Articles | Volume 15, issue 18
https://doi.org/10.5194/gmd-15-7031-2022
https://doi.org/10.5194/gmd-15-7031-2022
Model description paper
 | 
16 Sep 2022
Model description paper |  | 16 Sep 2022

Introduction of the DISAMAR radiative transfer model: determining instrument specifications and analysing methods for atmospheric retrieval (version 4.1.5)

Johan F. de Haan, Ping Wang, Maarten Sneep, J. Pepijn Veefkind, and Piet Stammes

Related authors

Characterization of the UV radiometric calibration for the TROPOMI operational ozone profile retrieval algorithm
Serena Di Pede, Erwin Loots, Emiel van der Plas, Maarten Sneep, Edward van Amelrooy, Mirna van Hoek, Mark ter Linden, Antje Ludewig, Arno Keppens, and J. Pepijn Veefkind
EGUsphere, https://doi.org/10.5194/egusphere-2025-2167,https://doi.org/10.5194/egusphere-2025-2167, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
MONKI: a three-dimensional Monte Carlo simulator of total and polarised radiation reflected by planetary atmospheres
Victor J. H. Trees, Ping Wang, Job I. Wiltink, Piet Stammes, Daphne M. Stam, David P. Donovan, and A. Pier Siebesma
EGUsphere, https://doi.org/10.5194/egusphere-2025-2197,https://doi.org/10.5194/egusphere-2025-2197, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Improvements in aerosol layer height retrievals from TROPOMI oxygen A-band measurements by surface albedo fitting in optimal estimation
Martin de Graaf, Maarten Sneep, Mark ter Linden, L. Gijsbert Tilstra, David P. Donovan, Gerd-Jan van Zadelhoff, and J. Pepijn Veefkind
Atmos. Meas. Tech., 18, 2553–2571, https://doi.org/10.5194/amt-18-2553-2025,https://doi.org/10.5194/amt-18-2553-2025, 2025
Short summary
Deep transfer learning method for seasonal TROPOMI XCH4 albedo correction
Alexander C. Bradley, Barbara Dix, Fergus Mackenzie, J. Pepijn Veefkind, and Joost A. de Gouw
Atmos. Meas. Tech., 18, 1675–1687, https://doi.org/10.5194/amt-18-1675-2025,https://doi.org/10.5194/amt-18-1675-2025, 2025
Short summary
Assessing the Detection Potential of Targeting Satellites for Global Greenhouse Gas Monitoring: Insights from TANGO Simulations
Harikrishnan Charuvil Asokan, Jochen Landgraf, Pepijn Veefkind, Stijn Dellaert, and André Butz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1071,https://doi.org/10.5194/egusphere-2025-1071, 2025
Short summary

Related subject area

Atmospheric sciences
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025,https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
SynRad v1.0: a radar forward operator to simulate synthetic weather radar observations from volcanic ash clouds
Vishnu Nair, Anujah Mohanathan, Michael Herzog, David G. Macfarlane, and Duncan A. Robertson
Geosci. Model Dev., 18, 4417–4432, https://doi.org/10.5194/gmd-18-4417-2025,https://doi.org/10.5194/gmd-18-4417-2025, 2025
Short summary
Chempath 1.0: an open-source pathway analysis program for photochemical models
Daniel Garduno Ruiz, Colin Goldblatt, and Anne-Sofie Ahm
Geosci. Model Dev., 18, 4433–4454, https://doi.org/10.5194/gmd-18-4433-2025,https://doi.org/10.5194/gmd-18-4433-2025, 2025
Short summary

Cited articles

Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle, E. P.: AFGL (Air Force Geophysical Laboratory) atmospheric constituent profiles (0-120 km). Environmental research papers, 1986-05-15, Air Force Geophysics Lab., Hanscom AFB, MA (USA), https://apps.dtic.mil/sti/pdfs/ADA175173.pdf (last access: 2 September 2022), 1986. a
Bai, W., Zhang, P., Zhang, W., Li, J., Ma, G., Qi, C., and Liu, H.: Jacobian matrix for near-infrared remote sensing based on vector radiative transfer model, Science China Earth Sciences, 63, 1353–1365, https://doi.org/10.1007/s11430-019-9586-7, 2020. a
Bass, A. M. and Paur, R. J.: The ultraviolet cross-sections of ozone: I. The measurements II. Results and temperature dependence, in atmospheric ozone, in: Proceedings of the Quadrennial Ozone Symposium, edited by: Zerefos, C. and Ghazi, A., Halkidiki, Greece, 3–7 September 1984, Dordrecht, Reidel, 606–616, https://doi.org/10.1007/978-94-009-5313-0_120, 1985. a
Castellanos, P., Boersma, K. F., Torres, O., and de Haan, J. F.: OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols, Atmos. Meas. Tech., 8, 3831–3849, https://doi.org/10.5194/amt-8-3831-2015, 2015. a
Chance, K. V. and Spurr, R. J. D.: Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum, Appl. Optics, 36, 5224–5230, 1997. a
Download
Short summary
We present an overview of the DISAMAR radiative transfer code, highlighting the novel semi-analytical derivatives for the doubling–adding formulae and the new DISMAS technique for weak absorbers. DISAMAR includes forward simulations and retrievals for satellite spectral measurements from 270 to 2400 nm to determine instrument specifications for passive remote sensing. It has been used in various Sentinel-4/5P/5 projects and in the TROPOMI aerosol layer height and ozone profile products.
Share