Articles | Volume 15, issue 18
https://doi.org/10.5194/gmd-15-7153-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7153-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Grid refinement in ICON v2.6.4
Günther Zängl
CORRESPONDING AUTHOR
Deutscher Wetterdienst, Offenbach am Main, Germany
Daniel Reinert
Deutscher Wetterdienst, Offenbach am Main, Germany
Florian Prill
Deutscher Wetterdienst, Offenbach am Main, Germany
Related authors
Young-Ha Kim, Georg Sebastian Voelker, Gergely Bölöni, Günther Zängl, and Ulrich Achatz
Atmos. Chem. Phys., 24, 3297–3308, https://doi.org/10.5194/acp-24-3297-2024, https://doi.org/10.5194/acp-24-3297-2024, 2024
Short summary
Short summary
The quasi-biennial oscillation, which governs the tropical stratospheric circulation, is driven primarily by small-scale wave processes. We employ a novel method to realistically represent these wave processes in a global model, thereby revealing an aspect of the oscillation that has not been identified before. We find that the oblique propagation of waves, a process neglected by existing climate models, plays a pivotal role in the stratospheric circulation and its oscillation.
Trang Van Pham, Christian Steger, Burkhardt Rockel, Klaus Keuler, Ingo Kirchner, Mariano Mertens, Daniel Rieger, Günther Zängl, and Barbara Früh
Geosci. Model Dev., 14, 985–1005, https://doi.org/10.5194/gmd-14-985-2021, https://doi.org/10.5194/gmd-14-985-2021, 2021
Short summary
Short summary
A new regional climate model was prepared based on a weather forecast model. Slow processes of the climate system such as ocean state development and greenhouse gas emissions were implemented. A model infrastructure and evaluation tools were also prepared to facilitate long-term simulations and model evalution. The first ICON-CLM results were close to observations and comparable to those from COSMO-CLM, the recommended model being used at the Deutscher Wetterdienst and CLM Community.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev., 18, 1001–1015, https://doi.org/10.5194/gmd-18-1001-2025, https://doi.org/10.5194/gmd-18-1001-2025, 2025
Short summary
Short summary
The ICOsahedral Non-hydrostatic (ICON) model system Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++, and Python), and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507, https://doi.org/10.5194/gmd-17-2493-2024, https://doi.org/10.5194/gmd-17-2493-2024, 2024
Short summary
Short summary
Accurate simulation of tropical cyclones (TCs) is essential to understanding their behavior in a changing climate. One way this is accomplished is through model intercomparison projects, where results from multiple climate models are analyzed to provide benchmark solutions for the wider climate modeling community. This study describes and analyzes the previously developed TC test case for nine climate models in an intercomparison project, providing solutions that aid in model development.
Young-Ha Kim, Georg Sebastian Voelker, Gergely Bölöni, Günther Zängl, and Ulrich Achatz
Atmos. Chem. Phys., 24, 3297–3308, https://doi.org/10.5194/acp-24-3297-2024, https://doi.org/10.5194/acp-24-3297-2024, 2024
Short summary
Short summary
The quasi-biennial oscillation, which governs the tropical stratospheric circulation, is driven primarily by small-scale wave processes. We employ a novel method to realistically represent these wave processes in a global model, thereby revealing an aspect of the oscillation that has not been identified before. We find that the oblique propagation of waves, a process neglected by existing climate models, plays a pivotal role in the stratospheric circulation and its oscillation.
Marco A. Giorgetta, William Sawyer, Xavier Lapillonne, Panagiotis Adamidis, Dmitry Alexeev, Valentin Clément, Remo Dietlicher, Jan Frederik Engels, Monika Esch, Henning Franke, Claudia Frauen, Walter M. Hannah, Benjamin R. Hillman, Luis Kornblueh, Philippe Marti, Matthew R. Norman, Robert Pincus, Sebastian Rast, Daniel Reinert, Reiner Schnur, Uwe Schulzweida, and Bjorn Stevens
Geosci. Model Dev., 15, 6985–7016, https://doi.org/10.5194/gmd-15-6985-2022, https://doi.org/10.5194/gmd-15-6985-2022, 2022
Short summary
Short summary
This work presents a first version of the ICON atmosphere model that works not only on CPUs, but also on GPUs. This GPU-enabled ICON version is benchmarked on two GPU machines and a CPU machine. While the weak scaling is very good on CPUs and GPUs, the strong scaling is poor on GPUs. But the high performance of GPU machines allowed for first simulations of a short period of the quasi-biennial oscillation at very high resolution with explicit convection and gravity wave forcing.
Hélène Bresson, Annette Rinke, Mario Mech, Daniel Reinert, Vera Schemann, Kerstin Ebell, Marion Maturilli, Carolina Viceto, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022, https://doi.org/10.5194/acp-22-173-2022, 2022
Short summary
Short summary
Arctic warming is pronounced, and one factor in this is the poleward atmospheric transport of heat and moisture. This study assesses the 4D structure of an Arctic moisture intrusion event which occurred in June 2017. For the first time, high-resolution pan-Arctic ICON simulations are performed and compared with global models, reanalysis, and observations. Results show the added value of high resolution in the event representation and the impact of the intrusion on the surface energy fluxes.
Trang Van Pham, Christian Steger, Burkhardt Rockel, Klaus Keuler, Ingo Kirchner, Mariano Mertens, Daniel Rieger, Günther Zängl, and Barbara Früh
Geosci. Model Dev., 14, 985–1005, https://doi.org/10.5194/gmd-14-985-2021, https://doi.org/10.5194/gmd-14-985-2021, 2021
Short summary
Short summary
A new regional climate model was prepared based on a weather forecast model. Slow processes of the climate system such as ocean state development and greenhouse gas emissions were implemented. A model infrastructure and evaluation tools were also prepared to facilitate long-term simulations and model evalution. The first ICON-CLM results were close to observations and comparable to those from COSMO-CLM, the recommended model being used at the Deutscher Wetterdienst and CLM Community.
Cited articles
Bonaventura, L. and Ringler, T.: Analysis of discrete shallow water models on
geodesic Delaunay grids with C-type staggering, Mon. Weather Rev., 133,
2351–2373, https://doi.org/10.1175/MWR2986.1, 2005. a
Borchert, S., Zhou, G., Baldauf, M., Schmidt, H., Zängl, G., and Reinert, D.: The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0), Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019, 2019. a
Danilov, S.: On utility of triangular C-grid type discretization for numerical
modeling of large-scale ocean flows, Ocean Dynam., 60, 1361–1369,
https://doi.org/10.1007/s10236-010-0339-6, 2012. a
Davies, H.: A lateral boundary formulation for multi-level prediction models,
Q. J. Roy. Meteor. Soc., 102, 405–418, https://doi.org/10.1002/qj.49710243210, 1976. a, b
Davies, T.: Lateral boundary conditions for limited area models, Q. J. Roy.
Meteor. Soc., 140, 185–196, https://doi.org/10.1002/qj.2127, 2014. a
Dubos, T. and Kevlahan, N. K.-R.: A conservative adaptive wavelet method for
the shallow-water equations on staggered grids, Q. J. Roy. Meteor. Soc., 139,
1997–2020, https://doi.org/10.1002/qj.2097, 2013. a
Fox-Rabinovitz, M., Cote, J., Dugas, B., Deque, M., McGregor, J. L., and
Belochitski, A.: Stretched-grid Model Intercomparison Project: decadal
regional climate simulations with enhanced variable and uniform-resolution
GCMs, Meteorol. Atmos. Phys., 100, 159–178,
https://doi.org/10.1007/s00703-008-0301-z, 2008. a
Gassmann, A.: Inspection of hexagonal and triangular C-grid discretizations
of the shallow water equations, J. Comput. Phys., 230, 2706–2721,
https://doi.org/10.1016/j.jcp.2011.01.014, 2011. a
Gassmann, A.: A global hexagonal C-grid non-hydrostatic dynamical core
(ICON-IAP) designed for energetic consistency, Q. J. Roy. Meteor. Soc.,
139, 152–175, https://doi.org/10.1002/qj.1960, 2013. a
Gassmann, A. and Herzog, H.-J.: Towards a consistent numerical compressible
non-hydrostatic model using generalized Hamiltonian tools, Q. J. Roy.
Meteor. Soc., 134, 1597–1613, https://doi.org/10.1002/qj.297, 2008. a
Gettelman, A., Callaghan, P., Larson, V. E., Zarzycki, C. M., Bacmeister,
J. T., Lauritzen, P. H., Bogenschutz, P. A., and Neale, R. B.: Regional
Climate Simulations with the Community Earth System Model, J. Adv. Model
Earth Sy., 10, 1245–1265, https://doi.org/10.1002/2017MS001227, 2018. a
Goto, D., Dai, T., Satoh, M., Tomita, H., Uchida, J., Misawa, S., Inoue, T., Tsuruta, H., Ueda, K., Ng, C. F. S., Takami, A., Sugimoto, N., Shimizu, A., Ohara, T., and Nakajima, T.: Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan, Geosci. Model Dev., 8, 235–259, https://doi.org/10.5194/gmd-8-235-2015, 2015. a
Grell, G. A., Dudhia, J., and Stauffer, D.: A description of the
fifth-generation Penn State/NCAR Mesoscale Model (MM5), Tech. Rep.
NCAR/TN-398+STR, University Corporation for Atmospheric Research,
https://doi.org/10.5065/D60Z716B, 1994. a, b, c
Gross, E. S., Bonaventura, L., and Rosatti, G.: Consistency with continuity in
conservative advection schemes for free-surface models,
Int. J. Numer. Meth. Fl., 38, 307–327, https://doi.org/10.1002/fld.222, 2002. a
Gross, M., Wan, H., Rasch, P. J., Caldwell, P. M., Williamson, D. L., Klocke,
D., Jablonowski, C., Thatcher, D. R., Wood, N., Cullen, M., Beare, B.,
Willett, M., Lemarié, F., Blayo, E., Malardel, S., Termonia, P., Gassmann,
A., Lauritzen, P. H., Johansen, H., Zarzycki, C. M., Sakaguchi, K., and
Leung, R.: Physics–Dynamics Coupling in Weather, Climate, and Earth System
Models: Challenges and Recent Progress, Mon. Weather Rev., 146, 3505–3544,
https://doi.org/10.1175/MWR-D-17-0345.1, 2018. a
Harris, L. M. and Lin, S.-J.: A Two-Way Nested Global-Regional Dynamical Core
on the Cubed-Sphere Grid, Mon. Weather Rev., 141, 283–306,
https://doi.org/10.1175/MWR-D-11-00201.1, 2013. a, b
Harris, L. M. and Lin, S.-J.: Global-to-Regional Nested Grid Climate
Simulations in the GFDL High Resolution Atmospheric Model, J. Climate, 27,
4890–4910, https://doi.org/10.1175/JCLI-D-13-00596.1, 2014. a
Jablonowski, C. and Williamson, D.: A baroclinic instability test case for
atmospheric model dynamical cores, Q. J. Roy. Meteor. Soc., 132, 2943–2975,
https://doi.org/10.1256/qj.06.12, 2006. a, b, c, d
Klemp, J. B., Skamarock, W. C., and Park, S.-H.: Idealized global
nonhydrostatic atmospheric test cases on a reduced-radius sphere, J.
Adv. Model. Earth Sy., 7, 1155–1177,
https://doi.org/10.1002/2015MS000435, 2015. a
Lauritzen, P. H., Jablonowski, C., Taylor, M. A., and Nair, R. D.: Rotated
Versions of the Jablonowski Steady-State and Baroclinic Wave Test Cases: A
Dynamical Core Intercomparison, J. Adv. Model Earth Sy., 2, 15,
https://doi.org/10.3894/JAMES.2010.2.15, 2010. a, b
Leuenberger, D., Koller, M., Fuhrer, O., and Schär, C.: A generalization of
the SLEVE vertical coordinate, Mon. Weather Rev., 138, 3683–3689,
https://doi.org/10.1175/2010MWR3307.1, 2010. a
Mouallem, J., Harris, L., and Benson, R.: Multiple same-level and telescoping nesting in GFDL's dynamical core, Geosci. Model Dev., 15, 4355–4371, https://doi.org/10.5194/gmd-15-4355-2022, 2022. a, b, c
MPI-M: Instructions for obtaining the ICON Code,
https://code.mpimet.mpg.de/projects/iconpublic/wiki/Instructions_to_obtain_the_ICON_model_code_with_a_personal_non-commercial_research_license,
last access: 18 November 2019. a
Narcowich, F. and Ward, J.: Generalized Hermite interpolation via
matrix-valued conditionally positive definite functions, Math. Comput., 63,
661–687, https://doi.org/10.2307/2153288, 1994. a
Prill, F., Reinert, D., Rieger, D., and Zängl, G.: ICON Tutorial: Working
with the ICON model, Deutscher Wetterdienst (DWD),
https://doi.org/10.5676/dwd_pub/nwv/icon_tutorial2020, 2020. a
Reinert, D., Prill, F., Frank, H., Denhard, M., Baldauf, M., Schraff, C.,
Gebhardt, C., Marsigli, C., and Zängl, G.: DWD Database Reference for the
Global and Regional ICON and ICON-EPS Forecasting System, Deutscher
Wetterdienst (DWD),
https://www.dwd.de/SharedDocs/downloads/DE/modelldokumentationen/nwv/icon/icon_dbbeschr_aktuell.html (last access: 15 August 2022),
2021. a
Rípodas, P., Gassmann, A., Förstner, J., Majewski, D., Giorgetta, M., Korn, P., Kornblueh, L., Wan, H., Zängl, G., Bonaventura, L., and Heinze, T.: Icosahedral Shallow Water Model (ICOSWM): results of shallow water test cases and sensitivity to model parameters, Geosci. Model Dev., 2, 231–251, https://doi.org/10.5194/gmd-2-231-2009, 2009. a
Schmidt, F.: Variable fine mesh in spectral global models, Beitr. Phys. Atmos.,
50, 211–217, 1977. a
Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S.-H., and
Ringler, T. D.: A Multiscale Nonhydrostatic Atmospheric Model Using
Centroidal Voronoi Tesselations and C-Grid Staggering, Mon. Weather Rev.,
140, 3090–3105, https://doi.org/10.1175/MWR-D-11-00215.1, 2012. a, b
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Zhiquan, L., Berner,
J., Wang, W., Powers, J. G., Duda, M. G., , Barker, D. M., and Huang, X.: A
Description of the Advanced Research WRF Model Version 4, No.
ncar/tn-556+str, National Center For Atmospheric Research, Boulder, CO,
https://doi.org/10.5065/1dfh-6p97, 2019. a, b, c
Staniforth, A. N. and Mitchell, H. L.: A Variable-Resolution Finite-Element
Technique for Regional Forecasting with the Primitive Equations, Mon. Weather
Rev., 106, 439–447, https://doi.org/10.1175/1520-0493(1978)106<0439:AVRFET>2.0.CO;2, 1978. a
Tomita, H.: A Stretched Icosahedral Grid by a New Grid Transformation, J.
Meteorol. Soc. Jpn. Ser. II, 86A, 107–119, https://doi.org/10.2151/jmsj.86A.107, 2008.
a
Wan, H., Giorgetta, M. A., Zängl, G., Restelli, M., Majewski, D., Bonaventura, L., Fröhlich, K., Reinert, D., Rípodas, P., Kornblueh, L., and Förstner, J.: The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids – Part 1: Formulation and performance of the baseline version, Geosci. Model Dev., 6, 735–763, https://doi.org/10.5194/gmd-6-735-2013, 2013. a, b, c
Warner, T. T., Peterson, R. A., and Treadon, R. E.: A Tutorial on Lateral
Boundary Conditions as a Basic and Potentially Serious Limitation to Regional
Numerical Weather Prediction, B. Am. Meteorol. Soc., 78, 2599–2618,
https://doi.org/10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2, 1997. a
Weimer, M., Buchmüller, J., Hoffmann, L., Kirner, O., Luo, B., Ruhnke, R., Steiner, M., Tritscher, I., and Braesicke, P.: Mountain-wave-induced polar stratospheric clouds and their representation in the global chemistry model ICON-ART, Atmos. Chem. Phys., 21, 9515–9543, https://doi.org/10.5194/acp-21-9515-2021, 2021. a, b
WMO: Manual on the Global Data-processing and Forecasting System: Annex IV to
the WMO Technical Regulations, WMO-no. 485, World Meteorological
Organization, Geneva, Switzerland, ISBN 978-92-63-10485-4, 2019. a
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON
(ICOsahedral Nonhydrostatic) modelling framework of DWD and MPI-M:
Description of the nonhydrostatic dynamical core, Q. J. Roy. Meteor. Soc.,
141, 563–579, https://doi.org/10.1002/qj.2378, 2015. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Zängl, G., Reinert, D., and Prill, F.: Grid Refinement in ICON v2.6.4
(research data), Edmond [data set], https://doi.org/10.17617/3.NOC2AE, 2022. a
Zarzycki, C. M., Jablonowski, C., and Taylor, M. A.: Using Variable-Resolution
Meshes to Model Tropical Cyclones in the Community Atmosphere Model, Mon.
Weather Rev., 142, 1221–1239, https://doi.org/10.1175/MWR-D-13-00179.1, 2014. a
Short summary
This article describes the implementation of grid refinement in the ICOsahedral Nonhydrostatic (ICON) model, which has been jointly developed at several German institutions and constitutes a unified modeling system for global and regional numerical weather prediction and climate applications. The grid refinement allows using a higher resolution in regional domains and transferring the information back to the global domain by means of a feedback mechanism.
This article describes the implementation of grid refinement in the ICOsahedral Nonhydrostatic...