Articles | Volume 15, issue 18
https://doi.org/10.5194/gmd-15-7139-2022
https://doi.org/10.5194/gmd-15-7139-2022
Model description paper
 | 
22 Sep 2022
Model description paper |  | 22 Sep 2022

MultilayerPy (v1.0): a Python-based framework for building, running and optimising kinetic multi-layer models of aerosols and films

Adam Milsom, Amy Lees, Adam M. Squires, and Christian Pfrang

Related authors

The lifetimes and potential change in planetary albedo owing to the oxidation of thin surfactant organic films extracted from atmospheric aerosol by hydroxyl (OH) radicals at the air–water interface of particles
Rosalie H. Shepherd, Martin D. King, Andrew D. Ward, Edward J. Stuckey, Rebecca J. L. Welbourn, Neil Brough, Adam Milsom, Christian Pfrang, and Thomas Arnold
Atmos. Chem. Phys., 25, 2569–2588, https://doi.org/10.5194/acp-25-2569-2025,https://doi.org/10.5194/acp-25-2569-2025, 2025
Short summary
Acoustic levitation of pollen and visualisation of hygroscopic behaviour
Sophie A. Mills, Adam Milsom, Christian Pfrang, A. Rob MacKenzie, and Francis D. Pope
Atmos. Meas. Tech., 16, 4885–4898, https://doi.org/10.5194/amt-16-4885-2023,https://doi.org/10.5194/amt-16-4885-2023, 2023
Short summary
Technical note: In situ measurements and modelling of the oxidation kinetics in films of a cooking aerosol proxy using a quartz crystal microbalance with dissipation monitoring (QCM-D)
Adam Milsom, Shaojun Qi, Ashmi Mishra, Thomas Berkemeier, Zhenyu Zhang, and Christian Pfrang
Atmos. Chem. Phys., 23, 10835–10843, https://doi.org/10.5194/acp-23-10835-2023,https://doi.org/10.5194/acp-23-10835-2023, 2023
Short summary
The impact of molecular self-organisation on the atmospheric fate of a cooking aerosol proxy
Adam Milsom, Adam M. Squires, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 22, 4895–4907, https://doi.org/10.5194/acp-22-4895-2022,https://doi.org/10.5194/acp-22-4895-2022, 2022
Short summary
An organic crystalline state in ageing atmospheric aerosol proxies: spatially resolved structural changes in levitated fatty acid particles
Adam Milsom, Adam M. Squires, Jacob A. Boswell, Nicholas J. Terrill, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 21, 15003–15021, https://doi.org/10.5194/acp-21-15003-2021,https://doi.org/10.5194/acp-21-15003-2021, 2021
Short summary

Related subject area

Atmospheric sciences
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025,https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Identifying lightning processes in ERA5 soundings with deep learning
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025,https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025,https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025,https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary

Cited articles

Abbatt, J. P. D. and Wang, C.: The atmospheric chemistry of indoor environments, Environ. Sci.-Proc. Imp., 22, 25–48, https://doi.org/10.1039/c9em00386j, 2020. 
Berkemeier, T., Ammann, M., Krieger, U. K., Peter, T., Spichtinger, P., Pöschl, U., Shiraiwa, M., and Huisman, A. J.: Technical note: Monte Carlo genetic algorithm (MCGA) for model analysis of multiphase chemical kinetics to determine transport and reaction rate coefficients using multiple experimental data sets, Atmos. Chem. Phys., 17, 8021–8029, https://doi.org/10.5194/acp-17-8021-2017, 2017. 
Berkemeier, T., Mishra, A., Mattei, C., Huisman, A. J., Krieger, U. K., and Pöschl, U.: Ozonolysis of Oleic Acid Aerosol Revisited: Multiphase Chemical Kinetics and Reaction Mechanisms, ACS Earth Sp. Chem., 5, 3313–3323, https://doi.org/10.1021/acsearthspacechem.1c00232, 2021. 
Dennis-Smither, B. J., Miles, R. E. H., and Reid, J. P.: Oxidative aging of mixed oleic acid/sodium chloride aerosol particles, J. Geophys. Res.-Atmos., 117, 1–13, https://doi.org/10.1029/2012JD018163, 2012. 
Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J.: emcee: The MCMC Hammer, Publ. Astron. Soc. Pac., 125, 306–312, https://doi.org/10.1086/670067, 2013. 
Download
Short summary
MultilayerPy is a Python-based framework facilitating the creation, running and optimisation of state-of-the-art kinetic multi-layer models of aerosol and film processes. Models can be fit to data with local and global optimisation algorithms along with a statistical sampling algorithm, which quantifies the uncertainty in optimised model parameters. This “modelling study in a box” enables more reproducible and reliable results, with model code and outputs produced in a human-readable way.
Share