Articles | Volume 15, issue 15
https://doi.org/10.5194/gmd-15-6259-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-6259-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Large-eddy simulations with ClimateMachine v0.2.0: a new open-source code for atmospheric simulations on GPUs and CPUs
California Institute of Technology, Pasadena, California, USA
Yassine Tissaoui
New Jersey Institute of Technology, Newark, New Jersey, USA
Simone Marras
New Jersey Institute of Technology, Newark, New Jersey, USA
Zhaoyi Shen
California Institute of Technology, Pasadena, California, USA
Charles Kawczynski
California Institute of Technology, Pasadena, California, USA
Simon Byrne
California Institute of Technology, Pasadena, California, USA
Kiran Pamnany
California Institute of Technology, Pasadena, California, USA
Maciej Waruszewski
Naval Postgraduate School, Monterey, California, USA
Thomas H. Gibson
University of Illinois Urbana–Champaign, Urbana–Champaign, Illinois, USA
Jeremy E. Kozdon
Naval Postgraduate School, Monterey, California, USA
Valentin Churavy
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Lucas C. Wilcox
Naval Postgraduate School, Monterey, California, USA
Francis X. Giraldo
Naval Postgraduate School, Monterey, California, USA
Tapio Schneider
California Institute of Technology, Pasadena, California, USA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Related authors
No articles found.
Mauricio Lima, Katherine Deck, Oliver R. A. Dunbar, and Tapio Schneider
Hydrol. Earth Syst. Sci., 29, 3145–3164, https://doi.org/10.5194/hess-29-3145-2025, https://doi.org/10.5194/hess-29-3145-2025, 2025
Short summary
Short summary
Machine learning is playing an increasingly important role in hydrological modeling. In this paper, we introduce an adaptation of existing machine learning models for simulating streamflow in river basins, redesigning them with the goal of integrating them in climate models. We demonstrate the effectiveness of our adapted model by showing that it outperforms a physics-based river model. These results motivate further studies of the use of machine-learning-based river models inside climate models.
Tapio Schneider, L. Ruby Leung, and Robert C. J. Wills
Atmos. Chem. Phys., 24, 7041–7062, https://doi.org/10.5194/acp-24-7041-2024, https://doi.org/10.5194/acp-24-7041-2024, 2024
Short summary
Short summary
Climate models are crucial for predicting climate change in detail. This paper proposes a balanced approach to improving their accuracy by combining traditional process-based methods with modern artificial intelligence (AI) techniques while maximizing the resolution to allow for ensemble simulations. The authors propose using AI to learn from both observational and simulated data while incorporating existing physical knowledge to reduce data demands and improve climate prediction reliability.
Ian Madden, Simone Marras, and Jenny Suckale
Geosci. Model Dev., 16, 3479–3500, https://doi.org/10.5194/gmd-16-3479-2023, https://doi.org/10.5194/gmd-16-3479-2023, 2023
Short summary
Short summary
To aid risk managers who may wish to rapidly assess tsunami risk but may lack high-performance computing infrastructure, we provide an accessible software package able to rapidly model tsunami inundation over real topography by leveraging Google's Tensor Processing Unit, a high-performance hardware. Minimally trained users can take advantage of the rapid modeling abilities provided by this package via a web browser thanks to the ease of use of Google Cloud Platform.
Cited articles
Abdi, D. S., Giraldo, F. X., Constantinescu, E., Lester III, C., Wilcox, L.,
and Warburton, T.: Acceleration of the Implicit-Explicit Non-Hydrostatic
Unified Model of the Atmosphere (NUMA) on Manycore Processors, Int.
J. High Perform. C., 33, 242–267,
https://doi.org/10.1177/1094342017732395, 2017a. a
Ahmad, N. and Lindeman, J.: Euler solutions using flux-based wave
decomposition, Int. J. Numer. Meth. Fl., 54,
47–72, https://doi.org/10.1002/fld.1392, 2007. a, b, c
Balaji, V.: Climbing down Charney's ladder: machine learning and the
post-Dennard era of computational climate science, Philos.
T. Roy. Soc. A, 379, 20200085, https://doi.org/10.1098/rsta.2020.0085, 2021. a
Bao, L., Klöfkorn, R., and Nair, R. D.: Horizontally Explicit and Vertically
Implicit (HEVI) Time Discretization Scheme for a Discontinuous Galerkin
Nonhydrostatic Model, Mon. Weather Rev., 143, 972–990,
https://doi.org/10.1175/MWR-D-14-00083.1, 2015. a
Bassi, F. and Rebay, S.: A high-order discontinuous Galerkin finite element
method solution of the 2d Euler equations, J. Comput. Phys.,
138, 251–285, https://doi.org/10.1006/jcph.1997.5454, 1997. a, b
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A Fresh
Approach to Numerical Computing, SIAM Rev., 59, 65–98,
https://doi.org/10.1137/141000671, 2017. a
Bezanson, J., Chen, J., Chung, B., Karpinski, S., Shah, V. B., Vitek, J., and
Zoubritzky, L.: Julia: Dynamism and Performance Reconciled by Design, Proc.
ACM Program. Lang., 2, 1–23, https://doi.org/10.1145/3276490, 2018. a
Boyd, J. P.: The erfc-log filter and the asymptotics of the Euler and
Vandeven sequence accelerations, edited by: Ilin, A. V. and Scott, L. R., Proceedings
of the Third International Conference on Spectral and High Order Methods,
Houston Journal of Mathematics, 267–276, 1996. a
Brachet, M. E.: Direct simulation of three-dimensional turbulence in the
Taylor-Green vortex, Fluid Dyn. Res., 8, 1–8,
https://doi.org/10.1016/0169-5983(91)90026-f, 1991. a
Brachet, M. E., Meiron, D. I., Orszag, A., Nickel, B. G., Morf, R. H., and
Frisch, U.: Small-scale structure of the Taylor-Green vortex, J.
Fluid Mech., 130, 411–452, https://doi.org/10.1017/S0022112083001159, 1983. a, b
Canuto, V. M.: Compressible turbulence, Astrophys. J., 482, 827–851,
https://doi.org/10.1086/304175, 1997. a
Carpenter, M. H. and Kennedy, C. A.: Fourth-order 2N-storage Runge-Kutta
schemes, Tech. Rep. NASA TM-109112, National Aeronautics and Space
Administration, Langley Research Center, Hampton, VA, 1994. a
Chow, F. K. and Moin, P.: A further study of numerical errors in large-eddy
simulations, J. Comput. Phys., 184, 366–380,
https://doi.org/10.1016/S0021-9991(02)00020-7, 2003. a
Climate Modeling Alliance: ClimateMachine.jl (0.2.0), Zenodo [code], https://doi.org/10.5281/zenodo.5542395, 2020. a, b
Deardorff, J. W.: A numerical study of three-dimensional turbulent channel flow
at large Reynolds numbers, J. Fluid Mech., 41, 452–480,
https://doi.org/10.1017/S0022112070000691, 1970. a, b
Deardorff, J. W.: Three-dimensional numerical study of the height and mean
structure of a heated planetary boundary layer, Bound. Lay. Meteorol.,
7, 81–106, https://doi.org/10.1007/BF00224974, 1974. a
Deardorff, J. W.: Usefulness of liquid-water potential temperature in a
shallow-cloud model, J. Appl. Meteorol., 15, 98–102,
https://doi.org/10.1175/1520-0450(1976)015<0098:UOLWPT>2.0.CO;2, 1976. a
Deardorff, J. W.: Stratocumulus-capped mixed layers derived from a
three-dimensional model, Bound. Lay. Meteorol., 18, 495–527,
https://doi.org/10.1007/BF00119502, 1980. a, b, c
Deville, M. O., Fischer, P. F., and Mund, E. H.: High-order methods for
incompressible fluid flow, Cambridge University Press,
https://doi.org/10.1017/CBO9780511546792, 2002. a
Dipankar, A., Stevens, B., Heinze, R., Moseley, C., Zängl, G., Giorgetta, M.,
and Brdar, S.: Large eddy simulation using the general circulation model
ICON, J. Adv. Model. Earth Sy., 7, 963–986,
https://doi.org/10.1002/2015MS000431, 2015. a
Drikakis, D., Fureby, C., and Youngs, F.: Simulation of transition and
turbulence decay in the Taylor–Green vortex, J. Turbulence, 8,
1–12, https://doi.org/10.1080/14685240701250289, 2007. a
Durran, D. and Klemp, J.: A compressible model for the simulation of moist
mountain waves, Mon. Weather Rev., 111, 2341–2361,
https://doi.org/10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2, 1983. a
Toro, E. F., Spruce, M., and Speares, W.: Restoration of the Contact
Surface in the HLL–Riemann Solver, Shock Waves, 4, 25–34,
https://doi.org/10.1007/BF01414629, 1994. a
Fuhrer, O., Osuna, C., Lapillonne, X., Gysi, T., Cumming, B., Bianco, M.,
Arteaga, A., and Schulthess, T. C.: Towards a performance portable,
architecture agnostic implementation strategy for weather and climate models,
Supercomput. Front. Inn., 1, 45–62,
https://doi.org/10.14529/jsfi140103, 2014. a
Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Lüthi, D., Osuna, C., Schär, C., Schulthess, T. C., and Vogt, H.: Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0, Geosci. Model Dev., 11, 1665–1681, https://doi.org/10.5194/gmd-11-1665-2018, 2018. a
Gal-Chen, T. and Somerville, R.: Numerical solution of the Navier-Stokes
equations with topography, J. Comput. Phys., 17, 276–310,
https://doi.org/10.1016/0021-9991(75)90054-6, 1975. a
Ghosal, S.: An Analysis of Numerical Errors in Large-Eddy Simulations of
Turbulence, J. Comput. Phys., 125, 187–206,
https://doi.org/10.1006/jcph.1996.0088, 1996. a
Giraldo, F. X.: An Introduction to Element-based Galerkin Methods on
Tensor-Product Bases: Analysis, Algorithms, and Applications, Springer,
https://doi.org/10.1007/978-3-030-55069-1, 2020. a
Giraldo, F. X. and Restelli, M.: A study of spectral element and
discontinuous Galerkin methods for the Navier-Stokes equations in
nonhydrostatic mesoscale atmospheric modeling: Equation sets and test
cases, J. Comput. Phys., 227, 3849–3877,
https://doi.org/10.1016/j.jcp.2007.12.009, 2008. a, b, c, d, e, f, g, h
Giraldo, F. X., Hesthaven, J. S., and Warburton, T.: Nodal high-order
discontinuous Galerkin methods for spherical shallow water equations, J.
Comput. Phys., 181, 499–525, https://doi.org/10.1006/jcph.2002.7139, 2002. a
Giraldo, F. X., Kelly, J. F., and Constantinescu, E. M.: Implicit-explicit
formulations of a three-dimensional nonhydrostatic unified model of the
atmosphere (NUMA), SIAM J. Sci. Comput., 35, B1162–B1194,
https://doi.org/10.1137/120876034, 2013. a
Harten, A.: High resolution schemes for hyperbolic conservation laws, J.
Comput. Phys., 49, 357–393, https://doi.org/10.1016/0021-9991(83)90136-5, 1983. a
Hesthaven, J. and Warburton, T.: Nodal discontinuous Galerkin method,
Algorithms, analysis and applications, Springer,
https://doi.org/10.1007/978-0-387-72067-8, 2008a. a
Hesthaven, J. S. and Warburton, T.: Nodal discontinuous Galerkin methods:
algorithms, analysis, and applications, vol. 54, Springer-Verlag New York
Inc, https://doi.org/10.1007/978-0-387-72067-8, 2008b. a, b
Holland, J. Z. and Rasmusson, E. M.: Measurements of the atmospheric mass,
energy, and momentum budgets over a 500-kilometer square of tropical ocean,
Mon. Weather Rev, 101, 44–57,
https://doi.org/10.1175/1520-0493(1973)101<0044:MOTAME>2.3.CO;2, 1973. a
Hunt, J. C. R., Wray, A., and Moin, P.: Eddies, stream, and convergence zones
in turbulent flows, Tech. Rep. CTR-S88, Center for Turbulence Research Report
CTR-S88, Stanford University, 1988. a
Jähn, M., Knoth, O., König, M., and Vogelsberg, U.: ASAM v2.7: a compressible atmospheric model with a Cartesian cut cell approach, Geosci. Model Dev., 8, 317–340, https://doi.org/10.5194/gmd-8-317-2015, 2015. a
Karniadakis, G. and Sherwin, S.: Spectral/hp element methods for CFD,
Oxford University Press, https://doi.org/10.1093/acprof:oso/9780198528692.001.0001,
1999. a
Kelly, J. F. and Giraldo, F. X.: Continuous and discontinuous Galerkin
methods for a scalable three-dimensional nonhydrostatic atmospheric model:
limited-area mode, J. Comput. Phys., 231, 7988–8008,
https://doi.org/10.1016/j.jcp.2012.04.042, 2012. a, b
Kennedy, C. A. and Carpenter, M. H.: Higher-order additive Runge–Kutta schemes
for ordinary differential equations, Appl. Numer. Math., 136,
183–205, https://doi.org/10.1016/j.apnum.2018.10.007, 2019. a
Kopriva, D. A.: Implementing spectral methods for partial differential
equations: Algorithms for scientists and engineers, Springer Science &
Business Media, https://doi.org/10.1007/978-90-481-2261-5, 2009. a
Kurowski, M., Grabowski, W. W., and Smolarkiewicz, P. K.: Anelastic and
compressible simulation of moist deep convection, J. Atmos.
Sci., 71, 3767–3787, https://doi.org/10.1175/JAS-D-14-0017.1, 2014. a
Light, D. and Durran, D.: Preserving Nonnegativity in Discontinuous Galerkin
Approximations to Scalar Transport via Truncation and Mass Aware Rescaling
(TMAR), Mon. Weather Rev., 144, 4771–4786,
https://doi.org/10.1175/MWR-D-16-0220.1, 2016. a
Lilly, D. K.: On the numerical simulation of buoyant convection, Tellus, 14,
148–172, https://doi.org/10.3402/tellusa.v14i2.9537, 1962. a, b
Lilly, D. K.: On the application of the eddy viscosity concept in the inertial
sub-range of turbulence, NCAR manuscript, 123, https://doi.org/10.5065/D67H1GGQ, 1966. a
Lin, W.-C. and McIntosh-Smith, S.: Comparing Julia to Performance Portable
Parallel Programming Models for HPC, in: 2021 International Workshop on
Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS), 94–105, https://doi.org/10.1109/PMBS54543.2021.00016,
2021. a
Marras, S. and Giraldo, F. X.: A parameter-free dynamic alternative to
hyper-viscosity for coupled transport equations: application to the
simulation of 3D squall lines using spectral elements, J. Comput. Phys.,
283, 360–373, https://doi.org/10.1016/j.jcp.2014.11.046, 2015. a
Marras, S., Kelly, J. F., Giraldo, F. X., and Vázquez, M.:
Variational multiscale stabilization of high-order spectral elements for the
advection-diffusion equation, J. Comput. Phys., 231, 7187–7213, 2012. a
Marras, S., Kelly, J. F., Moragues, M., Müller, A., Kopera, M. A., Vázquez,
M., Giraldo, F. X., Houzeaux, G., and Jorba, O.: A Variational Multiscale
Stabilized Finite Element Method for the Solution of the Euler Equations
of Nonhydrostatic Stratified Flows, Arch. Comput. Methods Eng., 23, 673–722,
https://doi.org/10.1016/j.jcp.2012.10.056, 2015. a
Mason, P. J. and Callen, N. S.: On the magnitude of the subgrid-scale eddy
coefficient in large-eddy simulations of turbulent channel flow, J.
Fluid Mech., 162, 439–462, https://doi.org/10.1017/S0022112086002112, 1986. a
Matheou, G.: Numerical discretization and subgrid-scale model effects on
large-eddy simulations of a stable boundary layer, Q. J. Roy. Meteor. Soc.,
142, 3050–3062, 2016. a
Matheou, G. and Teixeira, J.: Sensitivity to Physical and Numerical Aspects of
Large-Eddy Simulation of Stratocumulus, Mon. Weather Rev., 147,
2621–2639, 2019. a
Matheou, G., Chung, D., Nuijens, L., Stevens, B., and Teixeira, J.: On the
fidelity of large-eddy simulation of shallow precipitating cumulus
convection, Mon. Weather. Rev., 139, 2918–2939, https://doi.org/10.1175/2011MWR3599.1,
2011. a
Mellado, J.: Cloud-Top Entrainment in Stratocumulus Clouds, Annu. Rev.
Fluid Mech., 49, 145–169, 2017. a
Mellado, J. P., Bretherton, C. S., Stevens, B., and Wyant, M. C.: DNS and
LES for Simulating Stratocumulus: Better Together, J. Adv.
Model. Earth Sy., 10, 1421–1438, https://doi.org/10.1029/2018MS001312, 2018. a
Moeng, C., McWilliams, J., Rotunno, R., Sullivan, P., and Weil, J.:
Investigating 2D modelling of atmospheric convection in the PBL, J. Atmos.
Sci., 61, 889–903, 2003. a
Moeng, C. H.: A Large-Eddy simulation model for the study of planetary
boundary-layer turbulence, J. Atmos. Sci., 41, 2052–2062, 1984. a
Moeng, C. H. and Wyngaard, J. C.: Spectral analysis of large-eddy simulations
of the convective boundary layer, J. Atmos. Sci., 45,
3573–3587, 1988. a
Müller, A., Kopera, M., Marras, S., Wilcox, L., Isaac, T., and Giraldo, F.:
Strong scaling for numerical weather prediction at petascale with the
atmospheric model NUMA, Int. J. High Perform. C., 33, 411–426, https://doi.org/10.1177/1094342018763966, 2018. a
Niegemann, J., Diehl, R., and Busch, K.: Efficient low-storage Runge–Kutta
schemes with optimized stability regions, J. Comput. Phys.,
231, 364–372, https://doi.org/10.1016/j.jcp.2011.09.003, 2012. a, b
Palmer, T.: Climate forecasting: build high-resolution global climate models,
Nature, 515, 338–339, https://doi.org/10.1038/515338a, 2014. a
Pressel, K. G., Kaul, C. M., Schneider, T., Tan, Z., and Mishra, S.: Large-eddy
simulation in an anelastic framework with closed water and entropy balances,
J. Adv. Model. Earth Sy., 7, 1425–1456,
https://doi.org/10.1002/2015MS000496, 2015. a, b, c, d
Pressel, K. G., Mishra, S., Schneider, T., Kaul, C. M., and Tan, Z.: Numerics
and Subgrid-Scale Modeling in Large Eddy Simulations of Stratocumulus Clouds,
J. Adv. Model. Earth Sy., 9, 1342–1365,
https://doi.org/10.1002/2016MS000778, 2017. a
Raymond, D. J.: Sources and sinks of entropy in the atmosphere, J.
Adv. Model. Earth Sy., 5, 755–763, 2013. a
Reddy, S., Tissaoui, Y., De Bragan ça Alves, F., Marras, S., and Giraldo,
F.: Comparison of Sub-Grid Scale Models for Large-Eddy Simulation Using a
High-Order Spectral Element Approximation of the Compressible Navier-Stokes
Equations at Low Mach Number, J. Comput. Phys.,
https://doi.org/10.13140/RG.2.2.17576.90885, in review, 2022. a
Roe, P.: Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes, J. Comput. Phys., 43, 357–372,
https://doi.org/10.1016/0021-9991(81)90128-5, 1981. a
Romps, D. M.: The dry-entropy budget of a moist atmosphere, J. Atmos. Sci., 65,
3779–3799, https://doi.org/10.1175/2008JAS2679.1, 2008. a, b, c, d
Rusanov, V.: Calculation of Interaction of Non–Steady Shock Waves with
obstacles, USSR Comp. Math. Math., 1,
267–279, https://doi.org/10.1016/0041-5553(62)90062-9, 1961. a
Savic-Jovcic, V. and Stevens, B.: The structure and mesoscale organization of
precipitating stratocumulus, J. Atmos. Sci., 65, 1587–1605,
https://doi.org/10.1175/2007JAS2456.1, 2008. a
Schalkwijk, J., Griffith, E., Post, H., and Jonker, H. J. J.: High performance
simulations of turbulent clouds on a desktop PC: Exploiting the GPU,
B. Am. Meteorol. Soc., 93, 307–314,
https://doi.org/10.1175/BAMS-D-11-00059.1, 2012. a, b
Schalkwijk, J., Jonker, H., Siebesma, A., and Bosveld, F.: A year-long
Large-Eddy Simulation of the weather over Cabauw: an overview, Mon.
Weather Rev., 143, 828–844, https://doi.org/10.1175/MWR-D-14-00293.1, 2015. a, b
Schär, C., Leuenberger, D., Fuhrer, O., Luthic, D., and Girard, C.:
A new terrain-following vertical coordinate formulation for atmospheric
prediction models, Mon. Weather Rev., 130, 2459–2480,
https://doi.org/10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2, 2002. a, b, c
Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di Girolamo, S.,
Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D., Osterried, K.,
Panosetti, D., Rüdisühli, S., Schlemmer, L., Schulthess, T. C., Sprenger,
M., Ubbiali, S., and Wernli, H.: Kilometer-Scale Climate Models: Prospects
and Challenges, B. Am. Meteorol. Soc., 101,
E567–E587, https://doi.org/10.1175/BAMS-D-18-0167.1, 2020. a
Schneider, T., Kaul, C., and Pressel, K.: Possible climate transitions from
breakup of stratocumulus decks under greenhouse warming, Nat. Geosci.,
12, 163–167, https://doi.org/10.1038/s41561-019-0310-1, 2019. a
Shi, X., Chow, F. K., Street, R. L., and Bryan, G. H.: An Evaluation of LES
Turbulence Models for Scalar Mixing in the Stratocumulus-Capped Boundary
Layer, J. Atmos. Sci., 75, 1499–1507,
https://doi.org/10.1175/JAS-D-17-0392.1, 2018. a
Shu, C.-W. and Osher, S.: Efficient implementation of essentially
non-oscillatory shock-capturing schemes, J. Comput. Phys.,
77, 439–471, https://doi.org/10.1016/0021-9991(88)90177-5, 1988. a
Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J.,
Duynkerke, P. G., Jiang, H., Khairoutdinov, M., Lewellen, D., Moeng, C.-H.,
Sanchez, E., Stevens, B., and Stevens, D. E.: A large eddy simulation intercomparison study of shallow cumulus
convection, J. Atmos. Sci., 60, 1201–1219,
https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2, 2003. a, b, c, d, e
Smagorinsky, J.: General Circulation Experiments with the Primitive
Equations: I. The basic experiement, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a, b
Smith, R.: Linear theory of stratified hydrostatic flow past an isolated
mountain, Tellus, 32, 348–364, https://doi.org/10.3402/tellusa.v32i4.10590, 1980. a
Smith, R. B.: The influence of mountains on the atmosphere, Adv.
Geophys., 21, 87–230, https://doi.org/10.1016/S0065-2687(08)60262-9,
1979. a
Stevens, B., Lenschow, D. H., Vali, G., Gerber, H., Bandy, A., Blomquist, B.,
Brenguier, J.-L., Bretherton, C. S., Burnet, F., Campos, T., Chai, S.,
Faloona, I., Friesen, D., Haimov, S., Laursen, K., Lilly, D. K., Loehrer, S. M., Malinowski, S. P.,
Morley, B., Petters, M. D., Rogers, D. C., Russell, L., Savic-Jovcic, V., Snider, J. R., Straub, D., Szumowski, M. J.,
Takagi, H., Thornton, D. C., Tschudi, M., Twohy, C., Wetzel, M., and van Zanten, M. C.: Dynamics and chemistry of marine
stratocumulus–DYCOMS-II, B. Am. Meteorol. Soc., 84, 579–593,
https://doi.org/10.1175/BAMS-84-5-579, 2003.
a
Stevens, B., Moeng, C.-H., Ackerman, A. S., Bretherton, C. S., Chlond, A., de
Roode, S., Edwards, J., Golaz, J.-C., Jiang, H., Khairoutdinov, M.,
Kirkpatrick, M. O., Lewellen, D. C., Lock, A., Müller, F., Stevens,
D. E., Whelan, E., and Zhu, P.: Evaluation of Large-Eddy Simulations via
Observations of Nocturnal Marine Stratocumulus, Mon. Weather Rev., 133,
1443–1462, https://doi.org/10.1175/MWR2930.1, 2005. a, b, c, d
Straka, J., Wilhelmson, R., Wicker, L., Anderson, J., and
Droegemeier, K.: Numerical solution of a nonlinear density current: a
benchmark solution and comparisons, Int. J. Numer.
Meth. Fl., 17, 1–22, https://doi.org/10.1002/fld.1650170103,
1993. a, b, c
Sullivan, P., McWilliams, J., and Moeng, C.: A subgrid-scale model for
large-eddy simulation of planetary boundary-layer flows, Bound.-Lay.
Meteorol., 71, 247–276, https://doi.org/10.1007/BF00713741, 1994. a
Tao, W.-K., Simpson, J., and McCumber, M.: An Ice-Water Saturation Adjustment,
Mon. Weather Rev., 117, 231–235, 1989. a
Vandeven, H.: Family of spectral filters for discontinuous problems, J.
Sci. Comput., 6, 159–192, https://doi.org/10.1007/BF01062118, 1991. a
Vreman, A.: An eddy-viscosity subgrid-scale model for turbulent shear flow:
algebraic theory and applications, Phys. Fluid., 16, 3670–3681,
https://doi.org/10.1063/1.1785131, 2004. a
Yamaguchi, T. and Feingold, G.: Technical note: Large-eddy simulation of cloudy
boundary layer with the Advanced Research WRF model, J. Adv. Model. Earth
Sy., 4, M09003, https://doi.org/10.1029/2012MS000164, 2012. a
Yu, M. L., Giraldo, F. X., Peng, M., and Wang, Z. J.: Localized Artificial
Viscosity Stabilization of Discontinuous Galerkin Methods for Nonhydrostatic
Mesoscale Atmospheric Modeling, Mon. Weather Rev., 143, 4823–4845,
https://doi.org/10.1175/MWR-D-15-0134.1, 2015. a
Short summary
ClimateMachine is a new open-source Julia-language atmospheric modeling code. We describe its limited-area configuration and the model equations, and we demonstrate applicability through benchmark problems, including atmospheric flow in the shallow cumulus regime. We show that the discontinuous Galerkin numerics and model equations allow global conservation of key variables (up to sources and sinks). We assess CPU strong scaling and GPU weak scaling to show its suitability for large simulations.
ClimateMachine is a new open-source Julia-language atmospheric modeling code. We describe its...