Articles | Volume 15, issue 19
https://doi.org/10.5194/gmd-15-7325-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7325-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
FESDIA (v1.0): exploring temporal variations of sediment biogeochemistry under the influence of flood events using numerical modelling
Stanley I. Nmor
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement,
LSCE/IPSL,CEA-CNRS-UVSQ-Université Paris Saclay, 91198 Gif sur Yvette,
France
Eric Viollier
Laboratoire des Sciences du Climat et de l'Environnement,
LSCE/IPSL,CEA-CNRS-UVSQ-Université Paris Saclay, 91198 Gif sur Yvette,
France
Institut de Physique Du Globe de Paris, 1 Rue Jussieu, Université Paris Cité, 75238, Paris CEDEX 05, France
Lucie Pastor
Laboratoire Environnement Profond, Ifremer – Centre de Bretagne,
29280 Plouzané, France
Bruno Lansard
Laboratoire des Sciences du Climat et de l'Environnement,
LSCE/IPSL,CEA-CNRS-UVSQ-Université Paris Saclay, 91198 Gif sur Yvette,
France
Christophe Rabouille
Laboratoire des Sciences du Climat et de l'Environnement,
LSCE/IPSL,CEA-CNRS-UVSQ-Université Paris Saclay, 91198 Gif sur Yvette,
France
Karline Soetaert
Royal Netherlands Institute of Sea Research (NIOZ), Department of
Estuarine and Delta Systems, Korringaweg 7, P.O. Box 140, 4401 NT Yerseke,
the Netherlands
Related authors
Eva Ferreira, Stanley Nmor, Eric Viollier, Bruno Lansard, Bruno Bombled, Edouard Regnier, Gaël Monvoisin, Christian Grenz, Pieter van Beek, and Christophe Rabouille
Biogeosciences, 21, 711–729, https://doi.org/10.5194/bg-21-711-2024, https://doi.org/10.5194/bg-21-711-2024, 2024
Short summary
Short summary
The study provides new insights by examining the short-term impact of winter floods on biogeochemical sediment processes near the Rhône River (NW Mediterranean Sea). This is the first winter monitoring of sediment and porewater in deltaic areas. The coupling of these data with a new model enables us to quantify the evolution of biogeochemical processes. It also provides new perspectives on the benthic carbon cycle in river deltas considering climate change, whereby flooding should intensify.
Evert de Froe, Christian Mohn, Karline Soetaert, Anna-Selma van der Kaaden, Gert-Jan Reichart, Laurence H. De Clippele, Sandra R. Maier, and Dick van Oevelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3385, https://doi.org/10.5194/egusphere-2025-3385, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Cold-water corals are important reef-building animals in the deep sea, and are found all over the world. So far, researchers have been mapping and predicting where cold-water corals can be found using video transects and statistics. This study provides the first process-based model in which corals are predicted based on ocean currents and food particle movement. The renewal of food by tidal currents close to the seafloor and corals proved essential in predicting where they can grow or not.
Samantha Siedlecki, Stanley Nmor, Gennadi Lessin, Kelly Kearney, Subhadeep Rakshit, Colleen Petrik, Jessica Luo, Cristina Schultz, Dalton Sasaki, Kayla Gillen, Anh Pham, Christopher Somes, Damian Brady, Jeremy Testa, Christophe Rabouille, Isa Elegbede, and Olivier Sulpis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1846, https://doi.org/10.5194/egusphere-2025-1846, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Benthic biogeochemical models are essential for simulating seafloor carbon cycling and climate feedbacks, yet vary widely in structure and assumptions. This paper introduces SedBGC_MIP, a community initiative to compare existing models, refine key processes, and assess uncertainty. We highlight discrepancies through case studies and introduce needs including observational benchmarks. Ultimately, we seek to improve climate and resource projections.
Marius Buydens, Emil De Borger, Lorenz Meire, Samuel Bodé, Antonio Schirone, Karline Soetaert, Ann Vanreusel, and Ulrike Braeckman
EGUsphere, https://doi.org/10.5194/egusphere-2025-102, https://doi.org/10.5194/egusphere-2025-102, 2025
Short summary
Short summary
As the Greenland Ice Sheet retreats, it is important to understand how this impacts the carbon burial in Greenland fjords. By comparing a fjord with marine-terminating glaciers versus one fed by a land-terminating glacier, we see that the productive waters associated to marine-terminating glaciers not necessary lead to enhanced carbon burial. Instead, we highlight the complex interplay of physical, biological, and sedimentary processes that mediate carbon dynamics in these fjords.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 17, 1075–1100, https://doi.org/10.5194/essd-17-1075-2025, https://doi.org/10.5194/essd-17-1075-2025, 2025
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones, and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and includes the quality flag for each sample.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
Biogeosciences, 21, 4251–4272, https://doi.org/10.5194/bg-21-4251-2024, https://doi.org/10.5194/bg-21-4251-2024, 2024
Short summary
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
Anna-Selma van der Kaaden, Dick van Oevelen, Christian Mohn, Karline Soetaert, Max Rietkerk, Johan van de Koppel, and Theo Gerkema
Ocean Sci., 20, 569–587, https://doi.org/10.5194/os-20-569-2024, https://doi.org/10.5194/os-20-569-2024, 2024
Short summary
Short summary
Cold-water corals (CWCs) and tidal waves in the interior of the ocean have been connected in case studies. We demonstrate this connection globally using hydrodynamic simulations and a CWC database. Internal-tide generation shows a similar depth pattern with slope steepness and latitude as CWCs. Our results suggest that internal-tide generation can be a useful predictor of CWC habitat and that current CWC habitats might change following climate-change-related shoaling of internal-tide generation.
Anna-Selma van der Kaaden, Sandra R. Maier, Siluo Chen, Laurence H. De Clippele, Evert de Froe, Theo Gerkema, Johan van de Koppel, Furu Mienis, Christian Mohn, Max Rietkerk, Karline Soetaert, and Dick van Oevelen
Biogeosciences, 21, 973–992, https://doi.org/10.5194/bg-21-973-2024, https://doi.org/10.5194/bg-21-973-2024, 2024
Short summary
Short summary
Combining hydrodynamic simulations and annotated videos, we separated which hydrodynamic variables that determine reef cover are engineered by cold-water corals and which are not. Around coral mounds, hydrodynamic zones seem to create a typical reef zonation, restricting corals from moving deeper (the expected response to climate warming). But non-engineered downward velocities in winter (e.g. deep winter mixing) seem more important for coral reef growth than coral engineering.
Eva Ferreira, Stanley Nmor, Eric Viollier, Bruno Lansard, Bruno Bombled, Edouard Regnier, Gaël Monvoisin, Christian Grenz, Pieter van Beek, and Christophe Rabouille
Biogeosciences, 21, 711–729, https://doi.org/10.5194/bg-21-711-2024, https://doi.org/10.5194/bg-21-711-2024, 2024
Short summary
Short summary
The study provides new insights by examining the short-term impact of winter floods on biogeochemical sediment processes near the Rhône River (NW Mediterranean Sea). This is the first winter monitoring of sediment and porewater in deltaic areas. The coupling of these data with a new model enables us to quantify the evolution of biogeochemical processes. It also provides new perspectives on the benthic carbon cycle in river deltas considering climate change, whereby flooding should intensify.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Justin C. Tiano, Jochen Depestele, Gert Van Hoey, João Fernandes, Pieter van Rijswijk, and Karline Soetaert
Biogeosciences, 19, 2583–2598, https://doi.org/10.5194/bg-19-2583-2022, https://doi.org/10.5194/bg-19-2583-2022, 2022
Short summary
Short summary
This study gives an assessment of bottom trawling on physical, chemical, and biological characteristics in a location known for its strong currents and variable habitats. Although trawl gears only removed the top 1 cm of the seabed surface, impacts on reef-building tubeworms significantly decreased carbon and nutrient cycling. Lighter trawls slightly reduced the impact on fauna and nutrients. Tubeworms were strongly linked to biogeochemical and faunal aspects before but not after trawling.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Chiu H. Cheng, Jaco C. de Smit, Greg S. Fivash, Suzanne J. M. H. Hulscher, Bas W. Borsje, and Karline Soetaert
Earth Surf. Dynam., 9, 1335–1346, https://doi.org/10.5194/esurf-9-1335-2021, https://doi.org/10.5194/esurf-9-1335-2021, 2021
Short summary
Short summary
Shells are biogenic particles that are widespread throughout natural sandy environments and can affect the bed roughness and seabed erodibility. As studies are presently lacking, we experimentally measured ripple formation and migration using natural sand with increasing volumes of shell material under unidirectional flow in a racetrack flume. We show that shells expedite the onset of sediment transport, reduce ripple dimensions and slow their migration rate.
Felipe S. Freitas, Philip A. Pika, Sabine Kasten, Bo B. Jørgensen, Jens Rassmann, Christophe Rabouille, Shaun Thomas, Henrik Sass, Richard D. Pancost, and Sandra Arndt
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, https://doi.org/10.5194/bg-18-4651-2021, 2021
Short summary
Short summary
It remains challenging to fully understand what controls carbon burial in marine sediments globally. Thus, we use a model–data approach to identify patterns of organic matter reactivity at the seafloor across distinct environmental conditions. Our findings support the notion that organic matter reactivity is a dynamic ecosystem property and strongly influences biogeochemical cycling and exchange. Our results are essential to improve predictions of future changes in carbon cycling and climate.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Adriaan D. Rijnsdorp, and Karline Soetaert
Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, https://doi.org/10.5194/bg-18-2539-2021, 2021
Short summary
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Cited articles
Ait Ballagh, F. E., Rabouille, C., Andrieux-Loyer, F., Soetaert, K.,
Lansard, B., Bombled, B., Monvoisin, G., Elkalay, K., and Khalil, K.:
Spatial variability of organic matter and phosphorus cycling in rhône
river prodelta sediments (NW mediterranean sea, france): A model-data
approach, Estuaries Coasts, 44, 1765–1789, 2021.
Aller, R. C.: Mobile deltaic and continental shelf muds as suboxic,
fluidized bed reactors, Marine Chem., 61, 143–155, 1998.
Aller, R. C.: Conceptual models of early diagenetic processes: The muddy
seafloor as an unsteady, batch reactor, J. Marine Res., 62,
815–835, 2004.
Aller, R. C. and Aller, J. Y.: Meiofauna and solute transport in marine
muds, Limnol. Oceanogr., 37, 1018–1033, 1992.
Anschutz, P., Jorissen, F., Chaillou, G., Abu-Zied, R., and Fontanier, C.:
Recent turbidite deposition in the eastern Atlantic: early diagenesis and
biotic recovery, J. Marine Res., 60, 835–854, 2002.
Antonelli, C., Eyrolle, F., Rolland, B., Provansal, M., and Sabatier,F.: Suspended sediment and 137Cs fluxes during the exceptional December
2003 flood in the Rhône River, southeast France, Geomorphology, 95,
350–360, 2008.
Archer, D., Morford, J., and Emerson, S.: A model of suboxic sedimentary
diagenesis suitable for automatic tuning and gridded global domains, Global
Biogeochem. Cycles, 16, 17-1–17-21, 2002.
Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J., Pancost, R.,
and Regnier, P.: Quantifying the degradation of organic matter in marine
sediments: a review and synthesis, Earth-Sci. Rev., 123, 53–86, 2013.
Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S.,
and Regnier, P. A.: The changing carbon cycle of the coastal ocean, Nature,
504, 61–70, 2013.
Berg, P., Rysgaard, S., and Thamdrup, B.: Dynamic modeling of early
diagenesis and nutrient cycling. A case study in an artic marine sediment,
Am. J. Sci., 303, 905–955, 2003.
Berner, R. A.: Early Diagenesis: A Theoretical Approach, Princeton
University Press, https://doi.org/10.1515/9780691209401, 1980.
Bissett, A., Burke, C., Cook, P. L., and Bowman, J. P.: Bacterial community
shifts in organically perturbed sediments, Environ. Microbiol., 9,
46–60, 2007.
Boudet, L., Sabatier, F., and Radakovitch, O.: Modelling of sediment
transport pattern in the mouth of the Rhône delta: Role of storm and
flood events, Estuarine, Coast. Shelf Sci., 198, 568–582,
https://doi.org/10.1016/j.ecss.2016.10.004, 2017.
Boudreau, B. P.: Is burial velocity a master parameter for bioturbation?, Geochim. Cosmochim. Ac., 58, 1243–1249, 1994.
Boudreau, B. P.: A method-of-lines code for carbon and nutrient diagenesis
in aquatic sediments, Comput. Geosci., 22, 479–496, 1996.
Boudreau, B. P.: Diagenetic models and their implementation, vol. 410,
Springer, Berlin, https://doi.org/10.1007/97S-3-642-60421-S, 1997.
Boudreau, B. P. and Jorgensen, B. B.: The benthic boundary layer: Transport
processes and biogeochemistry, Oxford University Press, ISBN 0-19-511881-2, 2001.
Bourgeois, S., Pruski, A. M., Sun, M.-Y., Buscail, R., Lantoine, F., Kerhervé, P., Vétion, G., Rivière, B., and Charles, F.: Distribution and lability of land-derived organic matter in the surface sediments of the Rhône prodelta and the adjacent shelf (Mediterranean Sea, France): a multi proxy study, Biogeosciences, 8, 3107–3125, https://doi.org/10.5194/bg-8-3107-2011, 2011.
Burdige, D. J.: The kinetics of organic matter mineralization in anoxic
marine sediments, J. Marine Res., 49, 727–761, 1991.
Burdige, D. J.: Burial of terrestrial organic matter in marine sediments: A
re-assessment, Global Biogeochem. Cycles, 19, GB4011, https://doi.org/10.1029/2004GB002368, 2005.
Burdige, D. J. and Komada, T.: Anaerobic oxidation of methane and the stoichiometry of remineralization processes in continental margin sediments, Limnol. Oceanogr., 56, 1781–1796, 2011.
Cai, W.-J.: Estuarine and coastal ocean carbon paradox: CO2 sinks or sites
of terrestrial carbon incineration?, Annu. Rev. Marine Sci., 3,
123–145, 2011.
Cathalot, C., Rabouille, C., Pastor, L., Deflandre, B., Viollier, E., Buscail, R., Grémare, A., Treignier, C., and Pruski, A.: Temporal variability of carbon recycling in coastal sediments influenced by rivers: assessing the impact of flood inputs in the Rhône River prodelta, Biogeosciences, 7, 1187–1205, https://doi.org/10.5194/bg-7-1187-2010, 2010.
Cathalot, C., Rabouille, C., Tisnérat-Laborde, N., Toussaint, F.,
Kerhervé, P., Buscail, R., Loftis, K., Sun, M.-Y., Tronczynski, J.,
Azoury, S., and Lansard, B.: The fate of river organic carbon in coastal areas: A
study in the Rhône River delta using multiple isotopic (δ13C,
Δ14C) and organic tracers, Geochim. Cosmochim. Ac., 118,
33–55, 2013.
Chaillou, G., Anschutz, P., Dubrulle, C., and Lecroart, P.: Transient states
in diagenesis following the deposition of a gravity layer: dynamics of O 2,
Mn, Fe and N-species in experimental units, Aquatic Geochem., 13,
157–172, 2007.
Couture, R.-M., Shafei, B., Van Cappellen, P., Tessier, A., and Gobeil, C.:
Non-steady state modeling of arsenic diagenesis in lake sediments,
Environ. Sci. Technol., 44, 197–203, 2010.
De Borger, E., Tiano, J., Braeckman, U., Rijnsdorp, A. D., and Soetaert, K.: Impact of bottom trawling on sediment biogeochemistry: a modelling approach, Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, 2021.
Deflandre, B., Mucci, A., Gagné, J.-P., Guignard, C., and Jørn
Sundby, B.: Early diagenetic processes in coastal marine sediments disturbed
by a catastrophic sedimentation event, Geochim. Cosmochim. Ac., 66,
2547–2558, 2002.
Dezzeo, N., Herrera, R., Escalante, G., and Chacón, N.: Deposition of
sediments during a flood event on seasonally flooded forests of the lower
Orinoco River and two of its black-water tributaries, Venezuela,
Biogeochemistry, 49, 241–257, 2000.
Dumoulin, J., Pozzato, L., Rassman, J., Toussaint, F., Fontugne, M.,
Tisnérat-Laborde, N., Beck, L., Caffy, I., Delqué-Koli, C. E.,
Moreau, C., and Rabouille, C.: Isotopic Signature (δ13C,14C) of DIC in Sediment
Pore Waters: An Example from the Rhône River Delta, Radiocarbon, 60,
1465–1481, 2018.
Efron, B.: Bootstrap methods: another look at the jackknife, in:
Breakthroughs in statistics, Springer, 569–593, https://doi.org/10.1007/978-1-4612-4380-9_41, 1992.
Fiadeiro, M. E. and Veronis, G.: On weighted-mean schemes for the finite-difference approximation to the advection-diffusion equation, Tellus, 29, 512–522, 1977.
Froelich, P., Klinkhammer, G., Bender, M. L., Luedtke, N., Heath, G. R.,
Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.: Early
oxidation of organic matter in pelagic sediments of the eastern equatorial
Atlantic: suboxic diagenesis, Geochim. Cosmochim. Ac., 43,
1075–1090, 1979.
Ghil, M.: A century of nonlinearity in the geosciences, Earth Space
Sci., 6, 1007–1042, 2019.
Gooday, A. J.: Biological responses to seasonally varying fluxes of organic
matter to the ocean floor: a review, J. Oceanogr., 58, 305–332,
2002.
Grenz, C., Denis, L., Boucher, G., Chauvaud, L., Clavier, J., Fichez, R.,
and Pringault, O.: Spatial variability in sediment oxygen consumption under
winter conditions in a lagoonal system in new caledonia (south pacific), Elsevier,
285, 33–47, 2003.
Gruber, N.: Carbon at the coastal interface, Nature, 517, 148–149, 2015.
Hensel, P. F., Day, J. W., Pont, D., and Day, J. N.: Short-Term
Sedimentation Dynamics in the Rhône River Delta, France: The Importance
of Riverine Pulsing, Estuaries, 21, 52, https://doi.org/10.2307/1352546,
1998.
Hindmarsh, A. C.: ODEPACK: A systemized collection of ODE solvers, 55–64,
1983.
Jørgensen, B. B. and Revsbech, N. P.: Diffusive boundary layers and the
oxygen uptake of sediments and detritus 1, Limnol. Oceanogr., 30,
111–122, 1985.
Jørgensen, B. B., Findlay, A. J., and Pellerin, A.: The biogeochemical
sulfur cycle of marine sediments, Front. Microbiol., 10, 849, https://doi.org/10.3389/fmicb.2019.00849, 2019.
Katsev, S., Sundby, B., and Mucci, A.: Modeling vertical excursions of the
redox boundary in sediments: Application to deep basins of the Arctic Ocean,
Limnol. Oceanogr., 51, 1581–1593,
https://doi.org/10.4319/lo.2006.51.4.1581, 2006.
Kittel, T., Heitzig, J., Webster, K., and Kurths, J.: Timing of transients:
quantifying reaching times and transient behavior in complex systems, New
Journal of Physics, 19, 083005, https://doi.org/10.1088/1367-2630/aa7b61, 2017.
Krumins, V., Gehlen, M., Arndt, S., Van Cappellen, P., and Regnier, P.: Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change, Biogeosciences, 10, 371–398, https://doi.org/10.5194/bg-10-371-2013, 2013.
Lansard, B., Rabouille, C., Denis, L., and Grenz, C.: In situ oxygen uptake
rates by coastal sediments under the influence of the Rhône River (NW
Mediterranean Sea), Cont. Shelf Res., 28, 1501–1510,
https://doi.org/10.1016/j.csr.2007.10.010, 2008.
Lansard, B., Rabouille, C., Denis, L., and Grenz, C.: Benthic
remineralization at the land–ocean interface: A case study of the Rhône
River (NW Mediterranean Sea), Estuarine, Coast. Shelf Sci., 81,
544–554, 2009.
Lasaga, A. and Holland, H.: Mathematical aspects of non-steady-state
diagenesis, Geochim. Cosmochim. Ac., 40, 257–266, 1976.
Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos.
Sci., 20, 130–141, 1963.
Mayer, L. M.: Surface area control of organic carbon accumulation in
continental shelf sediments, Geochim. Cosmochim. Ac., 58,
1271–1284, 1994.
McKee, B. A., Aller, R., Allison, M., Bianchi, T., and Kineke, G.: Transport
and transformation of dissolved and particulate materials on continental
margins influenced by major rivers: benthic boundary layer and seabed
processes, Cont. Shelf Res., 24, 899–926, 2004.
Mermex Group, T. M., de Madron, X. D., Guieu, C., Sempéré, R.,
Conan, P., Cossa, D., D'Ortenzio, F., Estournel, C., Gazeau, F., Rabouille,
C., and Stemmann, L.: Marine ecosystems' responses to climatic and anthropogenic
forcings in the Mediterranean, Prog. Oceanogr., 91, 97–166, 2011.
Meybeck, M., Dürr, H., Roussennac, S., and Ludwig, W.: Regional seas and
their interception of riverine fluxes to oceans, Marine Chem., 106,
301–325, 2007.
Middelburg, J. J.: A simple rate model for organic matter decomposition in
marine sediments, Geochim. Cosmochim. Ac., 53, 1577–1581, 1989.
Middelburg, J. J., Vlug, T., Jaco, F., and Van der Nat, W.: Organic matter
mineralization in marine systems, Global Planet. Change, 8, 47–58,
1993.
Middelburg, J. J., Soetaert, K., and Herman, P. M.: Empirical relationships
for use in global diagenetic models, Deep-Sea Res. Pt. I, 44, 327–344, 1997.
Miralles, J., Radakovitch, O., and Aloisi, J.-C.: 210Pb sedimentation rates
from the Northwestern Mediterranean margin, Marine Geol., 216, 155–167,
https://doi.org/10.1016/j.margeo.2005.02.020, 2005.
Mucci, A. and Edenborn, H. M.: Influence of an organic-poor landslide
deposit on the early diagenesis of iron and manganese in a coastal marine
sediment, Geochim. Cosmochim. Ac., 56, 3909–3921, 1992.
Munhoven, G.: Model of Early Diagenesis in the Upper Sediment with Adaptable complexity – MEDUSA (v. 2): a time-dependent biogeochemical sediment module for Earth system models, process analysis and teaching, Geosci. Model Dev., 14, 3603–3631, https://doi.org/10.5194/gmd-14-3603-2021, 2021.
Nmor, S. and Soetaert, K.: FESDIA: An early diagenesis model including Iron (Fe), Sulfur (S) and Methane (CH4) dynamics, Zenodo [code], https://doi.org/10.5281/zenodo.6369288, 2022.
Pastor, L., Cathalot, C., Deflandre, B., Viollier, E., Soetaert, K., Meysman, F. J. R., Ulses, C., Metzger, E., and Rabouille, C.: Modeling biogeochemical processes in sediments from the Rhône River prodelta area (NW Mediterranean Sea), Biogeosciences, 8, 1351–1366, https://doi.org/10.5194/bg-8-1351-2011, 2011.
Pastor, L., Rabouille, C., Metzger, E., Thibault de Chanvalon, A., Viollier, E., and Deflandre, B.: Transient
early diagenetic processes in Rhône prodelta sediments revealed in
contrasting flood events, Cont. Shelf Res., 166, 65–76,
https://doi.org/10.1016/j.csr.2018.07.005, 2018.
Pont, D., Day, J. W., and Ibáñez, C.: The impact of two large floods
(1993–1994) on sediment deposition in the Rhône delta: Implications for
sustainable management, Sci. Total Environ., 609, 251–262,
https://doi.org/10.1016/j.scitotenv.2017.07.155, 2017.
Pozzato, L., Rassmann, J., Lansard, B., Dumoulin, J.-P., Breugel, P. van, and Rabouille, C.: Origin of remineralized organic matter in sediments from the rhone river prodelta (NW mediterranean) traced by Δ14C and δ13C signatures of pore water DIC, Prog. Oceanogr., 163, 112–122, 2018.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: Numeric recipes in c: The art of scientific computing, Cambridge university press, 3rd edn., 1992.
Pusceddu, A., Dell'Anno, A., Fabiano, M., and Danovaro, R.: Quantity and
bioavailability of sediment organic matter as signatures of benthic trophic
status, Marine Ecol. Prog. Ser., 375, 41–52, 2009.
Rabouille, C. and Gaillard, J.-F.: The validity of steady-state flux
calculations in early diagenesis: a computer simulation of deep-sea silica
diagenesis, Deep-Sea Res. Pt. A, 37,
625–646, 1990.
Rabouille, C. and Gaillard, J.-F.: Towards the EDGE: Early diagenetic global
explanation. A model depicting the early diagenesis of organic matter, O2,
NO3, Mn, and PO4, Geochim. Cosmochim. Ac., 55, 2511–2525, 1991.
Rabouille, C., Mackenzie, F. T., and Ver, L. M.: Influence of the human
perturbation on carbon, nitrogen, and oxygen biogeochemical cycles in the
global coastal ocean, Geochim. Cosmochim. Ac., 65, 3615–3641,
2001a.
Rabouille, C., Witbaard, R., and Duineveld, G.: Annual and interannual
variability of sedimentary recycling studied with a non-steady-state model:
application to the North Atlantic Ocean (BENGAL site), Prog.
Oceanogr., 50, 147–170, 2001b.
Radakovitch, O., Charmasson, S., Arnaud, M., and Bouisset, P.: 210Pb and
Caesium Accumulation in the Rhône Delta Sediments, Estuarine, Coast. Shelf Sci., 48, 77–92, https://doi.org/10.1006/ecss.1998.0405, 1999.
Rassmann, J., Lansard, B., Pozzato, L., and Rabouille, C.: Carbonate chemistry in sediment porewaters of the Rhône River delta driven by early diagenesis (northwestern Mediterranean), Biogeosciences, 13, 5379–5394, https://doi.org/10.5194/bg-13-5379-2016, 2016.
Rassmann, J., Eitel, E. M., Lansard, B., Cathalot, C., Brandily, C., Taillefert, M., and Rabouille, C.: Benthic alkalinity and dissolved inorganic carbon fluxes in the Rhône River prodelta generated by decoupled aerobic and anaerobic processes, Biogeosciences, 17, 13–33, https://doi.org/10.5194/bg-17-13-2020, 2020.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 2 August 2022), 2021.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N.,
Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson,
A. J., and Arndt, S.: Anthropogenic perturbation of the carbon fluxes from land to
ocean, Nat. Geosci., 6, 597–607, 2013.
Sciberras, M., Hiddink, J. G., Jennings, S., Szostek, C. L., Hughes, K. M., Kneafsey, B., Clarke, L. J., Ellis, N., Rijnsdorp, A. D., McConnaughey, R. A., et al.: Response of benthic fauna to experimental bottom fishing: A global meta-analysis, Fish Fish., 19, 698–715, 2018.
Sempéré, R., Charrière, B., Van Wambeke, F., and Cauwet, G.:
Carbon inputs of the Rhône River to the Mediterranean Sea:
Biogeochemical implications, Global Biogeochem. Cycles, 14, 669–681,
https://doi.org/10.1029/1999GB900069, 2000.
Smith, K. L., Ruhl, H. A., Huffard, C. L., Messié, M., and Kahru, M.:
Episodic organic carbon fluxes from surface ocean to abyssal depths during
long-term monitoring in NE Pacific, P. Natl. Acad.
Sci. USA, 115, 12235–12240, 2018.
Soetaert, K.: Package rootSolve: roots, gradients and steady-states in R,
Google Scholar [code], https://cran.r-project.org/web/packages/rootSolve/index.html (last access: 2 August 2022), 2014.
Soetaert, K. and Herman, P. M.: A practical guide to ecological modelling:
Using r as a simulation platform, Springer, https://doi.org/10.1007/978-1-4020-8624-3, ISBN 978-1-4020-8623-6, 2009.
Soetaert, K. and Meysman, F.: Reactive transport in aquatic ecosystems:
Rapid model prototyping in the open source software R, Environ.
Model. Softw., 32, 49–60, 2012.
Soetaert, K. and Petzoldt, T.: marelac: Tools for Aquatic Sciences,
https://CRAN.R-project.org/package=marelac (last access: 2 August 2022), r package version 2.1.10,
2020.
Soetaert, K., Herman, P. M., and Middelburg, J. J.: A model of early
diagenetic processes from the shelf to abyssal depths, Geochim. Cosmochim.
Ac., 60, 1019–1040, 1996a.
Soetaert, K., Herman, P. M., and Middelburg, J. J.: Dynamic response of
deep-sea sediments to seasonal variations: A model, Limnol.
Oceanogr., 41, 1651–1668, 1996b.
Soetaert, K., Petzoldt, T., and Meysman, F.: Marelac: Tools for aquatic
sciences, [code], https://cran.r-project.org/web/packages/marelac/index.html (last access: 2 August 2022), 2010a.
Soetaert, K., Petzoldt, T., and Setzer, R. W.: Solving Differential
Equations in R: Package deSolve, J. Statist. Softw., 33, 1–25,
https://doi.org/10.18637/jss.v033.i09, 2010b.
Strogatz, S. H.: Nonlinear dynamics and chaos: with applications to physics,
biology, chemistry, and engineering, CRC press, ISBN 13 978-0-8133-4910-7, 2018.
Stumm, W. and Morgan, J. J.: Aquatic chemistry: chemical equilibria and
rates in natural waters, John Wiley & Sons, 126, ISBN 0-471-51184-6, 2012.
Sulpis, O., Humphreys, M. P., Wilhelmus, M. M., Carroll, D., Berelson, W. M., Menemenlis, D., Middelburg, J. J., and Adkins, J. F.: RADIv1: a non-steady-state early diagenetic model for ocean sediments in Julia and MATLAB/GNU Octave, Geosci. Model Dev., 15, 2105–2131, https://doi.org/10.5194/gmd-15-2105-2022, 2022.
Sundby, B.: Transient state diagenesis in continental margin muds, Marine
Chem., 102, 2–12, 2006.
Tesi, T., Langone, L., Goñi, M., Wheatcroft, R., Miserocchi, S., and
Bertotti, L.: Early diagenesis of recently deposited organic matter: A 9-yr
time-series study of a flood deposit, Geochim. Cosmochim. Ac., 83,
19–36, 2012.
Toussaint, F., Tisnérat-Laborde, N., Cathalot, C., Buscail, R.,
Kerhervé, P., and Rabouille, C.: Depositional processes of organic
matter in the Rhône River Delta (Gulf of Lions, France) traced by
density fractionation coupled with Δ14C and δ13C,
Radiocarbon, 55, 920–931, 2013.
van de Velde, S., Van Lancker, V., Hidalgo-Martinez, S., Berelson, W. M.,
and Meysman, F. J. R.: Anthropogenic disturbance keeps the coastal seafloor
biogeochemistry in a transient state, Sci. Rep.-UK, 8, 5582,
https://doi.org/10.1038/s41598-018-23925-y, 2018.
Wang, Y. and Van Cappellen, P.: A multicomponent reactive transport model of
early diagenesis: Application to redox cycling in coastal marine sediments,
Geochim. Cosmochim. Ac., 60, 2993–3014, 1996.
Westrich, J. T. and Berner, R. A.: The role of sedimentary organic matter in
bacterial sulfate reduction: The G model tested 1, Limnol.
Oceanogr., 29, 236–249, 1984.
Wheatcroft, R. A.: Preservation potential of sedimentary event layers,
Geology, 18, 843–845, 1990.
Wollast, R.: Interactions of carbon and nitrogen cycles in the coastal zone,
in: Interactions of C, N, P and S biogeochemical cycles and global change, Springer,
195–210, https://doi.org/10.1007/978-3-642-76064-8, 1993.
Yakushev, E. V., Protsenko, E. A., Bruggeman, J., Wallhead, P., Pakhomova, S. V., Yakubov, S. Kh., Bellerby, R. G. J., and Couture, R.-M.: Bottom RedOx Model (BROM v.1.1): a coupled benthic–pelagic model for simulation of water and sediment biogeochemistry, Geosci. Model Dev., 10, 453–482, https://doi.org/10.5194/gmd-10-453-2017, 2017.
Zebracki, M., Eyrolle-Boyer, F., Evrard, O., Claval, D., Mourier, B.,
Gairoard, S., Cagnat, X., and Antonelli, C.: Tracing the origin of suspended
sediment in a large Mediterranean river by combining continuous river
monitoring and measurement of artificial and natural radionuclides, Sci. Total Environ., 502, 122–132, 2015.
Zindorf, M., Rooze, J., Meile, C., März, C., Jouet, G., Newton, R.,
Brandily, C., and Pastor, L.: The evolution of early diagenetic processes at
the Mozambique margin during the last glacial-interglacial transition,
Geochim. Cosmochim. Ac., 300, 79–94, 2021.
Short summary
The coastal marine environment serves as a transition zone in the land–ocean continuum and is susceptible to episodic phenomena such as flash floods, which cause massive organic matter deposition. Here, we present a model of sediment early diagenesis that explicitly describes this type of deposition while also incorporating unique flood deposit characteristics. This model can be used to investigate the temporal evolution of marine sediments following abrupt changes in environmental conditions.
The coastal marine environment serves as a transition zone in the land–ocean continuum and is...