Articles | Volume 15, issue 19
https://doi.org/10.5194/gmd-15-7325-2022
https://doi.org/10.5194/gmd-15-7325-2022
Model description paper
 | 
04 Oct 2022
Model description paper |  | 04 Oct 2022

FESDIA (v1.0): exploring temporal variations of sediment biogeochemistry under the influence of flood events using numerical modelling

Stanley I. Nmor, Eric Viollier, Lucie Pastor, Bruno Lansard, Christophe Rabouille, and Karline Soetaert

Related authors

Characterization of the benthic biogeochemical dynamics after flood events in the Rhône River prodelta: a data–model approach
Eva Ferreira, Stanley Nmor, Eric Viollier, Bruno Lansard, Bruno Bombled, Edouard Regnier, Gaël Monvoisin, Christian Grenz, Pieter van Beek, and Christophe Rabouille
Biogeosciences, 21, 711–729, https://doi.org/10.5194/bg-21-711-2024,https://doi.org/10.5194/bg-21-711-2024, 2024
Short summary

Related subject area

Biogeosciences
Parameterization toolbox for a physical–biogeochemical model compatible with FABM – a case study: the coupled 1D GOTM–ECOSMO E2E for the Sylt–Rømø Bight, North Sea
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025,https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary
H2MV (v1.0): global physically constrained deep learning water cycle model with vegetation
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025,https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
NN-TOC v1: global prediction of total organic carbon in marine sediments using deep neural networks
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
Geosci. Model Dev., 18, 2521–2544, https://doi.org/10.5194/gmd-18-2521-2025,https://doi.org/10.5194/gmd-18-2521-2025, 2025
Short summary
China Wildfire Emission Dataset (ChinaWED v1) for the period 2012–2022
Zhengyang Lin, Ling Huang, Hanqin Tian, Anping Chen, and Xuhui Wang
Geosci. Model Dev., 18, 2509–2520, https://doi.org/10.5194/gmd-18-2509-2025,https://doi.org/10.5194/gmd-18-2509-2025, 2025
Short summary
Process-based modeling of solar-induced chlorophyll fluorescence with VISIT-SIF version 1.0
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025,https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary

Cited articles

Ait Ballagh, F. E., Rabouille, C., Andrieux-Loyer, F., Soetaert, K., Lansard, B., Bombled, B., Monvoisin, G., Elkalay, K., and Khalil, K.: Spatial variability of organic matter and phosphorus cycling in rhône river prodelta sediments (NW mediterranean sea, france): A model-data approach, Estuaries Coasts, 44, 1765–1789, 2021. 
Aller, R. C.: Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors, Marine Chem., 61, 143–155, 1998. 
Aller, R. C.: Conceptual models of early diagenetic processes: The muddy seafloor as an unsteady, batch reactor, J. Marine Res., 62, 815–835, 2004. 
Aller, R. C. and Aller, J. Y.: Meiofauna and solute transport in marine muds, Limnol. Oceanogr., 37, 1018–1033, 1992. 
Anschutz, P., Jorissen, F., Chaillou, G., Abu-Zied, R., and Fontanier, C.: Recent turbidite deposition in the eastern Atlantic: early diagenesis and biotic recovery, J. Marine Res., 60, 835–854, 2002. 
Download
Short summary
The coastal marine environment serves as a transition zone in the land–ocean continuum and is susceptible to episodic phenomena such as flash floods, which cause massive organic matter deposition. Here, we present a model of sediment early diagenesis that explicitly describes this type of deposition while also incorporating unique flood deposit characteristics. This model can be used to investigate the temporal evolution of marine sediments following abrupt changes in environmental conditions.
Share