Articles | Volume 15, issue 19
Development and technical paper
05 Oct 2022
Development and technical paper |  | 05 Oct 2022

Repeatable high-resolution statistical downscaling through deep learning

Dánnell Quesada-Chacón, Klemens Barfus, and Christian Bernhofer

Related authors

Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416,,, 2024
Short summary
Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724,,, 2022
Short summary
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239,,, 2022
Short summary
An analysis of temporal scaling behaviour of extreme rainfall in Germany based on radar precipitation QPE data
Judith Marie Pöschmann, Dongkyun Kim, Rico Kronenberg, and Christian Bernhofer
Nat. Hazards Earth Syst. Sci., 21, 1195–1207,,, 2021
Short summary
Evapotranspiration at four sites representing land-use and height gradient in the Eastern Ore Mountains (Germany)
Uta Moderow, Stefanie Fischer, Thomas Grünwald, Ronald Queck, and Christian Bernhofer
Hydrol. Earth Syst. Sci. Discuss.,,, 2020
Preprint withdrawn
Short summary

Related subject area

Atmospheric sciences
Modeling collision–coalescence in particle microphysics: numerical convergence of mean and variance of precipitation in cloud simulations using the University of Warsaw Lagrangian Cloud Model (UWLCM) 2.1
Piotr Zmijewski, Piotr Dziekan, and Hanna Pawlowska
Geosci. Model Dev., 17, 759–780,,, 2024
Short summary
Modeling below-cloud scavenging of size-resolved particles in GEM-MACHv3.1
Roya Ghahreman, Wanmin Gong, Paul A. Makar, Alexandru Lupu, Amanda Cole, Kulbir Banwait, Colin Lee, and Ayodeji Akingunola
Geosci. Model Dev., 17, 685–707,,, 2024
Short summary
Impacts of a double-moment bulk cloud microphysics scheme (NDW6-G23) on aerosol fields in NICAM.19 with a global 14 km grid resolution
Daisuke Goto, Tatsuya Seiki, Kentaroh Suzuki, Hisashi Yashiro, and Toshihiko Takemura
Geosci. Model Dev., 17, 651–684,,, 2024
Short summary
Sensitivity of air quality model responses to emission changes: comparison of results based on four EU inventories through FAIRMODE benchmarking methodology
Alexander de Meij, Cornelis Cuvelier, Philippe Thunis, Enrico Pisoni, and Bertrand Bessagnet
Geosci. Model Dev., 17, 587–606,,, 2024
Short summary
A simple and realistic aerosol emission approach for use in the Thompson–Eidhammer microphysics scheme in the NOAA UFS Weather Model (version GSL global-24Feb2022)
Haiqin Li, Georg A. Grell, Ravan Ahmadov, Li Zhang, Shan Sun, Jordan Schnell, and Ning Wang
Geosci. Model Dev., 17, 607–619,,, 2024
Short summary

Cited articles

Alahmari, S. S., Goldgof, D. B., Mouton, P. R., and Hall, L. O.: Challenges for the Repeatability of Deep Learning Models, IEEE Access, 8, 211860–211868,, 2020. a, b, c, d
Allaire, J. J., Ushey, K., Tang, Y., and Eddelbuettel, D.: Reticulate: R Interface to Python, GitHub [code], (last access: 12 December 2021​​​​​​​), 2017. a
Association for Computing Machinery (ACM): Artifact Review and Badging Version 2.0, ACM,, 2021. a
Baño-Medina, J., Manzanas, R., and Gutiérrez, J. M.: Configuration and intercomparison of deep learning neural models for statistical downscaling, Geosci. Model Dev., 13, 2109–2124,, 2020. a, b, c, d, e, f, g, h, i, j, k, l
Short summary
We improved the performance of past perfect prognosis statistical downscaling methods while achieving full model repeatability with GPU-calculated deep learning models using the TensorFlow, climate4R, and VALUE frameworks. We employed the ERA5 reanalysis as predictors and ReKIS (eastern Ore Mountains, Germany, 1 km resolution) as precipitation predictand, while incorporating modern deep learning architectures. The achieved repeatability is key to accomplish further milestones with deep learning.