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Abstract. Kinetic multi-layer models of aerosols and films
have become the state-of-the-art method of describing com-
plex aerosol processes at the particle and film level. We
present MultilayerPy: an open-source framework for build-
ing, running and optimising kinetic multi-layer models –
namely the kinetic multi-layer model of aerosol surface and
bulk chemistry (KM-SUB) and the kinetic multi-layer model
of gas–particle interactions in aerosols and clouds (KM-
GAP). The modular nature of this package allows the user to
iterate through various reaction schemes, diffusion regimes
and experimental conditions in a systematic way. In this way,
models can be customised and the raw model code itself,
produced in a readable way by MultilayerPy, is fully cus-
tomisable. Optimisation to experimental data using local or
global optimisation algorithms is included in the package
along with the option to carry out statistical sampling and
Bayesian inference of model parameters with a Markov chain
Monte Carlo (MCMC) sampler (via the emcee Python pack-
age). MultilayerPy abstracts the model building process into
separate building blocks, increasing the reproducibility of re-
sults and minimising human error. This paper describes the
general functionality of MultilayerPy and demonstrates this
with use cases based on the oleic- acid–ozone heterogeneous
reaction system. The tutorials in the source code (written as
Jupyter notebooks) and the documentation aim to encourage
users to take advantage of this tool, which is intended to be
developed in conjunction with the user base.

1 Introduction

Aerosols are an important atmospheric component and con-
tribute to air quality (indoors and outdoors), public health
and the climate (Abbatt and Wang, 2020; Pöschl, 2005). The
composition and physical state of aerosols can affect their
ability to take up water to form cloud droplets (Schill et al.,
2015; Shiraiwa et al., 2011). Understanding how an aerosol
particle or film interacts with common atmospheric trace
gases, some of which are reactive, affords a better descrip-
tion of atmospheric aerosol processes.

Kinetic multi-layer models of heterogeneous interactions
of aerosols with trace gases have become popular in the last
decade. In particular, those based on the Pöschl–Rudich–
Ammann (PRA) framework (Pöschl et al., 2007) such as
the kinetic multi-layer model of surface and bulk chemistry
(KM-SUB) (Shiraiwa et al., 2010) and the kinetic multi-
layer model of gas–particle interactions (KM-GAP) (Shi-
raiwa et al., 2012) have been applied in a wide range of
studies, providing particle-level insights which are often not
possible to obtain experimentally. For example, KM-SUB
models have highlighted the impact of crust formation and
viscosity on particle and film reaction kinetics, lengthening
the chemical lifetime of particle and film constituents with
potential impacts on the climate, air pollution and human
health (Milsom et al., 2022b; Mu et al., 2018; Pfrang et al.,
2011; Zhou et al., 2019). KM-GAP has been coupled with the
aerosol inorganic–organic-mixture functional-group activ-
ity coefficients (AIOMFAC) thermodynamic model (Zuend
et al., 2008, 2011) to calculate equilibration timescales be-
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tween aerosol particles and surrounding organic and inor-
ganic vapours in a study of liquid–liquid phase separation
(Huang et al., 2021).

Software packages facilitating the creation and run-
ning of box models (e.g. PyBox, Topping et al., 2018;
JlBox, Huang and Topping, 2021; AtChem, Sommariva
et al., 2020), aerosol chamber experiments (e.g PyCHAM,
O’Meara et al., 2021) and indoor chemistry (INCHEMPy,
Shaw and Carslaw, 2021) have recently gained popularity
and nurture a more accessible modelling environment, en-
abling more reproducible and reliable results.

This paper describes MultilayerPy, a package written in
Python, which is designed to facilitate the creation and op-
timisation of kinetic multi-layer models (namely KM-SUB
and KM-GAP) in a modular and reproducible way. The key
features are presented along with use cases focussing on the
well-studied oleic-acid–ozone heterogeneous reaction sys-
tem (Berkemeier et al., 2021; Gallimore et al., 2017; King
et al., 2004, 2020; Milsom et al., 2021b, a, 2022b; Pfrang
et al., 2011, 2017; Woden et al., 2021; Zahardis and Petrucci,
2007). An educational tool has recently been created which
creates and runs simple kinetic multi-layer models with two
reactants (Hua et al., 2022). MultilayerPy is intended for re-
search use and can be used to create and optimise more com-
plex kinetic multi-layer models.

It is envisaged that this paper, along with the accompany-
ing supporting information in the form of Jupyter notebooks
in the source code, will encourage new users to use and even-
tually contribute to this project.

2 Purpose and scientific basis

Currently, the creation of a kinetic multi-layer model requires
the researcher to manually construct specific computer code
which describes the set of ordinary differential equations
(ODEs) which describe the model. For a basic system (e.g.
A reacts with B to make C) this method is satisfactory. How-
ever, for more complex systems involving many model com-
ponents, composition-dependent diffusivity and the inverse
modelling of experimental data, this manual method quickly
becomes cumbersome and prone to human error.

MultilayerPy provides a framework for constructing ki-
netic multi-layer models so that the model code is produced
automatically for the user, removing potential human error
in typing out the model code. This code is written in a read-
able way, enabling the code to be shared with an associated
publication and encouraging more reproducible results. This
is further supported through the Jupyter notebook (Perkel,
2018), which is a document that incorporates both Python
code and markdown text and is gaining popularity as a way
of sharing and describing scientific code.

Abstracting the model building, running and optimisation
process in this way quickens this time-consuming part of
a modelling study and allows the researcher to focus more

on the science behind any modelling decisions made. Mul-
tilayerPy provides the utility for model parameter evolution
via the inclusion of additional user-defined parameters not
present in the original model and including time-dependent
changes in model parameters (e.g. changes in temperature
or the gas phase concentration of a component). There is
also scope for model customisation. The model code can
be edited and re-incorporated into the MultilayerPy frame-
work. This allows researchers to incorporate conditions or
processes which are unique to their specific system.

A challenge at the outset of a modelling study is decid-
ing on a reaction scheme to use. This is illustrated by the
modelling of oleic-acid ozonolysis where different reaction
schemes have been used in the literature (Berkemeier et al.,
2021; Hosny et al., 2016; Shiraiwa et al., 2010). Manu-
ally iterating through different reaction schemes can be time
consuming. The object-oriented approach of MultilayerPy,
where model components are treated as discrete objects, al-
lows the researcher to create and test various model reaction
schemes in a few lines of code. Selection of the most suitable
model reaction scheme is then feasible.

A detailed description of the KM-SUB and KM-GAP
models is presented in their respective publications (Shiraiwa
et al., 2010, 2012). Figure 1 illustrates the main concept be-
hind the two models. Essentially, the models split the par-
ticle or film into a number of shells or layers. The diffu-
sion of reactants between each layer and the reaction of each
component within each layer are resolved. Surface chem-
istry and the adsorption and desorption of gaseous species
are resolved. Additionally, KM-GAP allows the thickness of
model layers to change over time, accounting for the evap-
oration of volatile components in the model and to follow
changes in film thickness or particle size during the model
run. This means that all model components can partition into
and out of the film or particle.

3 MultilayerPy structure and features

MultilayerPy is organised so that different combinations of
reaction schemes, diffusion regimes and model types are pos-
sible and can be realised in a clear, reproducible way (Fig. 2).
This is possible because of the object-oriented programming
(OOP) paradigm in which this software is written. Essen-
tially, each component of a multi-layer model is represented
by an object (or class) which has its own attributes and meth-
ods. The user sets these attributes and uses the methods as-
sociated with these objects to carry out model construction,
simulation and optimisation. In relatively few lines of code,
the user is able to construct this pipeline and run it.

Below is an outline of a typical model build, run and op-
timisation experiment. These steps are expanded on in the
subsequent sections:

1. selection of the model type which informs how the
model is constructed (KM-SUB or KM-GAP);
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Figure 1. KM-SUB and KM-GAP model visualisation. A particle
or film is split into sorption, quasi-static surface and n bulk layers.
KM-SUB explicitly splits components into volatile (X) and non-
volatile (Y ), whereas KM-GAP treats all model components the
same, and they are symbolised by Z by convention.

2. creation of a reaction scheme and diffusion regime rep-
resented in the model – reactions and diffusion regimes
(i.e. composition-dependent diffusion) are optional;

3. creation of the model components (chemical species);

4. model construction by combining the reaction scheme,
diffusion regime and model components – creation of
the model code;

5. model simulator object creation to run and save model
outputs – there is potential to add custom model param-
eterisation (see case study 3);

6. optimisation of the model fit to experimental data, deter-
mination of optimised model parameters and optional
Markov chain Monte Carlo (MCMC) sampling of the
parameter space.

This modular approach to model creation and optimisation
is flexible and enables the user to experiment with and iterate
through different model designs. One could imagine creating
a set of reaction schemes and iterating through them in order
to find the one which best describes the data and satisfies the
goals of a particular study.

Only a basic knowledge of Python is required to use Mul-
tilayerPy and its main features. This is another advantage of
abstracting the model building process into the basic building
blocks described in Fig. 2.

Figure 2. High-level schematic outline of MultilayerPy. Circled
numbers correspond to the numbered steps of the model building
and optimisation process described in the main text.

To encourage new users, the source code for MultilayerPy
comes with Jupyter notebooks which provide example uses
that can also be used as templates. A good starting point
would be to work through the crash course notebook avail-
able in the repository. More detailed documentation is in-
cluded in .html format in the source code along with instruc-
tions on how to install and test the package before use in a
separate readme file. The easiest way to install the software is
to either download the source code from the repository (see
the “Code availability” section) or run a pip install as de-
scribed in the readme. The documentation will be updated
with each update to the software.

3.1 Model construction

The first step of model construction is to define the model
type and fundamental geometry (spherical particle or planar
film). Currently, KM-SUB and KM-GAP models are avail-
able in MultilayerPy. Once defined, reaction scheme and dif-
fusion regime are created taking into account the model type
and model components, which are instantiated as separate
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model component objects. It is possible for the user to dis-
play the reaction scheme to check that the desired reaction
scheme has been defined.

Many reaction schemes, such as the oleic-acid–ozone sys-
tem, have an uneven product distribution which can be de-
scribed by a branching ratio. MultilayerPy allows the user to
apply a branching ratio to a reaction scheme to account for
this.

Composition-dependent bulk diffusion is made possible
by the diffusion regime defined by the user. Three differ-
ent parameterisations are currently available in MultilayerPy:
(i) Vignes-type (default) (Vignes, 1966); (ii) obstruction the-
ory (Stroeve, 1975); and (iii) linear combination (Pöschl
et al., 2007; Shiraiwa et al., 2010). The evolution of particle
diffusivity is of interest to the community and has been high-
lighted in the kinetic multi-layer modelling and experimental
literature (e.g. (semi-) solid crust formation) (Milsom et al.,
2021b, a, 2022a; Nash et al., 2006; Pfrang et al., 2011; Zhou
et al., 2019). If a simpler well-mixed system is modelled, dif-
fusion evolution as a function of particle composition can be
turned off by supplying a “null” argument to the diffusion
regime object (see examples in the Jupyter notebooks in the
source code repository).

Once the model type, model components, reaction scheme
and diffusion regime are defined, the model can be con-
structed. The building blocks (objects) are supplied to a
model builder object. Invoking the build method of this ob-
ject has two main functions: (i) it writes the model code
(ODE function) to a separate .py file, and (ii) it defines a
list of required parameters for the model to run (see next sec-
tion).

The model code defining the system of ODEs for each
component in each layer is automatically generated. This is
a key utility of MultilayerPy, especially when considering
a complex multi-component system. Writing many lines of
code manually is error prone. The removal of this risk, along
with the readable nature of the model code, enhances the re-
producibility and reliability of the results. This file is, how-
ever, customisable should the user want to add or remove
specific processes in this template framework. Custom mod-
ifications should be checked thoroughly.

3.2 Running the model

Once constructed, the model can be run by incorporation into
a simulate object, which also requires input model parame-
ters supplied as a Python dictionary. The simulate object can
also contain experimental data for optimisation.

Before the model can be run, the number of model bulk
layers, initial concentration of each component in each layer,
initial layer volume, initial layer surface area and initial
layer thickness need to be supplied to the simulate object.
MultilayerPy has utility functions which make this process
straightforward. The number of model bulk layers is partic-
ularly important when modelling viscous systems because

bulk diffusion gradients need to be resolved to describe the
system sufficiently – the assumption in KM-SUB and KM-
GAP models is that each bulk layer is well-mixed.

After running the model for the desired time span the
model output, consisting of spatially and temporally resolved
number concentration arrays for each model component, is
saved and associated with the simulate object. The user can
access these outputs easily for further analysis and visualisa-
tion.

Simple plotting methods are available which will quickly
plot the model output including surface concentrations or the
total number of each component in the model as a function
of simulation time. Summary heat map plots of component
bulk concentrations are also accessible via a plotting func-
tion. This allows the user to quickly visualise a model run
and decide on the next course of action.

If a KM-GAP model is implemented, the volume, surface
area and thickness of each bulk layer as a function of time can
be accessed via the simulate object. From this, the user can
plot the change in particle diameter and volume as a function
of time. An example of this is presented in the corresponding
KM-GAP Jupyter notebook in the source code.

Sometimes modification of model input parameters is re-
quired. For example, the concentration of a reactive gas can
be changed partway through an experiment. This can be
implemented in the MultilayerPy framework by supplying
a function which changes the concentration of the reactive
gas after a certain time point (see the “parameter evolution”
Jupyter notebook in the source code for an example). This is
possible for any of the model input parameters. Additionally,
extra input parameters can be supplied to the model in this
manner. These parameters can themselves be optimised.

3.3 Model optimisation

After constructing and running the kinetic multi-layer model,
the user may want to optimise the model input parameters.
Data can be associated with the simulate object which was
created to run the model. Optimisation requires a minimum
of a simulate object with data associated with it.

Currently, the built-in cost function is the mean squared
error (MSE), which is defined in Eq. (1):

MSE=
1
n

∑n

i=1
wi(Ydata,i −Ymodel,i)

2, (1)

where n is the number of data points and Ydata and Ymodel are
the experimental and model data points, respectively. A
weighting factor (wi) is applied if there are uncertainties as-
sociated with the data and is equivalent to the inverse square
of the uncertainty. This is equal to 1 if no uncertainties are
provided. The user can supply their own cost function if de-
sired.

There are two main methods of model optimisation avail-
able in MultilayerPy: (i) local optimisation (least-squares
simplex method); (ii) global optimisation (differential evolu-
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tion method). Both methods use the implementations found
in the SciPy Python package (Virtanen et al., 2020).

Local optimisation is the least computationally expensive
way of optimising the model. However, as the name implies,
only a local minimum in the cost function will be found
(though this could also be the global minimum). This algo-
rithm does not search the entire parameter space looking for a
global minimum and will only settle in the nearest local min-
imum. The user must therefore be confident that the initial
model parameters are close to what represents their system.

Global optimisation is more computationally expensive. A
description of the Monte Carlo genetic algorithm (MCGA)
has been presented by Berkemeier et al. (2017) in the context
of kinetic multi-layer modelling (Berkemeier et al., 2017).
The implementation in MultilayerPy is similar, with an ini-
tial Latin hypercube sampling step (instead of a Monte Carlo
sampling step), followed by a differential evolution algo-
rithm implementation which searches the parameter space
and applies concepts of natural selection to mutate and se-
lect each successive generation of parameter sets (Storn and
Price, 1997).

3.4 Estimating parameter uncertainty with a Markov
chain Monte Carlo (MCMC) method

A range of model outputs could be considered consistent
with experimental data due to the uncertainty associated with
each data point. Global optimisation algorithms, such as dif-
ferential evolution, focus on achieving a single parameter set
with the lowest-cost function. However, running the same
global optimisation algorithm multiple times can return opti-
mised parameter sets with different values. This is indeed the
case with the MCGA algorithm where uncertainties in the
optimised parameters are presented as the distribution of op-
timised parameter values after a set number of MCGA runs
(Berkemeier et al., 2017).

MCMC sampling seeks to define the probability distribu-
tion for each model parameter by finding the region of high-
est probability in a given parameter space. First, a parameter
set is initiated within pre-defined bounds. Then the parame-
ter set is allowed to “walk” around the parameter space. The
likelihood of the next proposed step being accepted is depen-
dent on the likelihood of the current position in the parameter
space (i.e. the goodness of the model–data fit). This means
that the chain will tend towards regions of higher probability.
This is the Markov chain aspect of the MCMC algorithm.
The Monte Carlo aspect arises from the randomness asso-
ciated the proposed next step in the chain, the next sample.
When a run is successful, the chain of samples will equili-
brate around the region of highest probability. A probabil-
ity distribution for each varying model parameter can be ob-
tained from the values returned by this equilibrated chain of
samples (see Fig. 4c later for an example).

The MCMC algorithm infers the posterior probability dis-
tribution function, p(θ |D). This is the probability of the

model parameters (θ ) given the data (D). This is calculated
via Bayes’ rule (Eq. 2).

p(θ |D)=
1
Z
p(D|θ)p(θ) (2)

p(θ |D) is proportional to the likelihood (p(D|θ ) – essen-
tially the goodness of fit) and the prior probability for the
parameters (p(θ)), which is normally set to 1 (uniform) if
the prior probability distribution function for each param-
eter is unknown. The evidence (Z) is a constant which is
generally hard to calculate and is ignored in MCMC as it is
constant for a given model–experiment system and does not
affect the outcome of an MCMC sampling run. Because of
this, MCMC cannot be used to select the best of two dif-
ferent models applied to the same data as p(D|θ ) would
not be normalised to the same scale, although it is possi-
ble to compare parameter estimations from different mod-
els. For a more detailed description of MCMC sampling and
best practices, a paper by Hogg and Foreman-Mackey walks
the reader through the algorithm and troubleshoots common
problems (Hogg and Foreman-Mackey, 2018).

MultilayerPy employs the well-established emcee python
package for MCMC sampling (Foreman-Mackey et al.,
2013). This is an ensemble sampler which initiates a number
of walkers in the parameter space. The ensemble of walk-
ers can then proceed with the MCMC routine. Parallelisa-
tion of the algorithm can be implemented as each walker can
be iterated independently. An example of this is given in the
“MCMC sampling” Jupyter notebook.

Though MCMC can technically be used as a global opti-
miser, this is not recommended as there are dedicated global
optimisation algorithms which are much more efficient at
finding the global minimum, such as the differential evolu-
tion algorithm employed in MultilayerPy.

In practice, the model–data system can be optimised (lo-
cally or globally) before initiating the walkers in a tight
Gaussian “ball” around the optimum point in the parame-
ter space. Initialising the walkers in this way can reduce the
time for them to equilibrate. This is the recommended proce-
dure in MultilayerPy and is the way presented in the “MCMC
sampling” Jupyter notebook associated with the source code.

An example of how MCMC sampling is implemented in
MultilayerPy is presented in the oleic-acid monolayer case
study (see case study 2).

4 Case studies: oleic-acid ozonolysis

The oleic-acid–ozone reaction system is a well-established
model compound for heterogeneous reactions of organic
aerosols due to its prevalence as a cooking emission tracer
(Lyu et al., 2021; Vicente et al., 2021; Wang et al., 2020)
and has been the subject of numerous experimental studies
(Dennis-Smither et al., 2012; González-Labrada et al., 2007;
Hearn and Smith, 2004; Hosny et al., 2013; Hung et al.,

https://doi.org/10.5194/gmd-15-7139-2022 Geosci. Model Dev., 15, 7139–7151, 2022



7144 A. Milsom et al.: MultilayerPy: framework for kinetic multi-layer models of aerosols and films

Figure 3. Model optimisation to experimental data from Ziemann (Ziemann, 2005) using the MultilayerPy model building and optimisation
tool. (a) The initial model output before optimisation. (b) KM-SUB model output optimised by varying αs,0,ozone; KM-GAP model output
optimised by varying αs,0,ozone and the desorption lifetime of the ozonolysis product nonanal (τd,nonanal). The radius of the particle (rp) from
the KM-GAP output is also plotted as a dotted line (rp does not change in the KM-SUB model since particle size changes are not described).
(c) Depth-resolved oleic-acid concentration profile for the optimised KM-SUB model. (d) Depth-resolved oleic-acid concentration profile
for the optimised KM-GAP model.

2005; King et al., 2004, 2020; Knopf et al., 2005; Milsom
et al., 2021b, a; Pfrang et al., 2017; Sebastiani et al., 2018;
Smith et al., 2002; Woden et al., 2021; Zahardis and Petrucci,
2007). For this reason, it has been a popular system to model
(Berkemeier et al., 2021; Gallimore et al., 2017; Milsom
et al., 2022b; Pfrang et al., 2010, 2011; Shiraiwa et al., 2010,
2012). The precise reaction scheme is still not constrained,
especially when considering the impact of reactive interme-
diates, although recent work has advanced our understanding
of this system and highlighted experimental gaps to be filled
(Berkemeier et al., 2021). Here, we use the oleic-acid–ozone
system as a case study. Case study 1 demonstrates fitting a
KM-SUB and KM-GAP model to the same oleic-acid parti-
cle ozonolysis dataset. Case study 2 demonstrates an appli-
cation to an insoluble oleic-acid monolayer and the MCMC
sampling procedure employed in MultilayerPy in order to es-
timate the uncertainty associated with a model parameter.

4.1 Case study 1: fitting KM-SUB and KM-GAP to
oleic-acid particle ozonolysis data

In this case study, KM-SUB and KM-GAP models are fitted
experimental data for the ozonolysis of oleic-acid particles

from Ziemann (2005). This is the same example case study
used in the kinetic double-layer model (K2-SUB) (Pfrang
et al., 2010), KM-SUB (Shiraiwa et al., 2010) and KM-GAP
(Shiraiwa et al., 2012) papers.

The radius of the particles was 0.2 µm and the gas
phase ozone concentration was 7.0× 1013 cm−3 (2.8 ppm at
101 325 Pa). In total, 10 bulk layers were initiated in our case
study. A table with all other optimised parameters along with
bounds for varied parameters is presented in Table S1 in the
Supplement.

A modelling experiment was carried out using Multilay-
erPy with the data from Ziemann (Ziemann, 2005) (Fig. 3).
The code used to generate these outputs is available in “crash
course” and “KM-GAP model creation” Jupyter notebooks
within the source code, which also describe each step of the
model building process.

The differential evolution algorithm was used as the global
optimiser for the KM-SUB and KM-GAP model runs in this
case study (Storn and Price, 1997). The surface accommo-
dation coefficient of ozone on a free surface (αs,0,ozone) was
varied in the KM-SUB model. Figure 3b demonstrates good
fits to the experimental data, especially using the KM-SUB
model. The parameters for the fitted KM-SUB model pre-
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sented here are identical to those used to fit to the same
dataset in the KM-SUB model description paper (Shiraiwa
et al., 2010).

Nonanal was assumed to be volatile in the KM-GAP reac-
tion scheme as it is the only product known to be volatile
(Vesna et al., 2009). The desorption lifetimes of nonanal
(τd,nonanal) and αs,0,ozone were varied in this case study. As
KM-GAP resolves changes in particle size via the loss or
gain of volatile species to the particle, τd,nonanal will have an
impact on the size of the particle during the model run. Time-
resolved particle size information is not known for this ex-
periment. This will affect the number concentration of oleic
acid in the particle in the KM-GAP model, which consid-
ers nonanal evaporation and resulting particle size change,
accounting for the significant differences seen between the
KM-SUB and KM-GAP outputs, especially at times greater
than the last experimental data point (∼ 17 min).

In both KM-SUB and KM-GAP models presented here the
bulk phase is well-mixed, demonstrated by the lack of oleic-
acid concentration gradient occurring throughout the particle
during ozonolysis (Fig. 3c and d). The concentration of oleic
acid in each model layer is generally higher in the KM-GAP
output compared with KM-SUB due to the shrinking of the
model layers accounted for in KM-GAP and caused by the
removal of nonanal from the particle.

4.2 Case study 2: fitting a KM-SUB model to oleic-acid
monolayer ozonolysis data, including MCMC
sampling

Woden et al. (2021) ozonised insoluble floating monolayers
of oleic acid deposited on water (Woden et al., 2021). The
reaction kinetics were followed using neutron reflectometry
(NR) and fitted parameters from an interfacial model ap-
plied to the NR data – a common method of extracting ki-
netic information from NR experiments (King et al., 2009,
2020; Pfrang et al., 2014; Sebastiani et al., 2018; Woden
et al., 2018, 2021). The ozone concentration for the exam-
ple model–data system was 323± 29 ppb. The construction
of this case study is presented in the “insoluble monolay-
ers” Jupyter notebook and the MCMC sampling for this case
study is presented in the “MCMC sampling” Jupyter note-
book.

The dissolution of oleic acid and products into the aqueous
phase was turned off in the model building process by setting
bulk diffusion parameters to 0. The model in this case was
particularly sensitive to αs,0,ozone. This was selected as the
fitting parameter.
αs,0,ozone can range between 0–1. This was set as the fit-

ting bound for both the differential evolution (global) optimi-
sation algorithm and the MCMC sampling procedure.

An initial differential evolution procedure was carried out
on this model–data system. This optimised value of αs,0,ozone
was then used to initialise the ensemble of walkers for the
MCMC sampling procedure – this is handled by Multilay-

erPy. The MCMC algorithm can then be run in series or in
parallel. The result of this MCMC sampling procedure is pre-
sented in Fig. 4.

The mean value of αs,0,ozone obtained from MCMC sam-
pling is (2.35± 0.14)× 10−3. In this case, the distribution
of αs,0,ozone is Gaussian (Fig. 4c). For other distributions,
quoting an interquartile range may be more representative.
The lower and upper bound for each optimised parameter is
included when the user exports their modelling results. In this
case, the lower and upper bounds of the interquartile range
for αs,0,ozone are 2.36× 10−3 and 2.44× 10−3, respectively.

Constraining model input parameters experimentally re-
mains the best way to improve the estimation of unknown
model parameters. For example, simultaneously varying the
desorption lifetime of ozone (τd,ozone), the surface reaction
rate coefficient (ksurf) and αs,0,ozone returns a range of pos-
sible combinations of these three parameters – all of which
are associated with surface processes. This is demonstrated
by the strong correlation observed between these parameters
during MCMC sampling (Fig. S1 in the Supplement). Multi-
layerPy could be used to identify which experimental param-
eters should be constrained and inform experimental work.

4.3 Case study 3: visualising concentration gradients
and custom parameterisation

A key feature of kinetic multi-layer modelling is its ability to
visualise concentration gradients in particles and films. This
case study demonstrates how this is achieved using Multi-
layerPy by reproducing the concentration gradient modelled
in a film of a semi-solid (self-organised lamellar) form of
oleic acid exposed to ozone (Milsom et al., 2022b). The ex-
perimental and modelling conditions are outlined in Milsom
et al. (2022b) and the corresponding “lamellar phase oleic
acid” Jupyter notebook, which reproduces Fig. 5.

In this model, condensed-phase molecular diffusivity is af-
fected by the formation of high molecular-weight oligomers.
This was implemented using the diffusion regime object
pictured in Fig. 2 using a Vignes-type parameterisation of
molecular diffusivity, where molecular diffusion depends on
the proportion of oligomer in the particle (Milsom et al.,
2022b; Vignes, 1966).

The diffusivity of the dimer and trimer oligomers were re-
lated to each other via Eq. (3).

Dtri =Ddi

(
Mdi

Mtri

)fdiff

, (3)

where Ddi and Dtri are the diffusion coefficients of the
dimer and trimer products, respectively;Mdi andMtri are the
molecular masses of the dimer and trimer products, respec-
tively; and fdiff is a scaling factor used as a fitting parameter
in the model optimisation (Hosny et al., 2016; Milsom et al.,
2022b).

This custom parameterisation of oligomer diffusivity is
possible in MultilayerPy via a parameter evolution function
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Figure 4. Result of the global optimisation MCMC sampling procedure. (a) Total of 200 model outputs sampled from the MCMC sampling
procedure, showing the range of model outputs consistent with the data. (b) A plot of αs,0,ozone vs. iteration number of the MCMC algorithm
for a converged set of walkers (Markov chains). In total, 100 samples were discarded (burn-in step) before chains converged. (c) The
histogram of αs,0,ozone values derived from the walkers presented in panel (b). Vertical dashed lines represent the interval in which 95 % of
the data lie.

Figure 5. The concentration profile of a film of semi-solid (self-
organised lamellar) oleic acid during ozonolysis. The film is
0.98 µm thick, and 77 ppm ozone was applied to the model.

that the user can supply, a tutorial for which is found in the
“parameter evolution” Jupyter notebook in the source code
along with this specific example in the “lamellar phase oleic
acid” Jupyter notebook. The parameter evolution function
could be used to introduce changes in experimental condi-
tions during the model simulation (e.g. slowly increasing the
concentration of a reactive gas or introducing a temperature
profile, making certain parameters temperature dependent).
There is sufficient flexibility in the MultilayerPy framework
for the user to incorporate more complex model parameteri-
sations.

5 Conclusions: summary and future developments

This open-source model construction framework represents
a first step towards more reproducible kinetic multi-layer
modelling of atmospheric aerosols and films. The way that
models are constructed and the ease with which model code
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can be generated in MultilayerPy encourage the user to share
their models with the community.

MultilayerPy provides a simple model construction and
optimisation pipeline for the user to follow with a few lines of
code needed to produce results. This is a major practical ad-
vance compared to manually typing out ODEs – which can
be an unnecessary source of error and is time consuming.
There is sufficient flexibility to suit more complex systems
with parameterisation of model input parameters, along with
customisation of the source model code “under the hood”.

The trade-off when integrating systems of ODEs written in
a high-level programming language such as Python or MAT-
LAB is that, compared with C/C++ and FORTRAN, these
integrations are relatively slow. Future work will consider
ways of speeding up ODE integration. This is partially ad-
dressed via the ability to parallelise the global optimisation
and MCMC algorithms. The Julia programming language is
also an attractive proposition, allowing human-readable code
to be written and run at speeds faster than that of Python and
MATLAB. Indeed, Julia has recently been applied in an at-
mospheric context to construct box models (Huang and Top-
ping, 2021). These are feasible options for the direction of
MultilayerPy development in the future.

The modular way in which MultilayerPy is constructed
makes future modular developments relatively straightfor-
ward. Other modelling systems based on the kinetic multi-
layer model presented here (KM-SUB and KM-GAP) have
been developed and include other “compartments” such as
the skin (KM-SUB-skin) (Lakey et al., 2017), indoor air
boundary layer (KM-BL) (Morrison et al., 2019), film forma-
tion and growth (KM-FILM) (Lakey et al., 2021), and epithe-
lial lining fluid (KM-SUB-ELF) (Lelieveld et al., 2021). Fu-
ture iterations of MultilayerPy could incorporate such multi-
compartment models, coupling different processes occurring
in various environments and contexts.

As an open-source project, contributions from the parti-
cle and film modelling community are strongly encouraged
and will help push the project forward and achieve collective
goals. This will also facilitate scientific collaboration and en-
courage more reproducible modelling studies as a result.
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Appendix A

Table of variable names, descriptions and units supplied to
models created in MultilayerPy. The unit of length in these
models is cm and the units for surface and bulk concentra-
tions of model components are cm−2 and cm−3, respectively.

Parameter name Description (units)
delta_1 Molecular diameter of component 1 (cm)
w_1 Mean thermal velocity of component 1 in the gas phase (cms−1)
H_1 Henry’s law coefficient (molcm−3 atm−1)
alpha_s_0_1 Surface accommodation coefficient of component 1 on a clear surface
Db_1 Bulk diffusion coefficient of component 1 (cm2 s−1)
Db_1_2 Bulk diffusion coefficient of component 1 in component 2 (cm2 s−1)
T Temperature (K)
k_1_2 Second-order rate coefficient for the bulk reaction of component 1 and component 2 (cm3 s−1)
k_1_2_surf Second-order rate coefficient for the surface reaction of component 1 and component 2 (cm2 s−1)
k1_1 First-order decay constant for component 1 (s−1)
Xgs_1 Near-surface gas phase concentration of component 1 (cm−3)
Zgs_1 Near-surface gas phase concentration of component 1 with KM-GAP notation (cm−3)
p_1 Equilibrium vapour pressure of component 1 (Pa)
Td_1 Desorption lifetime of component 1 (s)
scale_bulk_to_surf Scaling factor applied to bulk reaction rate coefficient to return the surface reaction

rate coefficient (cm)

Appendix B: Basic package installation instructions

This package was developed using the standard Anaconda
Python distribution, and this distribution is recommended for
the novice user. For basic “plug and play” use, the Zenodo
repository can be downloaded and extracted (see the “Code
availability” section). This places the source code in the ex-
traction directory, and any work with the package must be
carried out in that directory because the package has not been
installed in the Python environment. This is the best way for
the user to get started quickly and learn how to use the pack-
age.

To install the package in the user’s Python environment,
a “pip install multilayerpy” command in the Anaconda ter-
minal window is required. This will install the latest built
distribution of MultilayerPy, which is stored on the Python
Package Index (PyPI). After this method of installation, the
user can use MultilayerPy anywhere on their system and is
not limited to a particular working directory.

Full installation instructions and package dependencies
are listed and updated on the project repository (see the
“Code availability” section).

It is recommended that a new user starts by working
through the “MultilayerPy crash course” tutorial notebook
to learn how the package works. This notebook can also be a
template for the user’s own projects.

Code availability. The MultilayerPy software (version 1.0.2), in-
cluding tutorials and documentation, is available at https://github.
com/tintin554/multilayerpy (last access: 30 August 2022) and
https://doi.org/10.5281/zenodo.6411188 (Milsom et al., 2022a).
The code is released under the GPL v3.0 license.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-7139-2022-supplement.
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