Articles | Volume 15, issue 2
https://doi.org/10.5194/gmd-15-731-2022
https://doi.org/10.5194/gmd-15-731-2022
Model evaluation paper
 | 
27 Jan 2022
Model evaluation paper |  | 27 Jan 2022

EuLerian Identification of ascending AirStreams (ELIAS 2.0) in numerical weather prediction and climate models – Part 2: Model application to different datasets

Julian F. Quinting, Christian M. Grams, Annika Oertel, and Moritz Pickl

Related authors

A satellite-based analysis of semi-direct effects of biomass burning aerosols on fog and low-cloud dissipation in the Namib Desert
Alexandre Mass, Hendrik Andersen, Jan Cermak, Paola Formenti, Eva Pauli, and Julian Quinting
Atmos. Chem. Phys., 25, 491–510, https://doi.org/10.5194/acp-25-491-2025,https://doi.org/10.5194/acp-25-491-2025, 2025
Short summary
Architectural insights into and training methodology optimization of Pangu-Weather
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024,https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
On the role of moist and dry processes for atmospheric blocking biases in the Euro-Atlantic region in CMIP6
Edgar Dolores-Tesillos, Olivia Martius, and Julian Quinting
EGUsphere, https://doi.org/10.5194/egusphere-2024-2878,https://doi.org/10.5194/egusphere-2024-2878, 2024
Short summary
Warm conveyor belt activity over the Pacific: modulation by the Madden–Julian Oscillation and impact on tropical–extratropical teleconnections
Julian F. Quinting, Christian M. Grams, Edmund Kar-Man Chang, Stephan Pfahl, and Heini Wernli
Weather Clim. Dynam., 5, 65–85, https://doi.org/10.5194/wcd-5-65-2024,https://doi.org/10.5194/wcd-5-65-2024, 2024
Short summary
Aerosol–cloud–radiation interaction during Saharan dust episodes: the dusty cirrus puzzle
Axel Seifert, Vanessa Bachmann, Florian Filipitsch, Jochen Förstner, Christian M. Grams, Gholam Ali Hoshyaripour, Julian Quinting, Anika Rohde, Heike Vogel, Annette Wagner, and Bernhard Vogel
Atmos. Chem. Phys., 23, 6409–6430, https://doi.org/10.5194/acp-23-6409-2023,https://doi.org/10.5194/acp-23-6409-2023, 2023
Short summary

Related subject area

Atmospheric sciences
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025,https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025,https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025,https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025,https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary
NeuralMie (v1.0): an aerosol optics emulator
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025,https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary

Cited articles

Ahmadi-Givi, F., Graig, G. C., and Plant, R. S.: The Dynamics of a Midlatitude Cyclone with Very Strong Latent-Heat Release, Q. J. Roy. Meteor. Soc., 130, 295–323, https://doi.org/10.1256/qj.02.226, 2004. a
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M., Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales, Q. J. Roy. Meteor. Soc., 134, 1337–1351, https://doi.org/10.1002/qj.289, 2008. a
Binder, H., Boettcher, M., Joos, H., and Wernli, H.: The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter, J. Atmos. Sci., 73, 3997–4020, https://doi.org/10.1175/JAS-D-15-0302.1, 2016. a, b, c
Bosart, L. F., Moore, B. J., Cordeira, J. M., and Archambault, H. M.: Interactions of north pacific tropical, midlatitude, and polar disturbances resulting in linked extreme weather events over North America in October 2007, Mon. Weather Rev., 145, 1245–1273, https://doi.org/10.1175/MWR-D-16-0230.1, 2017. a
Browning, K. A.: Conceptual models of precipitation systems., ESA Journal, 9, 157–180, https://doi.org/10.1175/1520-0434(1986)001<0023:cmops>2.0.co;2, 1985. a
Short summary
This study applies novel artificial-intelligence-based models that allow the identification of one specific weather system which affects the midlatitude circulation. We show that the models yield similar results as their trajectory-based counterpart, which requires data at higher spatiotemporal resolution and is computationally more expensive. Overall, we aim to show how deep learning methods can be used efficiently to support process understanding of biases in weather prediction models.
Share