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Abstract. Warm conveyor belts (WCBs) affect the atmo-
spheric dynamics in midlatitudes and are highly relevant for
total and extreme precipitation in many parts of the extrat-
ropics. Thus, these airstreams and their effect on midlatitude
weather should be well represented in numerical weather
prediction (NWP) and climate models. This study applies
newly developed convolutional neural network (CNN) mod-
els which allow the identification of footprints of WCB in-
flow, ascent, and outflow from a limited number of predic-
tor fields at comparably low spatiotemporal resolution. The
goal of the study is to demonstrate the versatile applicabil-
ity of the CNN models to different datasets and that their
application yields qualitatively and quantitatively similar re-
sults as their trajectory-based counterpart, which is most fre-
quently used to objectively identify WCBs. The trajectory-
based approach requires data at higher spatiotemporal res-
olution, which are often not available, and is computation-
ally more expensive. First, an application to reanalyses re-
veals that the well-known relationship between WCB ascent
and extratropical cyclones as well as between WCB out-
flow and blocking anticyclones is also found for WCB foot-
prints identified with the CNN models. Second, the appli-
cation to Japanese 55-year reanalyses shows how the CNN
models may be used to identify erroneous predictor fields
that deteriorate the models’ reliability. Third, a verification
of WCBs in operational European Centre for Medium-Range
Weather Forecasts (ECMWF) ensemble forecasts for three
Northern Hemisphere winters reveals systematic biases over
the North Atlantic with both the trajectory-based approach
and the CNN models. The ensemble forecasts’ skill tends to
be lower when being evaluated with the trajectory approach
due to the fine-scale structure of WCB footprints in compari-

son to the rather smooth CNN-based WCB footprints. A final
example demonstrates the applicability of the CNN models
to a convection-permitting simulation with the ICOsahedral
Nonhydrostatic (ICON) NWP model. Our study illustrates
that deep learning methods can be used efficiently to support
process-oriented understanding of forecast error and model
biases and opens numerous directions for future research.

1 Introduction

Extratropical cyclones are accompanied by coherent
airstreams which ascend cross-isentropically from the
lower to the upper troposphere within 2 d – so-called warm
conveyor belts (WCBs; Browning et al., 1973; Harrold,
1973; Carlson, 1980). WCBs form an integral part of the
extratropical atmospheric circulation as they release large
amounts of latent heat, are responsible for the major part
of precipitation associated with extratropical cyclones, and
are the primary cloud-producing extratropical flow structure
(e.g., Browning, 1985; Eckhardt et al., 2004; Pfahl et al.,
2014; Joos, 2019).

Typically, WCBs originate in the marine boundary layer
of an extratropical cyclone’s warm sector and ascend pole-
ward along the cyclone’s cold front (Wernli and Davies,
1997). This WCB ascent, which can be slantwise or con-
vective in nature (e.g., Neiman and Shapiro, 1993; Rasp
et al., 2016; Oertel et al., 2019), is accompanied by latent
heat release on the order of 20 K during its life cycle due to
phase changes during cloud formation (Eckhardt et al., 2004;
Madonna et al., 2014). The latent heat release subsequently
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affects the production and destruction of potential vorticity
(PV) due to vertical gradients of the diabatic heating rates
(Hoskins et al., 2007). Assuming a positive vertical compo-
nent of absolute vorticity, cyclonic PV is generated below
and close to the level of maximum heating (e.g., Stoelinga,
1996; Wernli and Davies, 1997). If the WCB ascent occurs
close to the center of an extratropical cyclone, the lower- to
mid-tropospheric cyclonic PV contributes to the cyclone’s
PV tower and the WCB is thus important for its evolution
and intensity (e.g., Rossa et al., 2000; Binder et al., 2016).
Accordingly, extratropical cyclones and WCB ascent are di-
rectly linked. Above the level of maximum heating, PV is
destroyed such that the net PV change from the WCB in-
flow to the WCB outflow is approximately zero (Methven,
2015). Still, the latent heat release during the WCB ascent
leads to a net cross-isentropic transport of lower-tropospheric
low-PV air into the upper troposphere where it contributes
along with its diabatically amplified divergent outflow to the
formation of anticyclonic PV anomalies (e.g., Pomroy and
Thorpe, 2000; Ahmadi-Givi et al., 2004; Grams et al., 2011;
Bosart et al., 2017). These anticyclonic PV anomalies may
trigger or modify downstream Rossby waves (Röthlisberger
et al., 2018) or may contribute to the onset and maintenance
of blocking anticyclones (e.g., Pfahl et al., 2015; Grams and
Archambault, 2016; Steinfeld and Pfahl, 2019). For exam-
ple, Steinfeld and Pfahl (2019) found that almost 10 % of air
masses in blocking anticyclones had ascended in WCBs dur-
ing the 7 d before reaching the blocking region.

This brief overview highlights that systematic forecast er-
rors associated with WCBs may project on the representa-
tion of the extratropical atmospheric circulation in NWP and
climate models. Indeed, significant biases exist in state-of-
the-art NWP systems concerning the climatological occur-
rence frequency of WCB inflow, ascent, and outflow (Wandel
et al., 2021). The systematic verification of the three WCB
stages in an ensemble NWP system was made possible by
a novel statistical approach that allows the identification of
WCB footprints without the need to perform trajectory calcu-
lations (Quinting and Grams, 2021a). Though in their study
the identification of WCBs was based on a logistic regres-
sion approach, a refined statistical approach based on con-
volutional neural network (CNN) models is introduced in a
companion study (Quinting and Grams, 2022, hereafter re-
ferred to as Part 1). The study at hand aims to show different
applications of the CNN models and to demonstrate that the
CNN models yield qualitatively and quantitatively similar re-
sults as their Lagrangian counterpart, which is computation-
ally more expensive and requires data at higher spatiotempo-
ral resolution. The exemplary applications are

1. a climatological investigation of the relationship be-
tween footprints of WCB ascent and extratropical cy-
clones as well as between footprints of WCB outflow
and blocking anticyclones,

2. a comparison of the CNN models’ reliability when be-
ing applied to a reanalysis dataset other than the one
they were trained on and its usefulness to identify dif-
ferences in the predictor variables provided to the CNN,

3. an evaluation of operational ECMWF ensemble WCB
forecasts in terms of their biases and skill, and

4. a case study of a WCB in a convection-permitting simu-
lation performed with the ICOsahedral Nonhydrostatic
NWP model (ICON; Zängl et al., 2015), which is inde-
pendent from the ECMWF data the CNN was trained
on.

The various datasets used in this study are introduced in
Sect. 2. The comparison of the CNN-based and trajectory-
based diagnostics is presented in Sect. 3. Directions for fu-
ture research are outlined together with a concluding discus-
sion in Sect. 4.

2 Data and methods

2.1 ERA-Interim data

The ECMWF’s interim reanalyses (ERA-Interim; Dee et al.,
2011) form the basis for the climatological investigations of
the relationship between footprints of WCBs identified with
the trajectory and CNN approach, extratropical cyclones,
and blocking anticyclones. The reanalysis data are derived
6-hourly at 00:00, 06:00, 12:00, and 18:00 UTC and are
remapped from their original T255 spectral resolution to a
regular 1◦×1◦ latitude–longitude grid. As in Part 1, the test-
ing period of December, January, and February (DJF) from
1 January 2005 to 31 December 2016 is chosen for all clima-
tological analyses presented in this study.

2.1.1 Trajectory-based WCB climatology

For the trajectory-based WCB climatology by Madonna et al.
(2014), 48 h kinematic forward trajectories are calculated us-
ing the horizontal and vertical wind components on all avail-
able model levels in ERA-Interim with the LAGRangian
ANalysis TOol (LAGRANTO; Wernli and Davies, 1997;
Sprenger and Wernli, 2015). The initial starting points of
WCBs are found by seeding trajectories from a global
80 km×80 km equidistant grid in the horizontal and verti-
cally every 20 hPa from 1050 to 790 hPa. After calculating
the forward trajectories from all starting points, only trajec-
tories are kept as WCBs which ascend at least by 600 hPa
in 48 h and which are matched with an extratropical cyclone
mask (Wernli and Schwierz, 2006) at least once during the
48 h period. The cyclone masks include all regions delimited
by the outermost closed sea level pressure contour enclosing
one or several local sea level pressure minima (Wernli and
Schwierz, 2006). The masks are provided by the climatolog-
ical dataset of Sprenger et al. (2017), which is based on the
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same ERA-Interim data introduced in Sect. 2.1. We define
WCB inflow, WCB ascent, and WCB outflow by binning all
identified WCB parcel locations at a given time into three
vertical layers (Schäfler et al., 2014). WCB inflow refers to
air parcels located below 800 hPa, ascent includes those be-
tween 800 and 400 hPa, and outflow refers to all air parcels
above 400 hPa. For the three layers, air parcel locations are
gridded on a regular 1◦×1◦ latitude grid, i.e., grid points
without or with a WCB air parcel are labeled as 0 or 1, yield-
ing two-dimensional binary footprints for each of the three
WCB stages.

2.1.2 CNN-based WCB climatology

The CNN-based WCB climatology is taken from Part 1,
which provides a detailed description of the underlying mod-
els. In short, for each of the three WCB stages of inflow,
ascent, and outflow separate CNN models with variants of
the UNet architecture (Ronneberger et al., 2015) are im-
plemented with the overarching aim to predict conditional
probabilities of WCB occurrence. The UNet architecture was
originally designed to perform image segmentation tasks us-
ing the RGB (red–green–blue) values of images as predic-
tors. In this study, each CNN model uses in total five pre-
dictors, four of which are meteorological parameters derived
from ERA-Interim data for temperature, geopotential height,
specific humidity, and the horizontal wind components at the
1000, 925, 850, 700, 500, 300, and 200 hPa isobaric surfaces.
For WCB ascent, the predictors are 850 hPa relative vortic-
ity, 700 hPa relative humidity, 300 hPa thickness advection,
and 500 hPa meridional moisture flux. A fifth predictor is the
30 d running mean trajectory-based climatological WCB oc-
currence frequency, which is provided via the correspond-
ing GitLab repository and thus does not need to be calcu-
lated prior to using the models (see “Code and data availabil-
ity” section). Predictors of WCB inflow are 700 hPa thick-
ness advection, 850 hPa meridional moisture flux, 1000 hPa
moisture flux convergence, and 500 hPa moist potential vor-
ticity. Taking into account the time lag between the individ-
ual WCB stages, a fifth predictor for WCB inflow is the con-
ditional probability of WCB ascent predicted by the CNN
24 h later than the corresponding WCB inflow time. Con-
versely, the fifth predictor for WCB outflow is the condi-
tional probability of WCB ascent 24 h earlier than the cor-
responding WCB outflow time in addition to 300 hPa rela-
tive humidity, 300 hPa irrotational wind speed, 500 hPa static
stability, and 300 hPa relative vorticity. A mandatory step be-
fore applying the CNN models is to remap the predictors to a
regular 1◦×1◦ latitude–longitude grid. As for the trajectory-
based data, the conditional probabilities predicted by the
CNN models are converted to two-dimensional binary foot-
prints of WCB inflow, ascent, and outflow on a regular 1◦×1◦

latitude–longitude grid by applying grid-point-specific deci-
sion thresholds. These thresholds are also provided via the

corresponding GitLab repository (see “Code and data avail-
ability ” section).

2.1.3 Extratropical cyclone data

In the trajectory-based WCB climatology only rapidly as-
cending airstreams are considered to be WCBs that occur in
the vicinity of extratropical cyclones. Madonna et al. (2014)
account for this relationship by keeping only rapidly ascend-
ing trajectories as WCBs which are matched at least once
during their 48 h life time with an extratropical cyclone mask
(see Sect. 2.1.1). The CNN models of Part 1 do not use the
extratropical cyclone mask information as a predictor such
that it is not clear up front whether the CNN models correctly
reproduce the relationship between WCBs and extratropical
cyclones. Here, we test for this relationship by matching the
trajectory-based and CNN-based masks of WCB ascent with
the extratropical cyclone masks. Objects of WCB ascent are
chosen since this stage of the WCB life cycle occurs closest
to the center of extratropical cyclones (Binder et al., 2016).
In a first step, all CNN-based and trajectory-based footprints
of WCB ascent at a certain time step are assigned with an
identifying number. We then check for each identified foot-
print whether at least one grid point is collocated with the
mask of an extratropical cyclone. If this criterion is fulfilled
the entire WCB footprint is considered to be matched with
an extratropical cyclone. The climatological matching fre-
quency is then the ratio of matched WCB footprints against
all (matched and non-matched) footprints.

2.1.4 Blocking anticyclone data

As outlined in the Introduction, the WCB outflow may be di-
rected into upper-tropospheric blocking anticyclones. We test
whether this relationship can be reproduced with the CNN-
based WCB diagnostic by matching masks of WCB out-
flow identified with the trajectory approach and CNN mod-
els with masks of blocks (Pfahl et al., 2015; Sprenger et al.,
2017). Following the definition of Schwierz et al. (2004) and
Croci-Maspoli et al. (2007), masks of blocks in the Northern
Hemisphere are defined by grid points at which the anomaly
of vertically averaged PV between 150 and 500 hPa is less
than−1.3 PVU (1 PVU= 10−6 K kg−1 m2 s−1; PVU: poten-
tial vorticity unit) for at least 5 consecutive days. The anoma-
lies of vertically averaged PV are calculated as deviations
from the monthly climatology of vertically averaged PV.

2.2 JRA-55 data

In order to test the sensitivity of the CNN models to the in-
put data, we apply the models for the testing period (1 Jan-
uary 2005 to 31 December 2016) to the Japanese 55-year re-
analysis data (JRA55, Kobayashi et al., 2015; Harada et al.,
2016). The data are derived with the same temporal resolu-
tion and at the same pressure levels as the ERA-Interim data.
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Further, the data are remapped from their native T319 reso-
lution to a regular 1◦×1◦ grid spacing.

2.3 Operational ECMWF IFS ensemble forecasts

We evaluate ECMWF’s operational IFS ensemble forecasts
(ECMWF, 2020) for the period 1 December to 28 Febru-
ary in the three Northern Hemisphere winters of 2018–2019,
2019–2020, and 2020–2021 over the North Atlantic region
(90◦W to 30◦ E; 15 to 80◦ N) with the trajectory-based
and the CNN-based approach. Here we combine the three
IFS model cycles CY45r1 (5 June 2018 to 10 June 2019),
CY46r1 (11 June 2019 to 29 June 2020), and CY47r1
(30 June 2020 to 10 May 2021) without considering dif-
ferences between the three model versions. The ensemble
forecast consists of one control forecast and 50 perturbed
forecasts which are initialized twice daily at 00:00 and
12:00 UTC. Though forecasts are run up to 15 d lead time,
we restrict our analysis for computational reasons to forecast
lead times up to 144 h (6 d) at 6-hourly time steps. All fore-
casts are remapped from their original resolution of TCo639
to a regular 1◦×1◦ latitude–longitude grid. For the trajectory
calculations, forecasts were derived on model levels 39 to 91
(surface to about 16 km) in near-real time since these data
are not archived in the long-term Meteorological Archival
and Retrieval System (MARS) at ECMWF. Further, the data
required for the trajectory calculations were derived for a
smaller region extending from 130◦W to 80◦ E and from 15
to 80◦ N due to data storage capacities. The trajectory calcu-
lations follow the initial setup for WCB ensemble forecasts
of Schäfler et al. (2014): 48 h forward trajectories are started
from a 100 km×100 km equidistant grid in the horizontal
and vertically every 50 hPa from 1000 to 700 hPa. Com-
pared to the original climatological dataset (see Sect. 2.1.1)
fewer starting levels are chosen for computational reasons.
For forecast lead times of less than 48 h, the trajectories are
calculated from a combination of short-range forecasts at 0
and 6 h lead time obtained from earlier initialization times
and the actual forecast. After calculating the forward trajec-
tories from all starting points, only trajectories are kept as
WCBs which ascend by at least 600 hPa in 48 h. A match-
ing with an extratropical cyclone mask as in the original
Lagrangian definition (Madonna et al., 2014) was not per-
formed. For the CNN-based WCB identification, ensemble
forecast data were downloaded globally and on pressure lev-
els specified above (Sect. 2.1.2).

Though data on a global grid are required to apply the
CNN models, the reduced number of vertical pressure lev-
els compared to the large number of model levels reduces
the needed disk space by roughly one-third. A single ensem-
ble forecast needed for the trajectory calculation described
above roughly amounts to 10.9 GB in the General Regularly-
distributed Information in Binary form (GRIB) format. In
contrast, the forecast data needed for the CNN-based diag-
nostic only amounts to 7.2 GB in GRIB format. Most impor-

tantly, the computational time needed for the two diagnostics
differs considerably. The calculation and gridding of the tra-
jectories for a single ensemble forecast takes roughly 14 h on
a single CPU at 3.60 GHz. In contrast, it takes roughly 20 min
on the same CPU to process one ensemble forecast with the
CNN models, which corresponds to a 40-fold reduction in
computing time.

We evaluate the operational ensemble forecasts in terms of
the mean error (hereafter referred to as bias) in WCB inflow,
ascent, and outflow frequency compared to the short-range
control forecasts at 0 to 6 h lead time (hereafter referred to as
pseudo-analysis). Footprints identified with the CNN mod-
els (trajectory approach) in the ensemble forecast are verified
against footprints identified with the CNN models (trajectory
approach) in the pseudo-analysis. The mean error as a func-
tion of grid point xi and time t is defined as

ME(xi, t)=
1
N

N∑
n=1

(yn(xi, t)− on(xi, t)), (1)

with 0≤ yn(xi, t)≤ 1 being the ensemble mean WCB fre-
quency at a specific grid point and forecast lead time and
on(xi, t) the corresponding dichotomous observation from
the pseudo-analysis. N denotes the number of forecasts that
are used to calculate the mean error (N = 540). The forecast
skill of the ensemble forecast system is evaluated with the
Brier skill score (BSS) as

BSS(xi, t)= 1−
BS(xi, t)

BSCLIM(xi, t)
, (2)

which compares the Brier score of the ensemble forecast sys-
tem,

BS(xi, t)=
1
N

N∑
n=1

(yn(xi, t)− on(xi, t))
2, (3)

against the Brier score of a climatological reference forecast:

BSCLIM(xi, t)=
1
N

N∑
n=1

(on(xi, t)− on(xi, t))
2. (4)

Here, the seasonal climatology on(xi, t) is calculated from
the pseudo-analysis for the period 1 December to 28 Febru-
ary in the winters 2018–2019, 2019–2020, and 2020–2021.
The ensemble forecast system performs better than the refer-
ence forecast for a BSS larger than 0 and is perfect at a BSS
of 1.

2.4 ICON data

To simulate a WCB case study in convection-permitting res-
olution, we run the nonhydrostatic model ICON (ICOsahe-
dral Nonhydrostatic; Zängl et al., 2015) globally with the op-
erational resolution of approximately 13 km (R03B07) and
90 vertical levels between the surface and 23 km of height,
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and we include two refined nests with resolutions of 6.5 km
(R03B08) and 3.3 km (R03B09) that focus on the WCB as-
cent region and are coupled with a two-way feedback. The
simulation is initialized with the operational ECMWF IFS
analysis at 00:00 UTC on 3 October 2016 and run for 5 d with
a time step of dt = 120 s in the global domain (corresponding
to dt = 60 s and dt = 30 s in the respective nests). We apply
the two-moment microphysics scheme (Seifert and Beheng,
2006) with six prognostic hydrometeor types (cloud and rain
droplets, ice, snow, graupel, and hail). Deep convection in
the global domain is parameterized with a Tiedtke–Bechtold
scheme (Bechtold et al., 2008; Tiedtke, 1989), while in both
refined nests deep convection is treated explicitly and only
shallow convection is parameterized.

The global nested simulation setup allows computing tra-
jectories with a high resolution in the refined nests, while
the coupling to the global domain ensures that the nests and
the global domain stay close together during the 5 d of WCB
simulation. This is important because global output is re-
quired for the application of the CNN models. Hence, this
setup allows directly comparing the performance of the CNN
models in high-resolution ICON simulations and the direct
comparison with high-resolution WCB trajectories.

Trajectories are calculated with LAGRANTO based on
hourly horizontal and vertical wind fields from the larger nest
with a resolution of 6.5 km, which are interpolated to a reg-
ular 0.1◦×0.1◦ grid on the original 90 vertical model levels.
For the WCB case study, 48 h forward trajectories are started
every hour and every 25 km within 60◦W, 35◦ N and 10◦W,
55◦ N from seven vertical levels (250, 500, 750, 1000, 1500,
2000, 2500 m above ground). WCB trajectories are subse-
quently selected as trajectories with an ascent rate of at least
600 hPa in 48 h. In contrast to the trajectory-based WCB cli-
matology (Madonna et al., 2014), the WCBs do not need to
be matched with an extratropical cyclone.

The CNN models are applied to ICON output from the
global 13 km domain that is remapped to 1◦×1◦ at the rele-
vant pressure levels.

3 Results

3.1 Climatological relationship of WCBs and
extratropical cyclones

By definition, WCBs of the trajectory-based climatology by
Madonna et al. (2014) are associated with extratropical cy-
clones. We investigate whether this relationship is found for
WCBs identified with the CNN models by matching ob-
jects of WCB ascent with cyclone objects. Due to the over-
all highest WCB activity during Northern Hemisphere winter
(Madonna et al., 2014), results are only shown for December,
January, and February (DJF).

The climatological matching frequency of trajectory-
based WCB ascent and extratropical cyclones reaches more
than 90 % over the western to central North Pacific and over
the North Atlantic during DJF (black contours in Fig. 1a).
South of the main storm-track region and over continental re-
gions the matching frequency is locally less than 70 %. Since
the trajectory-based WCBs need to match a cyclone at least
once during their 48 h life cycle, this relatively low match-
ing frequency implies that about 30 % of WCBs in these re-
gions are matched with cyclones during their inflow or out-
flow stage. Though a matching criterion of WCBs and extra-
tropical cyclones is not explicitly included in the CNN-based
WCB definition, qualitatively similar results are found (shad-
ing in Fig. 1a). In the core storm-track regions the differ-
ences between the trajectory-based and CNN-based match-
ing frequency are on the order of only −10 % to 10 % (shad-
ing in Fig. 1b). South of the main storm tracks the match-
ing frequency is even higher with the CNN-based defini-
tion than with the trajectory-based definition. This suggests
that the CNN models indeed identify WCBs that are asso-
ciated with extratropical cyclones and not just rapidly as-
cending airstreams which occur independently of extratrop-
ical cyclones, such as orographic ascent or convective sys-
tems. Similar results are found during Northern Hemisphere
summer (not shown). Generally, the matching frequency in
summer is slightly lower than in winter, in particular over the
western North Pacific. As for the winter season, the matching
frequency is slightly higher when considering WCBs identi-
fied with the CNN models. Hence, we show that overall the
CNN models reproduce the spatial relation of WCB ascent
and extratropical cyclones.

3.2 Climatological relationship of WCBs and blocking
anticyclones

About 10 % of air masses inside Northern Hemisphere block-
ing anticyclones ascend by 600 hPa in 48 h during the 7 d
prior to reaching the blocking anticyclone (Steinfeld and
Pfahl, 2019) and thus fulfill the WCB ascent criterion. Since
the WCB objects of this study are only two-dimensional ob-
jects a quantification of the air mass inside blocking anti-
cyclones related to WCBs is not possible. Still, we estimate
the matching frequency of blocking anticyclones with WCB
outflows and investigate whether the same conclusions are
drawn with the trajectory-based and CNN-based perspec-
tive. Here, the matching frequency is the ratio of the number
of blocking anticyclones that co-occurred with WCB out-
flow against the number of all blocking anticyclones. Dur-
ing DJF, the matching frequency of trajectory-based WCB
outflows and blocking anticyclones exhibits three hotspots
(black contours in Fig. 2a). With matching frequencies up to
35 % these are located over the western North Atlantic, the
western North Pacific, and the eastern North Pacific. These
areas coincide with regions with the greatest mean latent
heating contribution to blocking anticyclones (Steinfeld and
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Figure 1. (a) Climatological matching frequency of WCB ascent footprints with extratropical cyclones during DJF as identified with the
trajectory-based approach (black contours in %) and the CNN-based approach (shading in %). (b) Contours as in (a), but shading denotes
the difference in matching frequency (in %) between the CNN-based and trajectory-based approach.

Pfahl, 2019). The matching frequency of blocks and WCB
outflow objects identified with the CNN models exhibits a
similar spatial distribution (shading in Fig. 2a). As for the
Lagrangian approach, the highest matching frequencies are
observed over the western North Pacific, the eastern North
Pacific, and the western North Atlantic. The matching fre-
quency difference between the CNN-based and trajectory-
based approach is mostly on the order of −5 % to 5 % (shad-
ing in Fig. 2b). The largest differences exceeding 15 % occur
over the westernmost and eastern North Pacific. Neverthe-
less, as for the relation with extratropical cyclones, the CNN-
based WCB outflow diagnostic reproduces the spatial rela-
tion between WCB outflow and blocking anticyclones well.

3.3 Application to JRA55 reanalyses

The development of the CNN models in Part 1 as well as
applications have so far been limited to ERA-Interim data.
The aim of this section is to assess whether the CNN mod-
els are also applicable to other datasets without retraining
the models. To this end, we apply the models to JRA55 data,
assess their reliability against the trajectory-based WCB cli-
matology derived from ERA-Interim, and demonstrate how
the CNN models may be used to identify predictors that de-
teriorate their reliability. As in the previous sections the data
are analyzed for DJF in the testing period 1 January 2005 to
31 December 2016 and for the Northern Hemisphere.

For all three WCB stages of inflow, ascent, and outflow
the reliability of the CNN models deteriorates when being
applied to JRA55 reanalyses (dashed black line in Fig. 3)
instead of ERA-Interim (dotted black line in Fig. 3). How-
ever, the decrease in reliability is less than 10 %. Reliability
curves below the gray diagonal line indicate for all stages
an overestimation of the WCB probability, which is most
pronounced for the WCB inflow stage. As in Quinting and
Grams (2021a), we perform a recalibration of the predic-
tors by subtracting the seasonal mean difference between
JRA55 reanalysis and ERA-Interim reanalysis data averaged
over the period 2005–2016. For WCB inflow and outflow,
the effect of the recalibration on the reliability is negligible
(not shown). Only for WCB ascent is the reliability of the
models applied to ERA-Interim and the recalibrated JRA55

comparable. The minor effect of a simple recalibration of the
predictors on the reliability is not too surprising since CNN
models learn from spatial information which remains nearly
unchanged with a correction of the seasonal mean difference.

In order to identify the predictors which lead to the higher
reliability in ERA-Interim than in JRA55 reanalyses, we
perform sensitivity tests in which four predictors are taken
from JRA55 and the fifth predictor is taken from ERA-
Interim. For example, for WCB inflow “JRA55 & ERAI
THA700” (Fig. 3a) means that the 700 hPa thickness advec-
tion (THA700) is taken from ERA-Interim, while all other
predictors are taken from JRA55 (850 hPa meridional mois-
ture flux – MFLY850, 1000 hPa moisture flux convergence –
MFLCON1000, 500 hPa moist PV – MPV500, and the WCB
ascent conditional probability – MIDTROP; see Table 1 in
Part 1). For WCB inflow, the reliability for the sensitivity
tests JRA55 & ERAI THA700, JRA55 & ERAI MFLY850,
and JRA55 & ERAI MFLCON1000 remains nearly the same
as for JRA55 only. However, for the sensitivity tests JRA55
& ERAI MPV500 and JRA55 & ERAI MIDTROP the relia-
bility improves, suggesting that the 500 hPa moist PV and the
conditional probability of WCB ascent derived from JRA55
reanalyses are responsible for the reduction of the CNN mod-
els’ reliability for WCB inflow.

For WCB ascent, the results are less clear due to the gener-
ally small difference between the reliability curves (Fig. 3b).
It is the sensitivity test JRA55 & ERAI RH700 which shows
the greatest improvement of the model’s reliability (dashed
yellow line). For WCB outflow, the 300 hPa relative humid-
ity enhances the reliability when taken from ERA-Interim
(dashed red line in Fig. 3c). In particular, for modeled prob-
abilities greater than 0.5 the reliability of the test JRA55
& ERAI RH300 nearly matches the reliability of a perfect
model. The remaining predictors do not improve the reliabil-
ity markedly.

Overall, in terms of their reliability the CNN models per-
form reasonably well on the JRA55 dataset without any re-
training. Also, the CNN models appear to be less sensitive to
new datasets than the logistic regression models in Quinting
and Grams (2021a). Moreover, the above diagnostic shows
that the CNN models are not simply a black box suitable to
identify footprints of WCB inflow, ascent, and outflow but
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Figure 2. (a) Climatological matching frequency of blocking anticyclones and WCB outflow footprints during DJF as identified with the
trajectory-based approach (black contours in %) and the CNN-based approach (shading in %). (b) Contours as in (a), but shading denotes
the difference in matching frequency (in %) between the CNN-based and trajectory-based approach.

Figure 3. Reliability diagrams of the CNN models for (a) WCB inflow, (b) WCB ascent, and (c) WCB outflow when being applied to ERA-
Interim (dotted black line) and JRA55 (dashed black line). Colored dashed lines show the reliability for sensitivity experiments outlined
in the main text. Please see Table 1 in Part 1 for the abbreviations of predictors. Probabilities modeled with the CNN models (x axis) and
observed frequencies from the trajectory-based dataset (y axis) are binned into 19 bins based on the modeled probabilities. The perfect
modeled probability and a ±10 % interval about the perfect model are shown by the solid diagonals.

that they can also be used to identify predictors which re-
duce the reliability of the models. For example, instead of
applying the models to different reanalysis data, they could
be applied in a future study to short-range forecasts to iden-
tify erroneous predictors of WCB inflow, ascent, or outflow,
which could help our understanding of the underlying inter-
relations and driving processes.

3.4 Application to operational ensemble forecasts

A major goal of the development of the CNN-based WCB di-
agnostic is its application to large datasets such as ensemble
forecasts or climate projections. By applying the trajectory-
based approach and the CNN-based approach to ECMWF’s
operational ensemble forecasts, we now show the effect of
both approaches on the derived forecast biases in WCB oc-
currence frequency and on forecast skill in terms of the BSS.

3.4.1 WCB forecast bias

For the three winter periods analyzed here and for all WCB
stages of inflow, ascent, and outflow, the ensemble forecasts
exhibit biases on the order of ±2.5 % at a forecast lead time

of 126 to 144 h (Fig. 4) for both approaches. Though biases
are smaller at shorter lead times as expected, the spatial pat-
terns shown here are also representative at lead times from
48 h onward (not shown).

For WCB inflow, the CNN-based approach reveals a
dipole of positive and negative biases over the western North
Atlantic (Fig. 4a). In particular, the positive biases south of
the climatological WCB frequency maximum are also found
with the trajectory-based approach (Fig. 4d). However, and
this is the largest discrepancy between the two approaches,
the negative biases to the north of the storm-track regions
are not identified with the trajectory approach; i.e., here the
CNN-based approach underestimates the WCB inflow fre-
quency in the ensemble forecast compared to the pseudo-
analysis. This discrepancy is not statistically significant in
most regions as indicated by p values larger than 0.1 in a
two-sided t test.

For WCB ascent, the biases are generally smaller than
for WCB inflow1. Positive biases of less than 2 % occur
south of the climatological frequency maximum, over east-

1One should note that the mean absolute occurrence frequency
for WCB ascent is lower than for WCB inflow so that the biases
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Figure 4. WCB frequency biases (shading in %) in ECMWF’s operational ensemble forecasts averaged over a forecast lead time of 126
to 144 h as diagnosed with the (a, b, c) CNN-based approach and (d, e, f) with the trajectory-based approach. (a, d) WCB inflow, (b, e)
WCB ascent, and (c, f) WCB outflow. Black contours denote the WCB frequency (%) in the period 1 December to 28 February in the three
winters 2018–2019, 2019–2020, and 2020–2021 for the respective WCB stage. Areas where the biases identified with the two approaches
are significantly different (p value < 0.1) are highlighted by green dots.

ern North America, and to the south and southeast of Green-
land (Fig. 4b). Though the magnitude of the biases tends to
be higher with the trajectory approach (Fig. 4e), the spatial
characteristics of the biases are generally similar. Further, the
differences between the two approaches are not statistically
significant.

The magnitude of the WCB outflow biases locally exceeds
±2.5 % (Fig. 4c). The largest positive biases are found over
the western North Atlantic southwest of the climatological
frequency maximum and over the southern tip of Greenland.
Negative biases occur over the central North Atlantic and Ice-
land. The trajectory approach yields similar mean biases that
are not significantly different from the CNN-based approach
(Fig. 4f). The most notable difference is that the magnitude
of the negative biases tends to be smaller with the trajectory
approach.

Although the differences between the two approaches are
mostly not significant we briefly discuss potential reasons.
First, as discussed in Part 1 the WCB footprints identified by
the CNN models do not match the trajectory-based footprints
perfectly. Second, the trajectory-based WCBs identified in
the ensemble forecasts are not matched with extratropical
cyclone masks (however, the CNN training data, which are
represented by ERA-Interim WCB climatology by Madonna
et al., 2014, are). Accordingly, ascending airstreams related
to convective systems or orographic ascent may be incor-
rectly identified as WCBs with the trajectory approach that
the CNN models are not trained to identify. Third, in contrast
to the trajectory-based WCB climatology which the CNN

relative to the mean occurrence frequency are similar to the relative
biases of WCB inflow.

models were trained on, the trajectories in the operational en-
semble forecasts are started at a reduced number of vertical
levels. Since the discrepancies between the two approaches
are not significant, a deeper analysis of the possible reasons
is not presented as part of this study.

3.4.2 WCB forecast skill

The BSS for WCB forecasts of ECMWF’s operational en-
semble prediction system is similar for all three WCB stages
when identified with the CNN-based approach (Fig. 5). At
initial time the BSS reaches values of 0.9 and decreases
nearly linearly to values around 0.2 at 144 h lead time. A
BSS of 0.2 at 144 h lead time is consistent with Wandel et al.
(2021), who found BSS values of 0.2 between 120 and 144 h
lead time in ECMWF’s sub-seasonal reforecast dataset. For
all stages, the mean BSS is lower when WCBs are identified
with the trajectory approach. With the trajectory approach,
the BSS reaches values of 0.7 to 0.9 at initial time and de-
cays rapidly during the first 24 h of the forecast. A BSS of
0.0 is reached close to 144 h lead time. That the BSS is gener-
ally lower for WCBs identified with the trajectory approach
than for WCBs identified with the CNN-based approach is
related to the size of the WCB inflow, ascent, and outflow
objects. For all three WCB stages the WCB objects identi-
fied with the trajectory-based approach only have approxi-
mately 60 % of the size of objects identified with the CNN-
based approach (not shown). For WCB ascent, for example,
this is due to a very large number of objects smaller than
0.2× 106 km2 when applying the trajectory approach. Since
the BSS punishes slight displacements of small objects more
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strongly than slight displacements of large objects, the BSS
values are generally lower with the trajectory approach than
with the CNN-based approach.

3.5 Application to ICON forecasting system

This last application example focuses on the evolution of
a WCB over the North Atlantic during the North At-
lantic Waveguide and Downstream Impact Experiment in
2016 (NAWDEX; Schäfler et al., 2018) from 4 October at
00:00 UTC to 5 October at 00:00 UTC. The main purpose is
to test the applicability of the CNN models in NWP model
output with considerably higher resolution than the data we
have analyzed so far. At first, the synoptic evolution of the
system based on ERA-Interim and infrared satellite GridSat
clouds (Knapp et al., 2011) is depicted in Fig. 6a–c. On 4 Oc-
tober at 00:00 UTC, trajectory-based WCB inflow air parcels
are located over the central North Atlantic (colored dots in
Fig. 6a). The same inflow region is also identified with the
CNN models which predict WCB inflow at a conditional
probability greater than 0.4 (red contours in Fig. 6a). In the
following 12 h, the WCB air parcels ascend northeastward
ahead of the cold front and reach the mid-troposphere (col-
ored dots in Fig. 6b). Most ascending air parcels are found in
the northern half of the cyclone along the warm front (not
shown), and only a few trajectories ascend directly ahead
of the cold front. Still, both areas of ascending trajectories
are depicted by the CNN model (green contours in Fig. 6b).
On 5 October at 00:00 UTC, the WCB outflow is character-
ized by a broad cloud shield extending from the southern tip
of Greenland to Iceland (Fig. 6c). The air parcels indicate
the characteristic cyclonic and anticyclonic branches of the
WCB (see Martínez-Alvarado et al., 2014). Both branches
are identified by the CNN model which predicts the occur-
rence of WCB outflow at a conditional probability greater
than 0.4 (blue contours in Fig. 6c).

The ICON simulation initialized on 3 October 2016 at
00:00 UTC depicts the WCB evolution compared to ERA-
Interim reasonably well (Fig. 6). On 4 October at 00:00 UTC,
a large number of trajectories are located in the WCB inflow
layer over the North Atlantic (dots in Fig. 6d). It should be
noted that the trajectories in the ICON simulation are started
hourly and at a spatial grid spacing of 25 km, explaining the
larger number of trajectories than in ERA-Interim wherein
trajectories are started 6-hourly at a grid spacing of 80 km.
Moreover, trajectories calculated from high-resolution model
output tend to be characterized by average ascent rates of
600 hPa in considerably less than 48 h (e.g., Oertel et al.,
2020, 2021). Hence, displaying 48 h WCB air parcel posi-
tions results in a large number of trajectories prior to their
coherent ascent or that have already finished their ascent sev-
eral hours previously (see light gray colored dots in Fig. 6d,
f) and thus appear spread out in the cyclone’s warm sector or
recirculate in the upper-tropospheric ridge. Focusing only on
air parcels that are about to ascend to the ascent layer within

the next 6 h (dark gray and colored dots in Fig. 6d), the in-
flow region is spatially more confined and in the same region
as in ERA-Interim. This inflow region is depicted well by the
CNN model which predicts inflow at a conditional probabil-
ity greater than 0.4.

The ascending WCB air parcels on 4 October at
12:00 UTC are shown in Fig. 6e. As in ERA-Interim ascend-
ing air parcels are found along the warm front and imme-
diately ahead of the cold front (not shown). However, the
number of air parcels ascending ahead of the cold front is
considerably larger than in ERA-Interim. This is likely due
to faster ascent and resolved convection in the ICON sim-
ulation, which explicitly resolves convective ascents instead
of parameterizing them as in ERA-Interim. Regions of WCB
ascent as predicted by the CNN model are nearly collocated
with the ascending air parcels identified with the trajectory-
based approach. This collocation is quite remarkable keeping
in mind that the CNN model was trained on ERA-Interim
with coarser spatial resolution and that the trajectories are
calculated from data at high resolution in the refined nest.

On 5 October at 00:00 UTC, the CNN models predict the
occurrence of WCB outflow in a region extending from the
southern tip of Greenland to Iceland (Fig. 6f). This out-
flow region is collocated with the outflow identified in ERA-
Interim by both the trajectories and the CNN model. In the
ICON simulation, however, a significant fraction of trajecto-
ries reach the outflow layer further south and ahead of the
cold front. This outflow, which is related to rapid and partly
convectively driven ascents directly ahead of the cold front, is
not captured by the CNN model, which highlights one limita-
tion of the CNN when trained on ERA-Interim but applied to
convection-permitting simulations. Due to the 24 h time lag
between the conditional probability of ascent and the actual
WCB outflow, the CNN model is trained to capture slantwise
ascending air masses with relatively low ascent rates, such
as in ERA-Interim, but not convective rapid ascents. Accord-
ingly, the northernmost part of the outflow is depicted reason-
ably well in the ICON simulation as well as in ERA-Interim.
However, the southern part of the WCB outflow in the ICON
simulation, which is related to rapid ascents along the cold
front, is not captured by the CNN model. Thus, we hypoth-
esize that the time lag of 24 h between the conditional prob-
ability of WCB ascent as a predictor and the actual outflow
is an overly strong constraint when applying the CNN model
to convection-permitting simulations often characterized by
WCB ascent timescales of less than 48 h. This is confirmed
when applying a CNN which does not use the conditional
probability of ascent as a predictor (referred to as the stan-
dard model in Part 1). Rather, it uses information from the
four physical predictors, which are 300 hPa relative humid-
ity, 300 hPa divergent wind speed, 500 hPa static stability,
and 300 hPa relative vorticity, as well as the running mean
WCB climatology. With these predictors the WCB outflow
as predicted by the CNN extends further southward (dashed
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Figure 5. Mean Brier skill score for WCB (a) inflow, (b) ascent, and (c) outflow forecasts of ECMWF’s operational ensemble forecasts
averaged over the region shown in Fig. 4.

Figure 6. Synoptic evolution of WCB case study on (a, d) 4 October 2016 at 00:00 UTC, (b, e) 4 October 2016 at 12:00 UTC, and (c, f)
5 October 2016 at 00:00 UTC. Panels (a) to (c) are based on ERA-Interim and show conditional probability of WCB inflow (red contours),
ascent (green contours), and outflow (blue contours) all at 0.2, 0.3, and 0.4. Dots show locations of trajectory-based WCB air parcels for (a)
inflow, (b) ascent, and (c) outflow and are colored according to their pressure (hPa). Also shown are IR GridSat clouds (Knapp et al., 2011)
with a brightness temperature of less than −10 ◦C. Panels (d) to (f) are based on convection-permitting simulations with the ICON model.
Contours are the same as in (a–c) except for (f) where the dashed blue contour denotes the conditional WCB outflow probability calculated
with the standard model of Part 1. Dots show trajectory-based WCB air parcels for (d) inflow, (e) ascent, and (f) outflow that will transition
to the ascent layer in the next hour (colored dot) or have just arrived in the outflow layer (color indicates 2 h pressure change), that have been
in the layer for 1–6 h (dark gray dots), and that have been in the corresponding layer for more than 6 h (light gray dots), respectively.

blue contours in Fig. 6f) and captures large parts of the out-
flow based on the trajectory approach.

4 Conclusions and Outlook

In Part 1 of this two-part study, we introduced novel CNN-
based models that skillfully identify footprints of WCB in-
flow, ascent, and outflow from data at a comparably coarse
temporal and spatial resolution which would not be suitable

for trajectory calculations. With the CNN-based models we
are now capable of evaluating the representation of WCBs
in large datasets such as ensemble forecasts or climate pro-
jections at comparably low computational costs. The present
study, Part 2, shows the versatile applicability of the CNN
models to different datasets such as reanalysis, ensemble
forecasts, and convection-permitting simulations and com-
pares the results with the trajectory-based counterpart.

The application of the CNN-based models to ERA-Interim
reanalysis data and the matching of WCB objects with ex-
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tratropical cyclone and blocking objects identifies two well-
known relationships.

1. The ascent of WCBs is associated with and con-
tributes to the intensification of extratropical cyclones
(Madonna et al., 2014; Binder et al., 2016). With the
trajectory approach and the CNN-based approach it is
found that in the main storm-track regions up to 90 % of
WCB ascent objects co-occur with an extratropical cy-
clone object. Though a matching criterion of WCBs and
extratropical cyclones is not explicitly included in the
CNN-based WCB definition compared to the trajectory-
based definition (Madonna et al., 2014), quantitatively
similar results are found with either approach. This sug-
gests that the CNN models indeed identify airstreams
that are associated with extratropical cyclones and not
just rapidly ascending airstreams which occur indepen-
dently of extratropical cyclones such as orographic as-
cent or convective systems.

2. About 10 % of air masses in Northern Hemisphere
blocking anticyclones are related to WCBs (Steinfeld
and Pfahl, 2019). Due to the two-dimensional nature
of the WCB objects, the proportion of WCB air mass
in blocking anticyclones cannot be quantified with the
CNN-based approach. Still, we find that locally up to
35 % of blocking anticyclones co-occur with WCB out-
flow. Interestingly, the areas of highest matching fre-
quency coincide with regions with the greatest mean la-
tent heating contribution to blocking anticyclones (Ste-
infeld and Pfahl, 2019).

Future studies could use the CNN models to perform analy-
ses in climate model projections. To the authors’ knowledge
a systematic investigation of the matching frequency of cy-
clones, blocking anticyclones, and WCBs has not been con-
ducted yet in these datasets.

When applied to datasets other than the CNN models were
trained on, the reliability of the models deteriorates slightly.
Still, this information is shown to be useful to identify pre-
dictor fields that cause the deterioration. Similar to the ap-
plication to JRA-55 reanalyses data as in this study, future
studies could apply the CNN models to short-range forecasts
in order to identify predictors that cause the difference in re-
liability compared to ERA-Interim. Such an approach could
be useful to identify NWP or climate model biases in basic
atmospheric variables, which would help improve the model
representation of WCBs specifically and model improvement
in general in the long term.

The application of the CNN models to operational ensem-
ble forecasts reveals biases in the WCB occurrence frequency
over the North Atlantic. Though the period considered here
includes only three winter seasons, the overestimation of
WCB inflow, ascent, and outflow to the south of the clima-
tological WCB frequency maximum and an underestimation
of WCB outflow in the North Atlantic are consistent with

Wandel et al. (2021). That the trajectory and CNN-based ap-
proach identify similar biases in operational ensemble fore-
casts encourages us to use the CNN models to systematically
investigate the representation of WCBs in large datasets. Fu-
ture studies could apply the diagnostic in inter-model com-
parisons on weather to climate timescales. Datasets such as
the THORPEX Interactive Grand Global Ensemble (TIGGE;
Swinbank et al., 2016), the sub-seasonal to seasonal pre-
diction project database (Vitart et al., 2017), and the Cou-
pled Model Intercomparison Project Phase 6 (CMIP6; Eyring
et al., 2016) provide numerous opportunities.

Finally, we would like to stress that the CNN models in-
troduced in this study are limited in the sense that they only
provide information about the occurrence of WCB inflow, as-
cent, and outflow. Thus, the models are optimally suited to be
applied to large datasets. For process-oriented studies on the
physical properties of WCBs the trajectory approach yields
invaluable insights and should thus be preferred. Future de-
velopments of CNN-based WCB diagnostics that account for
the associated mass transport or the three-dimensional spatial
and temporal evolution could provide additional insights and
an even more accurate identification of WCBs. Our study il-
lustrates that deep learning methods can be used efficiently to
support process-oriented understanding of forecast error and
model biases, and it opens numerous new directions for NWP
and climate model verification as well as process-oriented re-
search in large datasets.

Code and data availability. The exact version of the time-lag mod-
els, the decision thresholds, the 30 d running mean trajectory-based
WCB climatology, code to process the input data for the mod-
els, and post-processing scripts to generate the figures of this pa-
per are provided via the repository at https://git.scc.kit.edu/nk2448/
wcbmetric_v2.git (last access: 13 January 2022) (Quinting, 2022)
and archived on Zenodo (https://doi.org/10.5281/zenodo.5154980)
(Quinting and Grams, 2021b). ERA-Interim data are freely
available at https://apps.ecmwf.int/datasets/data/interim-full-daily
(ECMWF, 2022). Monthly ERA-Interim-based climatologies of
extratropical cyclones and blocks can be downloaded at http://
eraiclim.ethz.ch/ (ETH Zürich, 2015). JRA-55 data were retrieved
from https://doi.org/10.5065/D6HH6H41 (JMA, 2013). The LA-
GRANTO documentation and information on how to access the
source code are provided in Sprenger and Wernli (2015). The ICON
source code is distributed under an institutional license issued by
the German Weather Service (DWD). For more information see
https://code.mpimet.mpg.de/projects/iconpublic (DWD, 2015). The
model output of the ICON simulation is available from the authors
upon request.
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