(y|x). Using Bayes’ theorem, a posteriori distribution
for x under the condition of the observations y can be de-
rived:

pX|Y (x|y)=
pY |X(y|x)pX(x)

pY (y)
. (2)

On this derived distribution the MAP detector can be applied.
Since pY (y) is only a constant factor for some specific mea-
surements, the MAP detector can be written as

x̂ = argmax
x

pY |X(y|x)pX(x), (3)

where x̂ are the estimated physical quantities. Typically the
distributions are assumed to be Gaussian, where the a priori
distribution is assumed to be centered around an initial guess,
xA. This allows for easier error analysis and makes the prob-
lem computationally feasible.

2.3 From Bayesian inversion to regularization

To show the relation between Bayesian inversion and regu-
larization methods, we show how a Bayesian inversion prob-
lem, using Gaussian priors, can be converted to a regulariza-
tion problem. Assume that pY |X(y|x) is Gaussian distributed
with the covariance matrix So,

pY |X(y|x)=
1

√
(2π)mdet(So)

exp
(
−

1
2

∥∥∥S−1/2
o (Ax− y)

∥∥∥2

2

)
, (4)

where m are the number of measurements, and pX(x) to be
a Gaussian prior of the form

pX(x)= C exp
(
−

1
2

∥∥∥S−1/2
A (x− xA)

∥∥∥2

2

)
, (5)

where C is a normalization constant. Applying the MAP de-
tector from Eq. (3) gives an estimation of

x̂ = argmax
x

pY |X(y|x)pX(x) (6)

= argmin
x

[∥∥∥S−1/2
o (Ax− y)

∥∥∥2

2
+

∥∥∥S−1/2
A (x− xA)

∥∥∥2

2

]
. (7)

The idea of regularization methods on the other hand is to
add a penalty term to the least squares problem from Eq. (1)
to prefer solutions of a certain kind,

argmin
x

[
‖C1 (Ax− y)‖22+ λR(C2x)

]
, (8)

where R : Rn→ R is the regularization function and C1,C2
are correlation matrices. This equation is equivalent to

Eq. (7) with λ= 1, C1 = S−1/2
o , R =

∥∥∥S−1/2
A (x− xA)

∥∥∥2

2
, and

C2 = I . For such a regularization function, the regularization
scheme is known as Tikhonov regularization or also ridge re-
gression (Golub et al., 1999). While in Bayesian inversion
it is most often assumed that a prior value xA is known, in
regularization xA is often unknown and assumed to be 0.

In this paper, we investigate sparse reconstruction (SR)
methods. To achieve SR, the regularization term has to be
changed so that sparse solutions are preferred over non-
sparse solutions. In statistics, such a regularization function
is the Lasso regularization function, presented by Tibshirani
(1996). The Lasso is given by

R(x)=
∑
j

|xj | = ‖x‖1 (9)

and is used especially when x is approximately sparse. The
equivalent of the Lasso in Bayesian inversion is the assump-
tion of a Laplacian distributed prior. The Lasso is expected to
select those elements in x which are important and meaning-
ful, while the irrelevant features are estimated to be zero. Su
et al. (2017) showed that this is not necessarily the case, as
coefficients which are zero in x are sometimes estimated to
be important (which is referred to as false discovery). In the
next section, we introduce compressed sensing (CS), which
provides sufficient conditions to prevent false discoveries in
x using Lasso regularization.

2.4 Compressed sensing

Compressed sensing (CS) is a theory which provides suf-
ficient conditions to guarantee best possible reconstruction
using the Lasso regularizer, therefore, preventing false dis-
coveries. The conditions of CS apply to the forward model
A and are hard to examine. For this reason, the conditions
are normally already considered in the design process. In the
following, we provide the very basics of CS needed to un-
derstand our work. For a more comprehensive introduction
to CS, we refer to Boche et al. (2015).
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CS states that an s-sparse signal x ∈6ns , where s-sparse
is defined as s ≥

∣∣{j |xj 6= 0
}∣∣ and 6ns is the set of all s-

sparse signals which are in Rn, can be uniquely reconstructed
by m measurements y ∈ Rm, defined by y = Ax, where A ∈
Rm×n, if certain conditions are satisfied for A. An overview
of the symbols, norms, and measures used is given in Table 1.
The unique solution is found by solving the l0 minimization
problem given by

x̂ = argmin
x
‖x‖0 s.t. Ax = y. (P0)

Solving this minimization problem is NP-hard and not appli-
cable to real-world applications. Candès et al. (2006) showed
that for additional conditions in A, one can solve the l1 regu-
larization problem instead, which is a convex problem:

x̂ = argmin
x
‖x‖1 s.t. Ax = y. (P1)

Then, solving Eq. (P1) leads to the same solution as Eq. (P0).
A sufficient condition for recovering Eq. (P0) with Eq. (P1) is
the restricted isometry property (RIP) introduced in Candès
and Tao (2005). This property determines a restricted isom-
etry constant (RIC) δs for a certain sparsity level s, which is
calculated by

(1− δs)‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1+ δs)‖x‖

2
2, (10)

where x ∈6ns . The RIC tells us how close the singular values
of m× s submatrices of A are to 1. For δ2s < 1, any s-sparse
solution can be uniquely determined by solving the Eq. (P1)
problem, and for δ2s <

(√
2− 1

)
this is even possible if the

signal is superimposed by noise (noisy case) (Candès, 2008).
In practice, calculating the RIC is NP-hard (see Tillmann and
Pfetsch, 2014) and it is not applicable to calculate this con-
stant for a given matrix. However, the RIP might be used
within a design process, since there are known random dis-
tributions of matrices, which satisfy the RIP for large s con-
sidering sufficiently large n and m (Baraniuk et al., 2008).
Another property, which very loosely upper-bounds the RIC,
is the incoherence property (Wang et al., 2015). The coher-
ence µ of a matrix is defined by

µ=max
∣∣< ai |aj >∣∣ i 6= j, (11)

where ai and aj are distinct column vectors of Ã, where Ã is
the column-normalized matrix of A. The coherence bounds
the RIC by

δ2s ≤ (2s− 1)µ. (12)

Therefore, s-sparse solutions can be uniquely recovered if
µ < 1

2s−1 holds in the noiseless case or µ <
√

2−1
2s−1 in the

noisy case.
In real-world scenarios, coefficients are rarely sparse but

often compressible. This means that the coefficients can

be well approximated by sparse coefficients. A more de-
tailed explanation for compressible coefficients is found in
Sect. 2.5. CS guarantees good estimates of compressible so-
lutions if the RIP is satisfied for the noisy case. Then the
reconstruction error can also be bounded (see Candès, 2008,
for the exact definitions and bounds).

2.5 Sparsifying emissions

Sparsity is one of the key elements for SR. However, emis-
sions are not always sparse. In order to make a non-sparse
emission field sparse, a transformation into a different do-
main can be used. Such transformations include the Fourier
transform, wavelet transform, transformations tailored to
specific data sets, e.g., by SVD truncation (see Hong et al.,
2011), or over-complete dictionaries, where the representa-
tion does not have to be orthogonal and multiple represen-
tations for the same emission field exist (see Candès et al.,
2011). In this paper, we only deal with the discrete wavelet
transform (DWT) to sparsify emissions. This transform is
used for image compression (Lewis and Knowles, 1992) and
was also used in Ray et al. (2014) and Ray et al. (2015) to
parameterize fossil fuel CO2 emissions for the US.

There are several ways to quantify the sparsity of an emis-
sion field. One possibility is to measure the error, using any
lp norm, of an emission field x to its best s-sparse approxi-
mation:

σs(x)p = inf
{
‖x− z‖p,z ∈6

n
s

}
. (13)

Independent of the norm used, the best approximation is
given by an emission field z, which contains the same s high-
est values of x and is zero otherwise. Often, it is more intu-
itive to give the relative sparsity srel, which is the fraction
of non-zero entries as a percentage of all entries, instead of
the sparsity level s. In this paper, both notations are used,
e.g., σ10%(x)2 is the l2 error of the signal which best approx-
imates x and maximally possesses 10 % non-zero elements
while σ10(x)2 is the l2 error of the signal approximating x
with maximally 10 non-zero elements. To show the distribu-
tion of values in x, a plot showing σs(x) over all possible s
can be used.

An example is depicted in Fig. 1. The more hyperbolic the
plot is, the more compressible the signal is. In order to get a
measure for the compressibility of the distribution, the Gini
index is used, which was also proposed as a sparsity measure
for CS by Zonoobi et al. (2011). This index measures how
unequally x is distributed, which is a similar measure to the
hyperbolicity of a curve in the depicted figure. For the case of
an equal distribution (yellow curve) the Gini index becomes
0, and for a highly compressible distribution (orange curve)
the Gini index gets close to 1. A Gini index of exactly 1 is
equal to a 1-sparse signal.

In this paper, a DWT is used to sparsify emissions, using
Haar wavelets. Throughout the paper, we use the third-level
wavelet transform and refer to its matrix as W and its inverse
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Figure 1. Visualization of the compressibility of emission fields by
plotting σs(x)1 over all s. The more hyperbolic the curve is, the
more compressible the emission field.

transformation as W−1. For an introduction to wavelets, we
refer to Graps (1995) and Mallat (1999). For the visualization
of a third-level DWT, see Fig. 1.1 in Mallat (1999).

The emission map x is transformed into its wavelet coef-
ficients c by Wx = c and vice versa by x =W−1c. To trans-
form the forward model Ax = y into the wavelet domain, we
write

y = Ax = AW−1c = Ac, (14)

where A= AW−1 is the new forward model. The wavelet co-
efficients are then determined by the modified Eq. (P1) prob-
lem.

ĉ = argmin
c
‖c‖1 s.t. Ac = y. (15)

Note that the CS conditions for A are not the same as for A.
Once the wavelet coefficients ĉ are determined, the emissions
are estimated by x̂ =W−1ĉ.

2.6 Reconstruction algorithms

There have been many algorithms proposed for the task of
CS and SR. However, our goal in this paper is not to com-
pare these algorithms, instead, we want to demonstrate the
applicability of SR in general for urban GHG emission as-
sessments. We, therefore, only solve the initial SR problem,
given in Eq. (P1). To find the minimum, we use the cvx li-
brary, a matlab package for specifying and solving convex
programs (Grant and Boyd, 2014, 2008), using the gurobi
optimizer as a backend (Gurobi Optimization, LLC, 2021).

For the noisy case, we solve a modified form of Eq. (P1),
given by

x̂ = argmin
x
‖x‖1 s.t. ‖Ax− y‖22 ≤ ‖ε‖

2
2, (P1e)

where ε is the noise vector. This is equivalent to the Lasso
with the right choice of λ. Since we generate the noise by de-

sign, the optimization process simplifies by choosing ε with-
out having to find the right λ value.

We compare our results to regularized least squares, which
we refer to as least squares (LSs) hereafter. The equation of
the LS is given by

x̂ = argmin
x
‖x‖2 s.t. Ax = y, (P2)

in the noiseless case. There, the solution is given by the
pseudo-inverse. In the noisy case, the equation is given by

x̂ = argmin
x
‖x‖2 s.t. ‖Ax− y‖22 ≤ ‖ε‖

2
2. (P2e)

2.7 Data evaluation

Table 1 gives an overview of the most important symbols and
measures used in this paper. All of the measures we are using
for evaluating the reconstruction results compare the estima-
tions to the true emissions, which are the city emission inven-
tories in this paper. If the lp error is not specified, the l2 error
is used. The primary measure we use for the error evalua-
tion of our estimates is the relative l2 error, since it provides
a measure for the highest spatial resolution of the emissions
(1 km× 1 km), while the relative l2 smoothed error shows an
error for a lower spatial resolution (5 km× 5 km) and elim-
inates errors which are due to spatial errors. Because of the
high spatial resolution of the emission fields reconstructed in
this paper, relative l2 error values greater than 1 are possible.
Those are because of spatial errors, where an emission is as-
signed to the wrong spatial location. The relative total error
disregards these spatial errors and only evaluates the differ-
ence between the total estimated emission and the true total
emission of a city.

The mean relative error is used if the relative error of emis-
sion grid points independent of their contribution to the total
amount of emissions is of interest. This metric is useful to
evaluate how well a reconstruction method estimates emit-
ters of a certain kind.

3 The sparsity/compressibility of emissions in
European cities

In the following, we determine the sparsity and compress-
ibility of real-world emissions. To do so, we study the CO2
emissions of major European cities, such as Berlin, Ham-
burg, Munich, London, Paris, and Vienna using data from the
TNO_GHGco_v1.1 emission inventory (van der Gon et al.,
2019). This database provides annual gridded anthropogenic
emissions with a resolution of about 1 km× 1 km for the ar-
eas and species. Furthermore, the emissions are classified by
a proxy, such as public power, industry, and stationary com-
bustion. Emissions of all proxies of the data set are included
for the emission data used, making the assumption that this
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Table 1. Table of symbols and measures used in the paper.

Expression Formulation Explanation

Norms

lp norm
(∑

i
x
p
i

) 1
p

lp norm for vectors x ∈ Rn.
l0 norm

∣∣{j |xj 6= 0
}∣∣ Number of non-zero elements in x.

Symbols

n dim(x) Number of unknown emissions in the model.
m dim(y) Number of measurements.
s ‖x‖0 Number of non-zero entries in x.

Relative sparsity/srel
‖x‖0

dim(x)
Number of non-zero entries in x ∈ Rn, relative to the size of the vector x.

6ns
{
x|‖x‖0 ≤ s,x ∈ Rn

}
Set of all s-sparse vectors in Rn.

Sparsity measures

σs(x)p inf
{
‖x− z‖p,z ∈6

n
s

}
lp error of the best possible approximation of the true emissions x by an s-
sparse emission field z. If s is given in a percentage, srel instead of s is used.

Measures for evaluating reconstruction results

Relative lp error

∥∥x− x̂∥∥
p

‖x‖p
Relative error of how well the estimated emissions x̂ approximate the true emis-
sions x.

Relative smoothed lp error

∥∥x ∗�− x̂ ∗�∥∥
p

‖x ∗�‖p
Relative error of smoothed reconstruction, smoothed by a periodic convolution
using a 5 km × 5 km square (�).

Relative total error

∣∣∑
ixi −

∑
i x̂i
∣∣∣∣∑

ixi
∣∣ Relative error of the sum of the estimated emissions x̂ compared to the true

emissions x.

Mean relative error
1
n

∑n

i=1

∣∣xi − x̂i ∣∣
|xi |

Mean of the relative errors of single emission grid points.

Table 2. Sparsity of the reported emission fields in different European cities. In the wavelet domain, in all of the cases a better or at least as
good a sparse approximation of the emission map exists.

City Number of emission Gini Gini σ10 %(x)2 σ10 %(x)2
fields n index index DWT DWT

Slightly compressible

London 2205 0.544 0.924 0.359 0.221
Paris 2655 0.673 0.937 0.217 0.150

Highly compressible

Berlin 1554 0.772 0.956 0.070 0.058
Hamburg 1554 0.792 0.956 0.081 0.066
Vienna 750 0.831 0.962 0.070 0.070
Munich 528 0.712 0.956 0.077 0.048

provides a good representation of typical emission fields for
the cities investigated. We measure the sparsity of the cities
using the Gini index and σ10 %(x)2 in the spatial and wavelet
domain. The results are given in Table 2. For all the cities we
consider, the wavelet domain of the emission fields achieves
a higher Gini index compared to the spatial domain. Further-
more, the approximation error of srel = 10% of the signal is

lower in the wavelet domain, except for Vienna, where this
error is identical for both domains. From these data, we con-
clude that a representation of the city emission fields in the
wavelet domain should generally be better suited for SR. We
also split the cities into two groups: cities whose emission
fields are highly compressible (Berlin, Hamburg, Vienna, and
Munich; Gini index> 0.7) and cities where the fields are sig-
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nificantly less compressible (London and Paris; Gini index
< 0.7).

4 Evaluating sparse reconstruction of GHG emissions

In the following, we define the estimation problem (Sect. 4.1)
and apply SR to several European cities (Sect. 4.2).

4.1 Formulating the estimation problem

In the following, we assume that the influence of the back-
ground GHG concentration on the measurements is fully
known. Subtracting this influence from the measurements
yields the enhancement produced by the GHG emissions in
the domain of interest. Therefore, the background can be ig-
nored, and the model is simplified to a pure transport emis-
sion system. Let the sensitivity of the GHG concentration
measurements y to the city emissions x be given by the sens-
ing matrix A:

y = Ax. (16)

The rows in A contain vectorized footprints, which deter-
mine the sensitivity of the measurements to the GHG fluxes
of different emission grid cells in the domain. These foot-
prints are determined by backward transport models, such as
the Stochastic Time-Inverted Lagrangian Transport (STILT)
model (Lin et al., 2003; Gerbig et al., 2003). In this pa-
per, a simplified linear model, the Gaussian plume model,
is used as the transport model. This approach allows vary-
ing parameters within the transport model without the com-
putationally costly calculations of the STILT model. In Ap-
pendix B, we explain how the Gaussian plume footprints are
created and show two footprints: one calculated by STILT,
the other by the Gaussian plume model (Fig. B1). In our
work, we use artificial wind data. These wind fields used,
except in Sect. 4.2.1, possess a wind coverage of ∼ 143◦.
All of the footprints generated by those wind fields are
available at https://doi.org/10.5281/zenodo.5901298 (Zanger
et al., 2022a).

Figure 2 visualizes the sensing matrix A, which repre-
sents the sensitivity of all measurements to each grid cell.
Depending on the footprints in A, there might be emis-
sions in x which are not strongly sensed. The total sen-
sitivity to a single grid cell xi is determined by the sum
of the corresponding column in the sensing matrix. If this
sensitivity is below a certain threshold,

∑
jAji ≤ γ , where

γ = 10−9 ppm · km2
· h ·mol−1 is the threshold, we remove

the ith column from the sensing matrix and do not recon-
struct this emission grid cell. For Fig. 2 this would be the first
column of the sensing matrix, where all values are 0. This
introduces some small perturbation between y and Ax, so
that Ax ≈ y. However, since we choose our threshold small
enough, this is not reflected in the solution but improves the
conditioning of A and reduces the computational effort.

Figure 2. Visualization of a sensing matrix, where the values in
the matrix are color encoded. The entry Aji in the matrix gives the
sensitivity of the j th measurement to the ith grid cell.

Figure 3. Map of exemplary measurement locations for Munich
using seven measurement stations, which represents a ratio m

n
of approximately 75 % (background: OpenStreetMap contributors,
2020).

From a physical point of view, these removed emission
grid cells are not situated upwind of the measurement sta-
tions and, therefore, cannot be well reconstructed using the
measurements. For the wavelet domain, we perform this
step on the wavelet transformed sensing matrix. Therefore,
wavelet coefficients which are weakly sensed and below the
threshold are removed.

In our study, we use both artificially created emission
fields and real emission fields (van der Gon et al., 2019).
Both field types have a spatial resolution of 1 km× 1 km. For
the artificial emissions, a domain size of 32 km× 32 km is
used, resulting in n= 1024 unknown emission grids. For the
emission inventory, the number of emission grids depends on
the size of the city (see Table 2). In order to compare emis-
sion estimates of the different domains, we vary the number
of measurement stations used for each domain, so that the
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number of measurements per unknown emission grid (m
n

) is
roughly constant. During the measurement period, each sta-
tion takes 50 samples. The measurement stations were ran-
domly distributed over a normalized area of the emission
map and scaled to the domain size of each city. An exem-
plary distribution of the stations for Munich is depicted in
Fig. 3, using m

n
≈ 75 %.

The measurements y are then created using the sensing
matrix A and the emissions x: y = Ax. In the noisy case, we
add a Gaussian distributed noise vector to the measurements:
y = Ax+ ε, ε ∼N (0,σ 2

ε ). σε is chosen based on the SNR
used.

4.2 Applying sparse reconstruction to European cities

Reconstruction results for Munich in the noiseless case us-
ing LS, SR, and SR in the wavelet domain are depicted in
Fig. 4, and the reconstruction errors for the figure can be
found in Table 3. A visual inspection indicates that SR in
the wavelet domain does resemble the real emissions best,
while SR in the spatial domain is second best. Negative
emitters are not visible because of the color scale. LS esti-
mates a total of 171 such negative emitters with a total of
2139 µmol (m2 s)−1 negative emissions, while SR estimates
only 33 negative emitters with a total of 9 µmol (m2 s)−1 neg-
ative emissions. SR in the wavelet domain estimates 50 neg-
ative emitters with a total of 59 µmol (m2 s)−1 negative emis-
sions.

In the following, we identify properties of SR and compare
them to the LS using the European city emission inventories.
The properties we identify are interconnection between SR
and CS (Sect. 4.2.1), the wavelet domain to make emissions
sparser (Sect. 4.2.2), the ability of identifying unknown emit-
ters (Sect. 4.2.3), and the number of measurements needed
(Sect. 4.2.4). We first analyze these properties in the noise-
less case (Sect. 4.2.1 to 4.2.4) and then extend those to the
noisy case (Sect. 4.2.5).

Additionally, in Appendix A, we present an example using
artificial, sparse emissions to better establish further connec-
tions between SR and CS.

4.2.1 Influence of wind coverage

We examine the effect of wind coverage on the effective-
ness of the sensing matrix for SR. The term wind coverage is
used to measure the range of wind directions during the mea-
surement period. A wind coverage of 0◦ corresponds to no
changes in the wind direction during the observations, while
a wind coverage of 360◦ means that the wind blew from all
directions during the time of observation.

The wind coverage is changed in an interval from 96 to
360◦, with a step size of 24◦, using a Gaussian plume model.
As emission field we use the CO2 city emission inventories
of Munich and Paris from Sect. 3. Figure 5 depicts the rela-
tive errors of the SR in the spatial and wavelet domain and

LS estimates of (a) Munich’s and (b) Paris’s emission fields.
Errors of the estimates for both SR in the spatial and wavelet
domain decrease with increasing wind coverage for Munich
and Paris. In contrast, the LS estimates reveal no clear im-
provement for higher wind coverages, but the relative error
of LS increases with high coverages for Munich, while for
Paris the error initially decreases, until about a coverage of
150◦, before increasing again. A sensitivity analysis, given
in Appendix F, reveals that error variations given by the dif-
ferent wind coverages are due to the shift in sensitivity to
different parts of the domain, while the sum of the sensitivi-
ties does not change.

This major improvement in SR for higher wind coverage
can be explained using the incoherence property from CS.
The coherence parameter, given in Eq. (11), calculates the
maximum similarity of how two emission grid cells are mea-
sured. For the spatial domain, by increasing the wind cov-
erage, there is greater variety in the measurements and thus
between the measurements of two different grid cells. In the
wavelet domain, we determined the coherences at different
wind coverages and found a similar behavior.

Even though for both domains the coherence for a wind
coverage of 360◦ is too high to offer reconstruction guaran-
tees, our example shows that including CS parameters in the
design process can improve reconstruction results.

4.2.2 Sparse reconstruction in the wavelet domain

In the following, we compare reconstruction results of SR in
the wavelet and spatial domains. Accordingly, s-sparse city
emission fields are used to compare these domains. More pre-
cisely, the s highest emitters of the CO2 inventory of London
are used to generate an s-sparse emission field. This allows
us to determine at which trade-off in sparsity the wavelet do-
main can achieve better results compared to the spatial do-
main. We chose the inventory of London, since it has the
emission field with the lowest compressibility (see Table 2).

Figure 6 shows the relative reconstruction error in the spa-
tial and third-level wavelet domain for different sparsity lev-
els using m

n
≈ 50 % and m

n
≈ 75 %. As expected, SR in the

spatial domain performs better for sparse emission maps (low
s). For less sparse emission maps (higher s), however, the
wavelet domain is superior.

With fewer measurements, the error in the wavelet do-
main already plateaus for srel ≈ 15 %, while for m

n
≈ 75 %

the error plateaus at srel ≈ 40 %. The results also indicate that
for the entire emission map of London (srel = 1), the perfor-
mance of SR in the wavelet domain does not increase signif-
icantly when the measurements are changed from m

n
≈ 50%

to m
n
≈ 75 %, while the performance in the spatial domain

benefits considerably. This improved performance is caused
by the higher compressibility of the emission map in the
wavelet domain, where the highest wavelet coefficients al-
ready provide a good representation of the entire emission
map, while the spatial domain needs more coefficients for
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Figure 4. Visualization of the (a) emission inventory of Munich and estimated emission fields of the inventory by using (b) LS, (c) SR, and
(d) SR in the wavelet domain. The color scale is logarithmic and given in the unit of µmol (m2 s)−1. Negative emissions are colored dark
blue and cannot be visually distinguished from low or 0 emitters. The emission inventory does not include negative emitters.

a representation with the same relative error. Therefore, the
wavelet domain requires fewer measurements compared to
the spatial domain, to achieve the same performance for
cities with emission fields that have a low compressibility
(for similar results see Sect. 4.3.3).

Our result demonstrates that the wavelet domain can help
to improve SR in those instances for which the spatial do-
main is not well suited. However, changing the domain also
alters the conditions of CS; therefore, conclusions made for
CS in the spatial domain cannot be directly transferred to the
wavelet domain.

4.2.3 Discovering unknown emitters

In the following, we evaluate how well SR can identify un-
known emitters. Assuming a good prior estimation of the
emission field, where the relative error for the real emissions

for each emitter is approximately constant and small, un-
known emitters can be assumed to make a huge contribution
to the difference between the prior expected measurements
and real measurements. Therefore, we evaluate how well the
highest emitters are reconstructed to assess the performance
of finding unknown emitters.

To do this, we consider the emission inventory data for
Munich and Paris. While Munich’s emissions inventory is
highly compressible, the emission inventory of Paris is not.
For the setup, seven measurement stations are used in Mu-
nich and 39 in Paris. This results in m

n
≈ 75 % for both cities,

making the estimation results comparable.
We employ a qualitative and a quantitative measure, both

of which are depicted in Fig. 7. The x axes show bins of
emission grids ranked by their emission strength. For exam-
ple, the first bin (0 %–0.4 %) contains the first 0.4 % highest-
emission grids, while the last bin in the lower panels of Fig. 7
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Figure 5. Estimation errors for SR in the spatial and wavelet domain and LS reconstruction of (a) Munich’s and (b) Paris’s emissions with
footprints covering different amount of wind directions. With a higher wind coverage, the estimation result using SR improves. The LS
has no clear improvement for higher wind coverages, but its performance decreases with high coverages for Munich, while for Paris the
performance first increases until about a coverage of 150◦ before decreasing again.

Figure 6. Comparison of the LS (yellow) and SR in the spatial (blue) and wavelet (red) domains in terms of relative sparsity srel. An
emission map artificially generated from London’s emission inventory with a total of 2205 unknown emitters was used. The x axis represents
the portion of these emitters that were used (the emitters are sorted from large to small). In (a) 22 measurement stations with a total of 1100
measurements and (b) 33 measurement stations with a total of 1650 measurements are used.

contains emission grids which are among the 36.2 %–53.2 %
highest-emission grids. Since the emissions have a high com-
pressibility (the first highest emissions make a huge contri-
bution to the total emissions), we use a logarithmic scale for
the bins.

The qualitative measure (see upper panels in Fig. 7) com-
pares the fraction of the highest emitters in the inventory
matching those of the estimation (the higher the ratio, the
better). In Munich, all three methods reconstruct the same
largest 0.4 % emitters. For Paris, SR in the spatial domain
performs best followed by the LS in the case of the largest
0.4 % emitters. For lower emitters, SR in the wavelet domain
performs best for both cities. While the performance gain of
SR and SR DWT over the LS method is quite large in Mu-
nich, which has a highly compressible emission inventory,

the gain is smaller in Paris, which has a slightly compress-
ible inventory.

The quantitative measure (see lower panels in Fig. 7) com-
pares the relative error in the reconstructed emissions (the
lower, the better). For the largest 0.4 % emitters, SR in the
spatial domain performs best and can reconstruct these emis-
sions with an error of less than 0.7 % in Munich and 3 %
in Paris. When analyzing slightly lower emissions, SR in
the spatial domain performance drops significantly and the
wavelet domain performs best in both cities.

The results indicate that SR in the spatial domain works
particularly well for the highest emitters (largest 0.4 % in our
examples), while SR in the wavelet domain performs well
for a broader range of high emitters. The LS performance
is much less sensitive to the emission strength of individual
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Figure 7. Qualitative and quantitative measure of how well SR and LS estimate the highest emissions for (a) Munich and (b) Paris.

strong emitters, which is not beneficial for estimating large
unknown emitters.

These results for the same scenario but with fewer mea-
surement stations (m

n
≈ 50 %) can be found in Appendix D.

4.2.4 Number of measurements needed

Previous scenarios have presented comparisons between SR
and LS using m

n
≈ 50 % or m

n
≈ 75 %. However, the question

of how many measurements m are needed to produce results
of a certain accuracy remains unanswered. To determine this,
we vary the number of measurements per station, which leads
to a variation in m

n
.

Figure 8 depicts the relative estimation error for Munich
and Paris for varying m

n
. In Munich, where the emissions are

highly compressible, the reconstruction error for SR in the
spatial domain already drops sharply for m

n
& 10 %. SR in

the wavelet domain needs more measurements but performs
similar to the spatial domain using m

n
& 23 % and even per-

forms slightly better than the spatial domain for m
n
> 50 %.

The LS also sees a steep improvement with m
n
≈ 30 % but

does not produce results as good as SR.
For Paris, where the emissions have a low compressibil-

ity, SR in the spatial domain performs worst for m
n
< 20 %,

while the wavelet domain performs about the same as the LS

for this number of measurements. For a higher number of
measurements (m

n
> 0.2), both SR methods show increased

performance and both perform better than the LS. Overall,
SR in the wavelet domain performs best.

These trends are also confirmed for the emissions of other
cities (see Supplement). These results demonstrate that when
using SR instead of the LS, a higher undersampling with
fewer errors is possible, especially for highly compressible
emissions (as in Munich).

4.2.5 Measurement noise

To make the results applicable to real-world scenarios, noise
also has to be taken into consideration. There are different
types of noise, including measurement noise, transport error,
and representation error. In the following, we assume mea-
surement errors with an SNR typical of column measure-
ments. Chen et al. (2016) report measurement errors for col-
umn measurements for an average time of 10 min for CO2 as
0.04 to 0.05 ppm and for CH4 as 0.2 ppb. Jones et al. (2021)
show that CH4 concentration enhancements measured for the
city of Indianapolis are in the order of several parts per bil-
lion. Below, we assume an SNR of 20 dB, which corresponds
to enhancements of 2 ppb for methane or 0.4 to 0.5 ppm for
CO2.

https://doi.org/10.5194/gmd-15-7533-2022 Geosci. Model Dev., 15, 7533–7556, 2022



7544 B. Zanger et al.: Recovery of sparse urban greenhouse gas emissions

Figure 8. Relative error for SR, SR with DWT, and LS at different degrees of undersampling, for (a) Munich and (b) Paris.

Figure 9. Reconstruction errors of SR in the spatial and wavelet
domain as well as LS for Munich when varying the SNR and m

n ≈

1.5.

As emission fields, we use the inventory data for Munich.
Compared to the noiseless case, we increase the number of
measurement stations to m

n
≈ 1.5, which is 15 measurement

stations with a total of 750 measurements. Figure 9 depicts
how the relative l2 error changes for different SNRs in the
Munich simulation. The figure shows that the results we ob-
tain for an SNR of 20 dB should not differ significantly for
slightly lower or higher SNRs between 15 and 25 dB. There-
fore, we believe that despite our noise assumptions, which
are optimistic compared to real-world scenarios, our results
are qualitatively valid. We provide a variance map for SR
with an SNR of 20 dB in Appendix E.

Here, we show the relative error of the estimated emission
fields for the noisy case at different spatial resolutions of the
emissions, both for SR in the spatial domain and wavelet do-
main and for the LS (see Fig. 10a). For this case we have run
the reconstruction of 250 different noise vectors and show
the mean estimation result. Furthermore, we assess the un-
dersampling capability in the noisy case (see Fig. 10b). For
SR in the spatial domain, the relative error is only slightly
higher for high resolutions and remains fairly constant across
other spatial resolutions, suggesting that almost all errors oc-
cur in the reconstruction of emission strength rather than in
the localization of emitters. Both SR in the wavelet domain
and the LS have a high relative error for high resolutions (be-
low 7 km× 7 km), while at lower resolutions both perform
better than SR in the spatial domain, indicating that most of
the error is due to incorrect localization of emitters.

As a result, they do not provide accurate localization of the
emitters. To overcome this, more measurements are needed
for SR in the wavelet domain and LS. To determine the num-
ber of measurements required, we show the relative errors
for the highest resolution (1 km× 1 km) when varying the
number of measurements in Fig. 10b. For SR in the spatial
domain, the relative error drops significantly for m

n
< 50 %

and performs better than the other reconstruction methods
for more measurements. The wavelet domain performs sim-
ilarly to the LS for m

n
< 1 and better for m

n
> 1. These re-

sults indicate that SR in the spatial domain, for Munich, is
more robust against noise, while the wavelet domain is not
as robust (many more measurements are needed than in the
noiseless case for similar results).

Next, we analyze the performance of finding unknown
emitters in the noisy case. For this purpose, we use the same
setup as in Sect. 4.2.3 but solely look at the emissions in Mu-
nich. We again use m

n
≈ 1.5 and add the noise with an SNR of

20 dB. We employ a qualitative and a quantitative measure,
both of which are depicted in Fig. 11 (for the description
of the measures, see Sect. 4.2.3). SR is the only method to
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Figure 10. Reconstruction errors use SR in the spatial and wavelet domain as well as the LS for Munich with an SNR of 20 dB, where
(a) shows the average relative error for the reconstruction of 250 different noise vectors at different levels of resolutions using m/n≈ 1.5
and (b) shows the relative error for the highest resolution (1 km× 1 km) when varying the number of measurements.

Figure 11. Qualitative and quantitative measure of how well SR and LS estimate the highest emissions with a noise of 20 dB for Munich.
The qualitative plot shows how many percent of the highest emissions in the inventory are also contained in the same highest amount of
emission of the reconstruction. The quantitative plot shows the mean relative errors for different emission strengths.

identify the 0.4 % highest emitters (qualitative measure) and
estimates their emissions with a significantly lower relative
error of 2 % (quantitative measure). Slightly smaller emitters
are better estimated by the SR in the wavelet domain. For
even lower emitters, there is no clear winner of which method
estimates them best. Compared to the noiseless case, the es-
timation errors are in general larger, and SR in the wavelet
domain does not achieve as promising results as in the noise-
less case. SR in the spatial domain remains sensitive to the
largest emitters in the noisy case. These results for Paris can
be found in the Supplement.

5 Broader comparison of sparse reconstruction for
European cities

In the following, case studies on emission fields of all cities
considered in Sect. 3 are introduced to more broadly compare
the performance of SR. The measurement configuration cor-
responds to the specifications in Sect. 4.1. The emissions are

reconstructed using SR in the spatial and wavelet domains as
well as the LS, first with m

n
≈ 75 % in the noiseless case and

then with m
n
≈ 1.5 in the noisy case.

To compare the performance, we measure relative errors,
relative smoothed errors (for a spatial resolution of 5 km ×
5 km), and relative total errors. The results for the noise-
less case are in Table 3. At the highest spatial resolution
(1 km× 1 km, right column in Table 3), SR performs much
better than LS for the highly compressible emission fields
in both domains. For the cities with emission fields that are
slightly compressible, the SR performance is significantly
worse than for the other cities but still slightly better than LS.
For a lower spatial resolution of 5 km× 5 km (middle col-
umn in Table 3), the error of all methods decreases. Among
the highly compressible emissions, SR still performs signif-
icantly better than LS. Both for London and Paris (slightly
compressible), all methods produce a similar error, with the
LS giving the smallest error in London and SR in the spa-
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Table 3. Reconstruction performances for SR in the spatial and wavelet domain as well as for LS by measuring the relative error
(1 km× 1 km), relative smoothed error (5 km× 5 km), and the relative total error for different European cities. The best approach for each
city and type of error is highlighted in bold.

Case study
Relative total error Relative smoothed error Relative error

(5 km× 5 km) (1 km× 1 km)

SR SR DWT LS SR SR DWT LS SR SR DWT LS

Slightly compressible

London 0.0% 0.9% 0.0% 4.5% 4.3% 4.2% 32.2% 27.8% 31.5%
Paris 0.0% 1.4% 0.0% 4.4% 6.4% 6.7% 27.4% 29.4% 43.2%

Highly compressible

Berlin 0.0% 0.7% 0.2% 2.2% 2.7% 18.5% 8.1 % 8.1 % 59.0%
Hamburg 0.0% 1.0% 0.4% 1.9% 2.3% 15.0% 8.2 % 8.8% 62.2%
Munich 3.1% 1.3% 4.3% 3.5% 2.4 % 10.9% 6.1% 3.9 % 26.2%
Vienna 2.2% 1.5% 1.3% 4.9% 3.2 % 13.0% 6.9% 6.2 % 48.8%

Table 4. Reconstruction performances for SR in the spatial and wavelet domain as well as for LS by using m
n ≈ 1.5 with an SNR of 20.0 dB

for different European cities. The results are evaluated using the relative error (1 km× 1 km), relative smoothed error (5 km× 5 km), and the
relative total error. The best approach for each city and type of error is highlighted in bold.

Case study
Relative total error Relative smoothed error Relative error

(5 km× 5 km) (1 km× 1 km)

SR SR DWT LS SR SR DWT LS SR SR DWT LS

Slightly compressible

London 12.5% 1.6% 2.2% 38.4% 19.9% 19.9% 162.3% 81.7% 81.6 %
Paris 11.8% 2.2% 1.9% 32.5% 24.0% 24.4% 144.4% 83.9% 83.1´%

Highly compressible

Berlin 10.6% 0.1% 1.3% 18.0% 29.0% 32.6% 36.5% 85.3% 85.8%
Hamburg 10.1% 1.2% 1.5% 20.7% 32.7% 34.1% 70.3% 88.2% 87.0%
Munich 19.3% 2.6% 5.6% 16.9% 23.6% 32.8% 21.4% 70.8% 84.2%
Vienna 11.2% 21.6% 6.3% 20.2% 61.5% 41.4% 38.9% 96.7% 92.3%

tial domain giving the smallest error in Paris. For the total
emissions, all reconstruction methods perform similarly.

These results support our previous findings that SR per-
forms well at high resolutions for cities with highly com-
pressible emissions.

Next, we consider the noisy case with an SNR of 20.0 dB
and m

n
≈ 1.5 (see the results in Table 4).

For the cities that are slightly compressible, SR in the spa-
tial domain performs the worst, while SR in the wavelet do-
main and the LS perform similarly.

For the highly compressible cities, SR in the spatial do-
main produces the best results for the 1 km× 1 km and
5 km× 5 km resolution and is worse than the other recon-
struction methods for the total emissions (except for Vienna).
Furthermore, SR in the wavelet domain performs better than
the LS. In contrast to the noiseless case, SR in the wavelet
domain performs worse than SR in the spatial domain for
high resolutions (. 5 km× 5 km). Both results support our

findings from Sect. 4.2.5 that SR in the spatial domain accu-
rately localizes emissions and that SR in the wavelet domain
is not as robust to noise as the spatial domain for high reso-
lutions.

6 Conclusions

In this paper, we introduced sparse reconstruction (SR) as a
novel method for the inversion of urban GHG emissions and
further provided key examples to identify the advantages of
SR to inversely model emissions.

SR can be easily integrated into existing top–down frame-
works for estimating emission. We examined the applicabil-
ity of this method by evaluating the sparseness of emissions
from several European cities. Our results indicate that the
emissions from most of these cities are sparse and that SR
is applicable. We also showed that a wavelet transform in-
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creases the sparsity of urban emissions, making SR applica-
ble to cities with less sparse emissions. SR is known to have
reconstruction guarantees if conditions of compressed sens-
ing (CS) are satisfied. We tested different CS conditions for
various wind fields and showed that wind fields with better
CS conditions do significantly increase the performance of
SR.

Compared to state-of-the-art inversion methods using
Gaussian priors, our method requires fewer measurements
and provides better localization and quantification of un-
known emitters.

SR works best if the underlying representation of the emis-
sions is sparse. In this paper, we employed the wavelet trans-
form to increase the sparsity; however, other transformations,
such as a curvelet transform or more general dictionary rep-
resentations, might be even more suited for specific spatial
domains. Finding such transformations which also work well
with CS conditions is challenging, and future studies should
be devoted to them.

Appendix A: Boundaries of the emission inventories

Table A1 shows the longitude and latitude boundaries used to
create the CO2 emission fields for the European cities from
the TNO_GHGco_v1.1 emission inventory.

Table A1. Longitude and latitude boundaries used to create the CO2 emission inventories for the European cities from the TNO_GHGco_v1.1
emission inventory.

City Southernmost latitude Northernmost latitude Westernmost longitude Easternmost longitude

Slightly compressible

London 51.30◦ 51.70◦ −0.52◦ 0.21◦

Paris 48.62◦ 49.10◦ 1.94◦ 2.66◦

Highly compressible

Berlin 52.34◦ 52.68◦ 13.07◦ 13.66◦

Hamburg 53.37◦ 53.71◦ 9.67◦ 10.27◦

Vienna 48.07◦ 48.31◦ 16.12◦ 16.52◦

Munich 48.06◦ 48.25◦ 11.36◦ 11.72◦
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Appendix B: Wind fields and generation of the sensing
matrix

The sensing matrices we use consist of vectorized footprints
generated by the Gaussian plume model with artificial wind
data. The Gaussian plume model provides a good enough ap-
proximation for Lagrangian particle dispersion models for
the purpose of this paper. The footprints are generated for
a high-resolution grid using a dynamic Gaussian plume with
varying wind speed, direction, and diffusion. The footprints
are then scaled to the domain size of the city. Because of the
scaling, the wind speed and diffusion changes for each city.
Nevertheless, we think that this approach makes the recon-
struction performances for different cities more comparable
than using different footprints for every city.

For Sect. 4.2.1, we use a static Gaussian plume model to
generate footprints for different wind coverages. This allows
us to ignore additional effects from the dynamical case, for
example, in the dynamic case the change in the wind di-
rection produces spiral-looking footprints. These footprints
have a different shape compared to the footprints generated
using a static Gaussian plume model. By using a static model,
the footprints are more predictable and systematic, which
makes the results of different wind coverages more compa-
rable to each other.

Figure B1 shows a comparison between a STILT footprint
for Munich and a Gaussian plume footprint used in our work,
where the two footprints are generated using different wind
fields.

Figure B1. Comparison of a STILT footprint to a Gaussian plume footprint, where different wind fields have been used.
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Appendix C: Recovery of sparse emissions

Consider s emitters producing an s-sparse emission field in
a city. We distribute these emitters over the city using a
Gaussian distribution, such that the probability for an emit-
ter in the center of the city is higher compared to out-
side of the city. Furthermore, we use a Gaussian distribu-
tion to model the emission strength of each emitter with
a mean value of 10 µmol (m2 s)−1 and a standard deviation
of 1 µmol (m2 s)−1, so that all emitters have roughly a sim-
ilar contribution to the total emissions. In Fig. C1, the re-
construction errors for the spatial domain using SR and LS
are depicted. SR allows exact recovery for srel . 13% non-
zero emissions using m

n
≈ 50% and for srel > 35% non-zero

emissions using m
n
≈ 75%. In contrast, the relative error of

LS is generally much higher but decreases with a larger num-
ber of measurements.

Figure C1. Reconstruction errors for sparse cities with (a) 50 % and (b) 75 % measurements m per emission fields n. Using SR (blue line),
it is possible to reconstruct sparse emissions. By increasing the number of measurement stations, and therefore observations, more emitters
can be reconstructed using SR (a up to 13 %; b up to 35 % non-zero emission cells). For the LS method (red line), the relative error decreases
both for less sparse signals and with a larger number of observations.

Figure C2. Visualization of falsely discovered (dark blue), undiscovered (yellow), and discovered (cyan) emissions in x by (a) SR and
(b) LS.

These results demonstrate the power of SR for sparse
emission fields and illustrate the link between SR and CS. As
shown in Sect. 2.4, the sensing matrix A must satisfy some
sufficient conditions to ensure that CS yields the best possible
reconstruction. However, in real-world scenarios, it is chal-
lenging to verify these conditions. By using a Monte Carlo
algorithm, we found counterexamples that showed δ2s > 1
for already small s (both for Gaussian plume footprints and
STILT footprints). Thus, the sensing matrix we use here does
not guarantee CS for all cases. Nevertheless, A can be use-
ful if it satisfies the CS conditions for some specific emission
distributions of interest.

Next, we consider the case with m
n
≈ 75% and choose a

number of emitters s, such that the relative error produced
by SR and the LS is similar.
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Therefore, both methods produce the same relative error,
which allows us to compare the spatial distribution of the
error on an equal basis. This is the case for srel = 46.9%,
where the relative error for SR is 28.1%, while the relative
error for LS is 27.3 %. We focus on the following questions:

– which emitters are found correctly (discovered)?

– which emitters are not found (undiscovered)?

– which emitters are discovered, even though there is no
emitter there (falsely discovered)?

Figure C2 depicts the discovered, not discovered, and falsely
discovered emitters for SR (panel a) and LS (panel b). SR re-
constructs most emitters correctly, only 1.1% of the emitters
are undiscovered (yellow), and 8.0% are falsely discovered
(dark blue). In contrast, the LS has no emitters which have
not been found but 45.6% falsely discovered emitters. This is
because the LS prefers smooth estimates, which is equivalent
to estimating emitters everywhere. This is also seen by the
fraction between the emissions estimated for falsely discov-
ered emitters and the total estimated emissions. While this
fractions is only 3.0 % for SR, for LS this fraction is 12.2%.

These results demonstrates the advantage of SR for the lo-
calization of emitters. This property is especially useful to
find unknown emitters, since the spatial certainty of emitters
for SR is much higher.

Geosci. Model Dev., 15, 7533–7556, 2022 https://doi.org/10.5194/gmd-15-7533-2022
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Appendix D: Discovering unknown emitters using fewer
measurements

In Sect. 4.2.3 we showed that SR is better at finding high
emitters compared to LS and can reconstruct them with
smaller errors. This is visualized by Fig. 7, which has been
created using m

n
≈ 75%. In the following, we visualize this

result using only m
n
≈ 50%.

Figure D1. Qualitative and quantitative measure of how well SR and LS estimate the highest emitters for Munich (a) and Paris (b) using
m
n ≈ 50%.

The results are depicted in Fig. D1. Compared to the case
with more measurements, for Munich, SR in the spatial do-
main performs better in the qualitative measure compared to
the wavelet domain. Furthermore, for Paris, the margin be-
tween the performance of SR in the wavelet domain and the
other methods has increased.
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Appendix E: Uncertainty quantification

Uncertainty quantification for sparse reconstruction is dis-
tinctly different compared to uncertainty quantification for
LS reconstruction. First, while for the LS fit with Gaussian
noise a closed-form solution exists, there does not exist any
closed-form solution for sparse reconstruction.

In the following we use the uncertainty quantification ap-
proach from Hase et al. (2017) in order to derive a variance
plot of the reconstruction result by applying bootstrapping.
This gives us the covariance matrices for SR in the spatial
and wavelet domain. We only use the variances of the ma-
trix and plot the standard deviations for every single recon-
structed emission, which is depicted in Fig. E1. For the spa-
tial domain, the standard deviation is localized around cer-
tain areas in the map, while for the wavelet domain, the stan-
dard deviation covers much larger areas of the map. This lets
one believe that a reconstructed emission in the spatial do-
main has a higher certainty of location compared to SR in
the wavelet domain. This assumption is verified by Fig. 10.

Figure E1. Uncertainty of the emission estimates for Munich with m
n ≈ 1.5 and an SNR of 20 dB for SR in the (a) spatial domain and

(b) wavelet domain.
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Appendix F: Least square sensitivity for different wind
coverages

In the following, we show that the changes in relative error
for LS in Sect. 4.2.1 are due to the fact that the sensitivity to
different areas of the map changes, while the total sensitivity
does not change. Figure F1 depicts the sensitivity map of Mu-
nich for a wind coverage of (a) 72◦ and (b) 360◦. For 72◦, the
southeast has good sensitivity to the estimation, while other
parts, especially the west of the city, are weakly sensitive. For
360◦, there is no area in the city which is not sensitive to the
estimation. However, some areas are less sensitive than in the
72◦ case, especially the southeast. If we compare this sensi-
tivity map to the emission map of Munich in Fig. 4, we see
that the strongest emitter is positioned in the southeast. This
explains why, for the case of 72◦, the relative error of the LS
is lower than for the 360◦ case. If we look at the mean sen-
sitivity of an emission grid cell for both cases, we find that
those are exactly the same (0.6629), and a change in wind
coverage does not improve the total sensitivity.

Figure F1. Sensitivity map of LS in Munich for a wind coverage of (a) 72◦ and (b) 360◦. In (a), the southeast has good sensitivity to the
estimation, while the west and north of the city are only weakly sensitive. In (b), there is no area which is not sensitive to the estimation, but
the areas in the southeast are less sensitive.
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Code and data availability. The code for this paper is
written in Matlab 2021a and available on Zenodo:
https://doi.org/10.5281/zenodo.6757562 (Zanger et al.,
2022b). The Gaussian plume footprints are available at
https://doi.org/10.5281/zenodo.5901298 (Zanger et al., 2022a). The
TNO_GHGco_v1.1 emission inventory (van der Gon et al., 2019)
is not publicly available. The latitude and longitude boundaries
used to generate the city emission fields from the inventory are
given in Appendix A.
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