Articles | Volume 15, issue 18
https://doi.org/10.5194/gmd-15-7139-2022
https://doi.org/10.5194/gmd-15-7139-2022
Model description paper
 | 
22 Sep 2022
Model description paper |  | 22 Sep 2022

MultilayerPy (v1.0): a Python-based framework for building, running and optimising kinetic multi-layer models of aerosols and films

Adam Milsom, Amy Lees, Adam M. Squires, and Christian Pfrang

Related authors

The lifetimes and potential change in planetary albedo owing to the oxidation of organic films extracted from atmospheric aerosol by hydroyxl (OH) radical oxidation at the air-water interface of aerosol particles
Rosalie Shepherd, Martin King, Andrew Ward, Edward Stuckey, Rebecca Welbourn, Neil Brough, Adam Milsom, Christian Pfrang, and Thomas Arnold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2367,https://doi.org/10.5194/egusphere-2024-2367, 2024
Short summary
Acoustic levitation of pollen and visualisation of hygroscopic behaviour
Sophie A. Mills, Adam Milsom, Christian Pfrang, A. Rob MacKenzie, and Francis D. Pope
Atmos. Meas. Tech., 16, 4885–4898, https://doi.org/10.5194/amt-16-4885-2023,https://doi.org/10.5194/amt-16-4885-2023, 2023
Short summary
Technical note: In situ measurements and modelling of the oxidation kinetics in films of a cooking aerosol proxy using a quartz crystal microbalance with dissipation monitoring (QCM-D)
Adam Milsom, Shaojun Qi, Ashmi Mishra, Thomas Berkemeier, Zhenyu Zhang, and Christian Pfrang
Atmos. Chem. Phys., 23, 10835–10843, https://doi.org/10.5194/acp-23-10835-2023,https://doi.org/10.5194/acp-23-10835-2023, 2023
Short summary
The impact of molecular self-organisation on the atmospheric fate of a cooking aerosol proxy
Adam Milsom, Adam M. Squires, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 22, 4895–4907, https://doi.org/10.5194/acp-22-4895-2022,https://doi.org/10.5194/acp-22-4895-2022, 2022
Short summary
An organic crystalline state in ageing atmospheric aerosol proxies: spatially resolved structural changes in levitated fatty acid particles
Adam Milsom, Adam M. Squires, Jacob A. Boswell, Nicholas J. Terrill, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 21, 15003–15021, https://doi.org/10.5194/acp-21-15003-2021,https://doi.org/10.5194/acp-21-15003-2021, 2021
Short summary

Related subject area

Atmospheric sciences
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024,https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024,https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024,https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024,https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024,https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary

Cited articles

Abbatt, J. P. D. and Wang, C.: The atmospheric chemistry of indoor environments, Environ. Sci.-Proc. Imp., 22, 25–48, https://doi.org/10.1039/c9em00386j, 2020. 
Berkemeier, T., Ammann, M., Krieger, U. K., Peter, T., Spichtinger, P., Pöschl, U., Shiraiwa, M., and Huisman, A. J.: Technical note: Monte Carlo genetic algorithm (MCGA) for model analysis of multiphase chemical kinetics to determine transport and reaction rate coefficients using multiple experimental data sets, Atmos. Chem. Phys., 17, 8021–8029, https://doi.org/10.5194/acp-17-8021-2017, 2017. 
Berkemeier, T., Mishra, A., Mattei, C., Huisman, A. J., Krieger, U. K., and Pöschl, U.: Ozonolysis of Oleic Acid Aerosol Revisited: Multiphase Chemical Kinetics and Reaction Mechanisms, ACS Earth Sp. Chem., 5, 3313–3323, https://doi.org/10.1021/acsearthspacechem.1c00232, 2021. 
Dennis-Smither, B. J., Miles, R. E. H., and Reid, J. P.: Oxidative aging of mixed oleic acid/sodium chloride aerosol particles, J. Geophys. Res.-Atmos., 117, 1–13, https://doi.org/10.1029/2012JD018163, 2012. 
Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J.: emcee: The MCMC Hammer, Publ. Astron. Soc. Pac., 125, 306–312, https://doi.org/10.1086/670067, 2013. 
Download
Short summary
MultilayerPy is a Python-based framework facilitating the creation, running and optimisation of state-of-the-art kinetic multi-layer models of aerosol and film processes. Models can be fit to data with local and global optimisation algorithms along with a statistical sampling algorithm, which quantifies the uncertainty in optimised model parameters. This “modelling study in a box” enables more reproducible and reliable results, with model code and outputs produced in a human-readable way.