Articles | Volume 15, issue 15
https://doi.org/10.5194/gmd-15-6259-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-6259-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Large-eddy simulations with ClimateMachine v0.2.0: a new open-source code for atmospheric simulations on GPUs and CPUs
California Institute of Technology, Pasadena, California, USA
Yassine Tissaoui
New Jersey Institute of Technology, Newark, New Jersey, USA
Simone Marras
New Jersey Institute of Technology, Newark, New Jersey, USA
Zhaoyi Shen
California Institute of Technology, Pasadena, California, USA
Charles Kawczynski
California Institute of Technology, Pasadena, California, USA
Simon Byrne
California Institute of Technology, Pasadena, California, USA
Kiran Pamnany
California Institute of Technology, Pasadena, California, USA
Maciej Waruszewski
Naval Postgraduate School, Monterey, California, USA
Thomas H. Gibson
University of Illinois Urbana–Champaign, Urbana–Champaign, Illinois, USA
Jeremy E. Kozdon
Naval Postgraduate School, Monterey, California, USA
Valentin Churavy
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Lucas C. Wilcox
Naval Postgraduate School, Monterey, California, USA
Francis X. Giraldo
Naval Postgraduate School, Monterey, California, USA
Tapio Schneider
California Institute of Technology, Pasadena, California, USA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Related authors
No articles found.
Ian Madden, Simone Marras, and Jenny Suckale
Geosci. Model Dev., 16, 3479–3500, https://doi.org/10.5194/gmd-16-3479-2023, https://doi.org/10.5194/gmd-16-3479-2023, 2023
Short summary
Short summary
To aid risk managers who may wish to rapidly assess tsunami risk but may lack high-performance computing infrastructure, we provide an accessible software package able to rapidly model tsunami inundation over real topography by leveraging Google's Tensor Processing Unit, a high-performance hardware. Minimally trained users can take advantage of the rapid modeling abilities provided by this package via a web browser thanks to the ease of use of Google Cloud Platform.
Z. Shen, J. Liu, L. W. Horowitz, D. K. Henze, S. Fan, Levy II H., D. L. Mauzerall, J.-T. Lin, and S. Tao
Atmos. Chem. Phys., 14, 6315–6327, https://doi.org/10.5194/acp-14-6315-2014, https://doi.org/10.5194/acp-14-6315-2014, 2014
Related subject area
Atmospheric sciences
Updated isoprene and terpene emission factors for the Interactive BVOC (iBVOC) emission scheme in the United Kingdom Earth System Model (UKESM1.0)
Technical descriptions of the experimental dynamical downscaling simulations over North America by the CAM–MPAS variable-resolution model
Intercomparison of the weather and climate physics suites of a unified forecast–climate model system (GRIST-A22.7.28) based on single-column modeling
Halogen chemistry in volcanic plumes: a 1D framework based on MOCAGE 1D (version R1.18.1) preparing 3D global chemistry modelling
PyFLEXTRKR: a flexible feature tracking Python software for convective cloud analysis
CLGAN: a generative adversarial network (GAN)-based video prediction model for precipitation nowcasting
Long-term evaluation of surface air pollution in CAMSRA and MERRA-2 global reanalyses over Europe (2003–2020)
Emulating aerosol optics with randomly generated neural networks
Development of an ecophysiology module in the GEOS-Chem chemical transport model version 12.2.0 to represent biosphere–atmosphere fluxes relevant for ozone air quality
Comparison of ozone formation attribution techniques in the northeastern United States
Improving trajectory calculations by FLEXPART 10.4+ using single-image super-resolution
Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona: a case study with CALIOPE-Urban v1.0
Forecasting tropical cyclone tracks in the northwestern Pacific based on a deep-learning model
Accelerating models for multiphase chemical kinetics through machine learning with polynomial chaos expansion and neural networks
A machine learning emulator for Lagrangian particle dispersion model footprints: a case study using NAME
Improving the representation of shallow cumulus convection with the simplified-higher-order-closure–mass-flux (SHOC+MF v1.0) approach
ISAT v2.0: an integrated tool for nested-domain configurations and model-ready emission inventories for WRF-AQM
GPU-HADVPPM V1.0: high-efficient parallel GPU design of the Piecewise Parabolic Method (PPM) for horizontal advection in air quality model (CAMx V6.10)
Estimation of CH4 emission based on an advanced 4D-LETKF assimilation system
Accelerated estimation of sea-spray-mediated heat flux using Gaussian quadrature: case studies with a coupled CFSv2.0-WW3 system
AMORE-Isoprene v1.0: a new reduced mechanism for gas-phase isoprene oxidation
A method for generating a quasi-linear convective system suitable for observing system simulation experiments
The second Met Office Unified Model–JULES Regional Atmosphere and Land configuration, RAL2
A dynamic ammonia emission model and the online coupling with WRF–Chem (WRF–SoilN–Chem v1.0): development and regional evaluation in China
SCIATRAN software package (V4.6): update and further development of aerosol, clouds, surface reflectance databases and models
Deep learning models for generation of precipitation maps based on numerical weather prediction
An inconsistency in aviation emissions between CMIP5 and CMIP6 and the implications for short-lived species and their radiative forcing
On the use of Infrared Atmospheric Sounding Interferometer (IASI) spectrally resolved radiances to test the EC-Earth climate model (v3.3.3) in clear-sky conditions
Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
The Fire Inventory from NCAR version 2.5: an updated global fire emissions model for climate and chemistry applications
An approach to refining the ground meteorological observation stations for improving PM2.5 forecasts in Beijing-Tianjin-Hebei region
The impact of altering emission data precision on compression efficiency and accuracy of simulations of the community multiscale air quality model
AerSett v1.0: a simple and straightforward model for the settling speed of big spherical atmospheric aerosols
How Does Cloud-Radiative Heating over the North Atlantic Change with Grid Spacing, Convective Parameterization, and Microphysics Scheme?
The development and validation of an Inhomogeneous Wind Scheme for Urban Street
Optimization of weather forecasting for cloud cover over the European domain using the meteorological component of the Ensemble for Stochastic Integration of Atmospheric Simulations version 1.0
Bayesian transdimensional inverse reconstruction of the Fukushima Daiichi caesium 137 release
Implementation of HONO into the chemistry–climate model CHASER (V4.0): roles in tropospheric chemistry
Isoprene and monoterpene simulations using the chemistry–climate model EMAC (v2.55) with interactive vegetation from LPJ-GUESS (v4.0)
A modern-day Mars climate in the Met Office Unified Model: dry simulations
The AirGAM 2022r1 air quality trend and prediction model
Evaluation of a cloudy cold-air pool in the Columbia River basin in different versions of the High-Resolution Rapid Refresh (HRRR) model
Assessment of WRF (v 4.2.1) dynamically downscaled precipitation on subdaily and daily timescales over CONUS
Comparing Sentinel-5P TROPOMI NO2 column observations with the CAMS regional air quality ensemble
Dynamic Meteorology-Induced Emissions Coupler (MetEmis) development in the Community Multiscale Air Quality (CMAQ): CMAQ-MetEmis
Cross-evaluating WRF-Chem v4.1.2, TROPOMI, APEX, and in situ NO2 measurements over Antwerp, Belgium
Variability and combination as ensemble of mineral dust forecast during the 2021 CADDIWA experiment
Adapting a deep convolutional RNN model with imbalanced regression loss for improved spatio-temporal forecasting of extreme wind speed events in the short to medium range
Convective Gusts Nowcasting Based on Radar Reflectivity and a Deep Learning Algorithm
ICLASS 1.1, a variational Inverse modelling framework for the Chemistry Land-surface Atmosphere Soil Slab model: description, validation, and application
James Weber, James A. King, Katerina Sindelarova, and Maria Val Martin
Geosci. Model Dev., 16, 3083–3101, https://doi.org/10.5194/gmd-16-3083-2023, https://doi.org/10.5194/gmd-16-3083-2023, 2023
Short summary
Short summary
The emissions of volatile organic compounds from vegetation (BVOCs) influence atmospheric composition and contribute to certain gases and aerosols (tiny airborne particles) which play a role in climate change. BVOC emissions are likely to change in the future due to changes in climate and land use. Therefore, accurate simulation of BVOC emission is important, and this study describes an update to the simulation of BVOC emissions in the United Kingdom Earth System Model (UKESM).
Koichi Sakaguchi, L. Ruby Leung, Colin M. Zarzycki, Jihyeon Jang, Seth McGinnis, Bryce E. Harrop, William C. Skamarock, Andrew Gettelman, Chun Zhao, William J. Gutowski, Stephen Leak, and Linda Mearns
Geosci. Model Dev., 16, 3029–3081, https://doi.org/10.5194/gmd-16-3029-2023, https://doi.org/10.5194/gmd-16-3029-2023, 2023
Short summary
Short summary
We document details of the regional climate downscaling dataset produced by a global variable-resolution model. The experiment is unique in that it follows a standard protocol designed for coordinated experiments of regional models. We found negligible influence of post-processing on statistical analysis, importance of simulation quality outside of the target region, and computational challenges that our model code faced due to rapidly changing super computer systems.
Xiaohan Li, Yi Zhang, Xindong Peng, Baiquan Zhou, Jian Li, and Yiming Wang
Geosci. Model Dev., 16, 2975–2993, https://doi.org/10.5194/gmd-16-2975-2023, https://doi.org/10.5194/gmd-16-2975-2023, 2023
Short summary
Short summary
The weather and climate physics suites used in GRIST-A22.7.28 are compared using single-column modeling. The source of their discrepancies in terms of modeling cloud and precipitation is explored. Convective parameterization is found to be a key factor responsible for the differences. The two suites also have intrinsic differences in the interaction between microphysics and other processes, resulting in different cloud features and time step sensitivities.
Virginie Marécal, Ronan Voisin-Plessis, Tjarda Jane Roberts, Alessandro Aiuppa, Herizo Narivelo, Paul David Hamer, Béatrice Josse, Jonathan Guth, Luke Surl, and Lisa Grellier
Geosci. Model Dev., 16, 2873–2898, https://doi.org/10.5194/gmd-16-2873-2023, https://doi.org/10.5194/gmd-16-2873-2023, 2023
Short summary
Short summary
We implemented a halogen volcanic chemistry scheme in a one-dimensional modelling framework preparing for further use in a three-dimensional global chemistry-transport model. The results of the simulations for an eruption of Mt Etna in 2008, including various sensitivity tests, show a good consistency with previous modelling studies.
Zhe Feng, Joseph Hardin, Hannah C. Barnes, Jianfeng Li, L. Ruby Leung, Adam Varble, and Zhixiao Zhang
Geosci. Model Dev., 16, 2753–2776, https://doi.org/10.5194/gmd-16-2753-2023, https://doi.org/10.5194/gmd-16-2753-2023, 2023
Short summary
Short summary
PyFLEXTRKR is a flexible atmospheric feature tracking framework with specific capabilities to track convective clouds from a variety of observations and model simulations. The package has a collection of multi-object identification algorithms and has been optimized for large datasets. This paper describes the algorithms and demonstrates applications for tracking deep convective cells and mesoscale convective systems from observations and model simulations at a wide range of scales.
Yan Ji, Bing Gong, Michael Langguth, Amirpasha Mozaffari, and Xiefei Zhi
Geosci. Model Dev., 16, 2737–2752, https://doi.org/10.5194/gmd-16-2737-2023, https://doi.org/10.5194/gmd-16-2737-2023, 2023
Short summary
Short summary
Formulating short-term precipitation forecasting as a video prediction task, a novel deep learning architecture (convolutional long short-term memory generative adversarial network, CLGAN) is proposed. A benchmark dataset is built on minute-level precipitation measurements. Results show that with the GAN component the model generates predictions sharing statistical properties with observations, resulting in it outperforming the baseline in dichotomous and spatial scores for heavy precipitation.
Aleksander Lacima, Hervé Petetin, Albert Soret, Dene Bowdalo, Oriol Jorba, Zhaoyue Chen, Raúl F. Méndez Turrubiates, Hicham Achebak, Joan Ballester, and Carlos Pérez García-Pando
Geosci. Model Dev., 16, 2689–2718, https://doi.org/10.5194/gmd-16-2689-2023, https://doi.org/10.5194/gmd-16-2689-2023, 2023
Short summary
Short summary
Understanding how air pollution varies across space and time is of key importance for the safeguarding of human health. This work arose in the context of the project EARLY-ADAPT, for which the Barcelona Supercomputing Center developed an air pollution database covering all of Europe. Through different statistical methods, we compared two global pollution models against measurements from ground stations and found significant discrepancies between the observed and the modeled surface pollution.
Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C. Hardin
Geosci. Model Dev., 16, 2355–2370, https://doi.org/10.5194/gmd-16-2355-2023, https://doi.org/10.5194/gmd-16-2355-2023, 2023
Short summary
Short summary
Atmospheric aerosols play a critical role in Earth's climate, but it is too computationally expensive to directly model their interaction with radiation in climate simulations. This work develops a new neural-network-based parameterization of aerosol optical properties for use in the Energy Exascale Earth System Model that is much more accurate than the current one; it also introduces a unique model optimization method that involves randomly generating neural network architectures.
Joey C. Y. Lam, Amos P. K. Tai, Jason A. Ducker, and Christopher D. Holmes
Geosci. Model Dev., 16, 2323–2342, https://doi.org/10.5194/gmd-16-2323-2023, https://doi.org/10.5194/gmd-16-2323-2023, 2023
Short summary
Short summary
We developed a new component within an atmospheric chemistry model to better simulate plant ecophysiological processes relevant for ozone air quality. We showed that it reduces simulated biases in plant uptake of ozone in prior models. The new model enables us to explore how future climatic changes affect air quality via affecting plants, examine ozone–vegetation interactions and feedbacks, and evaluate the impacts of changing atmospheric chemistry and climate on vegetation productivity.
Qian Shu, Sergey L. Napelenok, William T. Hutzell, Kirk R. Baker, Barron H. Henderson, Benjamin N. Murphy, and Christian Hogrefe
Geosci. Model Dev., 16, 2303–2322, https://doi.org/10.5194/gmd-16-2303-2023, https://doi.org/10.5194/gmd-16-2303-2023, 2023
Short summary
Short summary
Source attribution methods are generally used to determine culpability of precursor emission sources to ambient pollutant concentrations. However, source attribution of secondarily formed pollutants such as ozone and its precursors cannot be explicitly measured, making evaluation of source apportionment methods challenging. In this study, multiple apportionment approach comparisons show common features but still reveal wide variations in predicted sector contribution and species dependency.
Rüdiger Brecht, Lucie Bakels, Alex Bihlo, and Andreas Stohl
Geosci. Model Dev., 16, 2181–2192, https://doi.org/10.5194/gmd-16-2181-2023, https://doi.org/10.5194/gmd-16-2181-2023, 2023
Short summary
Short summary
We use neural-network-based single-image super-resolution to improve the upscaling of meteorological wind fields to be used for particle dispersion models. This deep-learning-based methodology improves the standard linear interpolation typically used in particle dispersion models. The improvement of wind fields leads to substantial improvement in the computed trajectories of the particles.
Alvaro Criado, Jan Mateu Armengol, Hervé Petetin, Daniel Rodriguez-Rey, Jaime Benavides, Marc Guevara, Carlos Pérez García-Pando, Albert Soret, and Oriol Jorba
Geosci. Model Dev., 16, 2193–2213, https://doi.org/10.5194/gmd-16-2193-2023, https://doi.org/10.5194/gmd-16-2193-2023, 2023
Short summary
Short summary
This work aims to derive and evaluate a general statistical post-processing tool specifically designed for the street scale that can be applied to any urban air quality system. Our data fusion methodology corrects NO2 fields based on continuous hourly observations and experimental campaigns. This study enables us to obtain exceedance probability maps of air quality standards. In 2019, 13 % of the Barcelona area had a 70 % or higher probability of exceeding the annual legal NO2 limit of 40 µg/m3.
Liang Wang, Bingcheng Wan, Shaohui Zhou, Haofei Sun, and Zhiqiu Gao
Geosci. Model Dev., 16, 2167–2179, https://doi.org/10.5194/gmd-16-2167-2023, https://doi.org/10.5194/gmd-16-2167-2023, 2023
Short summary
Short summary
The past 24 h TC trajectories and meteorological field data were used to forecast TC tracks in the northwestern Pacific from hours 6–72 based on GRU_CNN, which we proposed in this paper and which has better prediction results than traditional single deep-learning methods. The historical steering flow of cyclones has a significant effect on improving the accuracy of short-term forecasting, while, in long-term forecasting, the SST and geopotential height will have a particular impact.
Thomas Berkemeier, Matteo Krüger, Aryeh Feinberg, Marcel Müller, Ulrich Pöschl, and Ulrich K. Krieger
Geosci. Model Dev., 16, 2037–2054, https://doi.org/10.5194/gmd-16-2037-2023, https://doi.org/10.5194/gmd-16-2037-2023, 2023
Short summary
Short summary
Kinetic multi-layer models (KMs) successfully describe heterogeneous and multiphase atmospheric chemistry. In applications requiring repeated execution, however, these models can be too expensive. We trained machine learning surrogate models on output of the model KM-SUB and achieved high correlations. The surrogate models run orders of magnitude faster, which suggests potential applicability in global optimization tasks and as sub-modules in large-scale atmospheric models.
Elena Fillola, Raul Santos-Rodriguez, Alistair Manning, Simon O'Doherty, and Matt Rigby
Geosci. Model Dev., 16, 1997–2009, https://doi.org/10.5194/gmd-16-1997-2023, https://doi.org/10.5194/gmd-16-1997-2023, 2023
Short summary
Short summary
Lagrangian particle dispersion models are used extensively for the estimation of greenhouse gas (GHG) fluxes using atmospheric observations. However, these models do not scale well as data volumes increase. Here, we develop a proof-of-concept machine learning emulator that can produce outputs similar to those of the dispersion model, but 50 000 times faster, using only meteorological inputs. This works demonstrates the potential of machine learning to accelerate GHG estimations across the globe.
Maria J. Chinita, Mikael Witte, Marcin J. Kurowski, Joao Teixeira, Kay Suselj, Georgios Matheou, and Peter Bogenschutz
Geosci. Model Dev., 16, 1909–1924, https://doi.org/10.5194/gmd-16-1909-2023, https://doi.org/10.5194/gmd-16-1909-2023, 2023
Short summary
Short summary
Low clouds are one of the largest sources of uncertainty in climate prediction. In this paper, we introduce the first version of the unified turbulence and shallow convection parameterization named SHOC+MF developed to improve the representation of shallow cumulus clouds in the Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM). Here, we also show promising preliminary results in a single-column model framework for two benchmark cases of shallow cumulus convection.
Kun Wang, Chao Gao, Kai Wu, Kaiyun Liu, Haofan Wang, Mo Dan, Xiaohui Ji, and Qingqing Tong
Geosci. Model Dev., 16, 1961–1973, https://doi.org/10.5194/gmd-16-1961-2023, https://doi.org/10.5194/gmd-16-1961-2023, 2023
Short summary
Short summary
This study establishes an easy-to-use and integrated framework for a model-ready emission inventory for the Weather Research and Forecasting (WRF)–Air Quality Numerical Model (AQM). A free tool called the ISAT (Inventory Spatial Allocation Tool) was developed based on this framework. ISAT helps users complete the workflow from the WRF nested-domain configuration to a model-ready emission inventory for AQM with a regional emission inventory and a shapefile for the target region.
Kai Cao, Qizhong Wu, Lingling Wang, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongqing Li, and Lanning Wang
EGUsphere, https://doi.org/10.5194/egusphere-2023-410, https://doi.org/10.5194/egusphere-2023-410, 2023
Short summary
Short summary
Offline performance experiments results show that the GPU-HADVPPM on V100 GPU can achieve up to more than one thousand (1113.6x) speedup to its original version on E5-2682 v4 CPU. A series of optimization measures are taken, the CAMx-CUDA model improves the computing efficiency by 128.4x on a single V100 GPU card. A parallel architecture with an MPI+CUDA hybrid paradigm is presented, and it can achieve up to 4.5x speedup when launch 8 CPU cores and 8 GPU cards.
Jagat S. H. Bisht, Prabir K. Patra, Masayuki Takigawa, Takashi Sekiya, Yugo Kanaya, Naoko Saitoh, and Kazuyuki Miyazaki
Geosci. Model Dev., 16, 1823–1838, https://doi.org/10.5194/gmd-16-1823-2023, https://doi.org/10.5194/gmd-16-1823-2023, 2023
Short summary
Short summary
In this study, we estimated CH4 fluxes using an advanced 4D-LETKF method. The system was tested and optimized using observation system simulation experiments (OSSEs), where a known surface emission distribution is retrieved from synthetic observations. The availability of satellite measurements has increased, and there are still many missions focused on greenhouse gas observations that have not yet launched. The technique being referred to has the potential to improve estimates of CH4 fluxes.
Ruizi Shi and Fanghua Xu
Geosci. Model Dev., 16, 1839–1856, https://doi.org/10.5194/gmd-16-1839-2023, https://doi.org/10.5194/gmd-16-1839-2023, 2023
Short summary
Short summary
Based on the Gaussian quadrature method, a fast algorithm of sea-spray-mediated heat flux is developed. Compared with the widely used single-radius algorithm, the new fast algorithm shows a better agreement with the full spectrum integral of spray flux. The new fast algorithm is evaluated in a coupled modeling system, and the simulations of sea surface temperature, wind speed and wave height are improved. Thereby, the new fast algorithm has great potential to be used in coupled modeling systems.
Forwood Wiser, Bryan K. Place, Siddhartha Sen, Havala O. T. Pye, Benjamin Yang, Daniel M. Westervelt, Daven K. Henze, Arlene M. Fiore, and V. Faye McNeill
Geosci. Model Dev., 16, 1801–1821, https://doi.org/10.5194/gmd-16-1801-2023, https://doi.org/10.5194/gmd-16-1801-2023, 2023
Short summary
Short summary
We developed a reduced model of atmospheric isoprene oxidation, AMORE-Isoprene 1.0. It was created using a new Automated Model Reduction (AMORE) method designed to simplify complex chemical mechanisms with minimal manual adjustments to the output. AMORE-Isoprene 1.0 has improved accuracy and similar size to other reduced isoprene mechanisms. When included in the CRACMM mechanism, it improved the accuracy of EPA’s CMAQ model predictions for the northeastern USA compared to observations.
Jonathan D. Labriola, Jeremy A. Gibbs, and Louis J. Wicker
Geosci. Model Dev., 16, 1779–1799, https://doi.org/10.5194/gmd-16-1779-2023, https://doi.org/10.5194/gmd-16-1779-2023, 2023
Short summary
Short summary
Observing system simulation experiments (OSSEs) are simulated case studies used to understand how different assimilated weather observations impact forecast skill. This study introduces the methods used to create an OSSE for a tornadic quasi-linear convective system event. These steps provide an opportunity to simulate a realistic high-impact weather event and can be used to encourage a more diverse set of OSSEs.
Mike Bush, Ian Boutle, John Edwards, Anke Finnenkoetter, Charmaine Franklin, Kirsty Hanley, Aravindakshan Jayakumar, Huw Lewis, Adrian Lock, Marion Mittermaier, Saji Mohandas, Rachel North, Aurore Porson, Belinda Roux, Stuart Webster, and Mark Weeks
Geosci. Model Dev., 16, 1713–1734, https://doi.org/10.5194/gmd-16-1713-2023, https://doi.org/10.5194/gmd-16-1713-2023, 2023
Short summary
Short summary
Building on the baseline of RAL1, the RAL2 science configuration is used for regional modelling around the UM partnership and in operations at the Met Office. RAL2 has been tested in different parts of the world including Australia, India and the UK. RAL2 increases medium and low cloud amounts in the mid-latitudes compared to RAL1, leading to improved cloud forecasts and a reduced diurnal cycle of screen temperature. There is also a reduction in the frequency of heavier precipitation rates.
Chuanhua Ren, Xin Huang, Tengyu Liu, Yu Song, Zhang Wen, Xuejun Liu, Aijun Ding, and Tong Zhu
Geosci. Model Dev., 16, 1641–1659, https://doi.org/10.5194/gmd-16-1641-2023, https://doi.org/10.5194/gmd-16-1641-2023, 2023
Short summary
Short summary
Ammonia in the atmosphere has wide impacts on the ecological environment and air quality, and its emission from soil volatilization is highly sensitive to meteorology, making it challenging to be well captured in models. We developed a dynamic emission model capable of calculating ammonia emission interactively with meteorological and soil conditions. Such a coupling of soil emission with meteorology provides a better understanding of ammonia emission and its contribution to atmospheric aerosol.
Linlu Mei, Vladimir Rozanov, Alexei Rozanov, and John P. Burrows
Geosci. Model Dev., 16, 1511–1536, https://doi.org/10.5194/gmd-16-1511-2023, https://doi.org/10.5194/gmd-16-1511-2023, 2023
Short summary
Short summary
This paper summarizes recent developments of aerosol, cloud and surface reflectance databases and models in the framework of the software package SCIATRAN. These updates and developments extend the capabilities of the radiative transfer modeling, especially by accounting for different kinds of vertical inhomogeneties. Vertically inhomogeneous clouds and different aerosol types can be easily accounted for within SCIATRAN (V4.6). The widely used surface models and databases are now available.
Adrian Rojas-Campos, Michael Langguth, Martin Wittenbrink, and Gordon Pipa
Geosci. Model Dev., 16, 1467–1480, https://doi.org/10.5194/gmd-16-1467-2023, https://doi.org/10.5194/gmd-16-1467-2023, 2023
Short summary
Short summary
Our paper presents an alternative approach for generating high-resolution precipitation maps based on the nonlinear combination of the complete set of variables of the numerical weather predictions. This process combines the super-resolution task with the bias correction in a single step, generating high-resolution corrected precipitation maps with a lead time of 3 h. We used using deep learning algorithms to combine the input information and increase the accuracy of the precipitation maps.
Robin N. Thor, Mariano Mertens, Sigrun Matthes, Mattia Righi, Johannes Hendricks, Sabine Brinkop, Phoebe Graf, Volker Grewe, Patrick Jöckel, and Steven Smith
Geosci. Model Dev., 16, 1459–1466, https://doi.org/10.5194/gmd-16-1459-2023, https://doi.org/10.5194/gmd-16-1459-2023, 2023
Short summary
Short summary
We report on an inconsistency in the latitudinal distribution of aviation emissions between two versions of a data product which is widely used by researchers. From the available documentation, we do not expect such an inconsistency. We run a chemistry–climate model to compute the effect of the inconsistency in emissions on atmospheric chemistry and radiation and find that the radiative forcing associated with aviation ozone is 7.6 % higher when using the less recent version of the data.
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394, https://doi.org/10.5194/gmd-16-1379-2023, https://doi.org/10.5194/gmd-16-1379-2023, 2023
Short summary
Short summary
The long-term comparison between observed and simulated outgoing longwave radiances represents a strict test to evaluate climate model performance. In this work, 9 years of synthetic spectrally resolved radiances, simulated online on the basis of the atmospheric fields predicted by the EC-Earth global climate model (v3.3.3) in clear-sky conditions, are compared to IASI spectral radiance climatology in order to detect model biases in temperature and humidity at different atmospheric levels.
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023, https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary
Short summary
Aerosol has a large impact on climate. Using a lidar aerosol simulator ensures consistent comparisons between modeled and observed aerosol. We present a lidar aerosol simulator that applies a cloud masking and an aerosol detection threshold. We estimate the lidar signals that would be observed at 532 nm by the Cloud-Aerosol Lidar with Orthogonal Polarization overflying the atmosphere predicted by a climate model. Our comparison at the seasonal timescale shows a discrepancy in the Southern Ocean.
Christine Wiedinmyer, Yosuke Kimura, Elena C. McDonald-Buller, Louisa K. Emmons, Rebecca R. Buchholz, Wenfu Tang, Keenan Seto, Maxwell B. Joseph, Kelley C. Barsanti, Annmarie G. Carlton, and Robert Yokelson
EGUsphere, https://doi.org/10.5194/egusphere-2023-124, https://doi.org/10.5194/egusphere-2023-124, 2023
Short summary
Short summary
The Fire INventory from NCAR (FINN) provides daily, global estimates of emissions from open fires based on satellite detections of hot spots. This version has been updated to apply MODIS and VIIRS satellite fire detections, and better represents both large and small fires.. FINNv2.5 generates more emissions than FINNv1, in general agreement with other fire emissions inventories. The new estimates are consistent with satellite observations, but uncertainties remain regionally and by pollutant.
Lichao Yang, Wansuo Duan, and Zifa Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-10, https://doi.org/10.5194/gmd-2023-10, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We refine the ground meteorological stations by a nonlinear approach for improving the regional PM2.5 forecasts. The refined observation network (about 60 % of the current stations) can achieve almost the same improvements in PM2.5 forecasts as all the current station observations. The study will provide a scientific guidance to optimize the ground meteorological stations relative to PM2.5 forecasts and suggests an idea of cost-effective data assimilation for enhancing the PM2.5 forecast skills.
Michael S. Walters and David C. Wong
Geosci. Model Dev., 16, 1179–1190, https://doi.org/10.5194/gmd-16-1179-2023, https://doi.org/10.5194/gmd-16-1179-2023, 2023
Short summary
Short summary
A typical numerical simulation that associates with a large amount of input and output data, applying popular compression software, gzip or bzip2, on data is one good way to mitigate data storage burden. This article proposes a simple technique to alter input, output, or input and output by keeping a specific number of significant digits in data and demonstrates an enhancement in compression efficiency on the altered data but maintains similar statistical performance of the numerical simulation.
Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel
Geosci. Model Dev., 16, 1119–1127, https://doi.org/10.5194/gmd-16-1119-2023, https://doi.org/10.5194/gmd-16-1119-2023, 2023
Short summary
Short summary
Large or even
giantparticles of mineral dust exist in the atmosphere but, so far, solving an non-linear equation was needed to calculate the speed at which they fall in the atmosphere. The model we present, AerSett v1.0 (AERosol SETTling version 1.0), provides a new and simple way of calculating their free-fall velocity in the atmosphere, which will be useful to anyone trying to understand and represent adequately the transport of giant dust particles by the wind.
Sylvia Sullivan, Behrooz Keshtgar, Nicole Albern, Elzina Bala, Christoph Braun, Anubhav Choudhary, Johannes Hörner, Hilke Lentink, Georgios Papavasileiou, and Aiko Voigt
EGUsphere, https://doi.org/10.5194/egusphere-2023-109, https://doi.org/10.5194/egusphere-2023-109, 2023
Short summary
Short summary
Clouds absorb and reemit infrared radiation from Earth's surface and absorb and reflect incoming solar radiation. As a result, they change atmospheric temperature gradients that drive large-scale circulation. To better simulate this circulation, we study how the radiative heating and cooling from clouds depends on model settings like grid spacing, whether we describe convection approximately or exactly, and the level of detail used to describe small-scale processes, or microphysics, in clouds.
Yuanhao Chen, Zhenxin Liu, Yuhang Wang, Cheng Liu, Shuhua Liu, and Hong Liao
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-267, https://doi.org/10.5194/gmd-2022-267, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
The heterogenous layout of urban buildings leads to the complex wind field in and over the urban. Large discrepancies exist between the observation and the current simulations without considering the character. The Inhomogeneous Wind Scheme in Urban Street (IWSUS) is developed to simulation the complex wind speed in a typical street. It can better simulate the wind field in and over the inhomogenous street canyon then improve the simulated energy budget in lower atmosphere layer over the urban.
Yen-Sen Lu, Garrett H. Good, and Hendrik Elbern
Geosci. Model Dev., 16, 1083–1104, https://doi.org/10.5194/gmd-16-1083-2023, https://doi.org/10.5194/gmd-16-1083-2023, 2023
Short summary
Short summary
The Weather Forecasting and Research (WRF) model consists of many parameters and options that can be adapted to different conditions. This expansive sensitivity study uses a large-scale simulation system to determine the most suitable options for predicting cloud cover in Europe for deterministic and probabilistic weather predictions for day-ahead forecasting simulations.
Joffrey Dumont Le Brazidec, Marc Bocquet, Olivier Saunier, and Yelva Roustan
Geosci. Model Dev., 16, 1039–1052, https://doi.org/10.5194/gmd-16-1039-2023, https://doi.org/10.5194/gmd-16-1039-2023, 2023
Short summary
Short summary
When radionuclides are released into the atmosphere, the assessment of the consequences depends on the evaluation of the magnitude and temporal evolution of the release, which can be highly variable as in the case of Fukushima Daiichi.
Here, we propose Bayesian inverse modelling methods and the reversible-jump Markov chain Monte Carlo technique, which allows one to evaluate the temporal variability of the release and to integrate different types of information in the source reconstruction.
Phuc Thi Minh Ha, Yugo Kanaya, Fumikazu Taketani, Maria Dolores Andrés Hernández, Benjamin Schreiner, Klaus Pfeilsticker, and Kengo Sudo
Geosci. Model Dev., 16, 927–960, https://doi.org/10.5194/gmd-16-927-2023, https://doi.org/10.5194/gmd-16-927-2023, 2023
Short summary
Short summary
HONO affects tropospheric oxidizing capacity; thus, it is implemented into the chemistry–climate model CHASER. The model substantially underpredicts daytime HONO, while nitrate photolysis on surfaces can supplement the daytime HONO budget. Current HONO chemistry predicts reductions of 20.4 % for global tropospheric NOx, 40–67 % for OH, and 30–45 % for O3 in the summer North Pacific. In contrast, OH and O3 winter levels in China are greatly enhanced.
Ryan Vella, Matthew Forrest, Jos Lelieveld, and Holger Tost
Geosci. Model Dev., 16, 885–906, https://doi.org/10.5194/gmd-16-885-2023, https://doi.org/10.5194/gmd-16-885-2023, 2023
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) are released by vegetation and have a major impact on atmospheric chemistry and aerosol formation. Non-interacting vegetation constrains the majority of numerical models used to estimate global BVOC emissions, and thus, the effects of changing vegetation on emissions are not addressed. In this work, we replace the offline vegetation with dynamic vegetation states by linking a chemistry–climate model with a global dynamic vegetation model.
Danny McCulloch, Denis E. Sergeev, Nathan Mayne, Matthew Bate, James Manners, Ian Boutle, Benjamin Drummond, and Kristzian Kohary
Geosci. Model Dev., 16, 621–657, https://doi.org/10.5194/gmd-16-621-2023, https://doi.org/10.5194/gmd-16-621-2023, 2023
Short summary
Short summary
We present results from the Met Office Unified Model (UM) to study the dry Martian climate. We describe our model set-up conditions and run two scenarios, with radiatively active/inactive dust. We compare both scenarios to results from an existing Mars climate model, the planetary climate model. We find good agreement in winds and air temperatures, but dust amounts differ between models. This study highlights the importance of using the UM for future Mars research.
Sam-Erik Walker, Sverre Solberg, Philipp Schneider, and Cristina Guerreiro
Geosci. Model Dev., 16, 573–595, https://doi.org/10.5194/gmd-16-573-2023, https://doi.org/10.5194/gmd-16-573-2023, 2023
Short summary
Short summary
We have developed a statistical model for estimating trends in the daily air quality observations of NO2, O3, PM10 and PM2.5, adjusting for trends and short-term variations in meteorology. The model is general and may also be used for prediction purposes, including forecasting. It has been applied in a recent comprehensive study in Europe. Significant declines are shown for the pollutants from 2005 to 2019, mainly due to reductions in emissions not attributable to changes in meteorology.
Bianca Adler, James M. Wilczak, Jaymes Kenyon, Laura Bianco, Irina V. Djalalova, Joseph B. Olson, and David D. Turner
Geosci. Model Dev., 16, 597–619, https://doi.org/10.5194/gmd-16-597-2023, https://doi.org/10.5194/gmd-16-597-2023, 2023
Short summary
Short summary
Rapid changes in wind speed make the integration of wind energy produced during persistent orographic cold-air pools difficult to integrate into the electrical grid. By evaluating three versions of NOAA’s High-Resolution Rapid Refresh model, we demonstrate how model developments targeted during the second Wind Forecast Improvement Project improve the forecast of a persistent cold-air pool event.
Abhishekh Kumar Srivastava, Paul Aaron Ullrich, Deeksha Rastogi, Pouya Vahmani, Andrew Jones, and Richard Grotjahn
EGUsphere, https://doi.org/10.5194/egusphere-2022-1382, https://doi.org/10.5194/egusphere-2022-1382, 2023
Short summary
Short summary
Stakeholders need high-resolution regional climate data for applications such as assessing water availability, mountain snowpack, etc. This study examines 3- and 24-hr historical precipitation over the contiguous United States in the 12-km WRF version 4.2.1-based dynamical downscaling of the ERA5 reanalysis. WRF improves precipitation characteristics such as the annual cycle and distribution of the precipitation maxima, but it also displays regionally and seasonally varying precipitation biases.
John Douros, Henk Eskes, Jos van Geffen, K. Folkert Boersma, Steven Compernolle, Gaia Pinardi, Anne-Marlene Blechschmidt, Vincent-Henri Peuch, Augustin Colette, and Pepijn Veefkind
Geosci. Model Dev., 16, 509–534, https://doi.org/10.5194/gmd-16-509-2023, https://doi.org/10.5194/gmd-16-509-2023, 2023
Short summary
Short summary
We focus on the challenges associated with comparing atmospheric composition models with satellite products such as tropospheric NO2 columns. The aim is to highlight the methodological difficulties and propose sound ways of doing such comparisons. Building on the comparisons, a new satellite product is proposed and made available, which takes advantage of higher-resolution, regional atmospheric modelling to improve estimates of troposheric NO2 columns over Europe.
Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-253, https://doi.org/10.5194/gmd-2022-253, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an “inline” meteorology-induce emissions coupler module within the US EPA’s CMAQ modeling system, called “Meteorologically-induced anthropogenic Emissions: CMAQ-MetEmis”, to dynamically model the complex MOVES onroad mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
Catalina Poraicu, Jean-François Müller, Trissevgeni Stavrakou, Dominique Fonteyn, Frederik Tack, Felix Deutsch, Quentin Laffineur, Roeland Van Malderen, and Nele Veldeman
Geosci. Model Dev., 16, 479–508, https://doi.org/10.5194/gmd-16-479-2023, https://doi.org/10.5194/gmd-16-479-2023, 2023
Short summary
Short summary
High-resolution WRF-Chem simulations are conducted over Antwerp, Belgium, in June 2019 and evaluated using meteorological data and in situ, airborne, and spaceborne NO2 measurements. An intercomparison of model, aircraft, and TROPOMI NO2 columns is conducted to characterize biases in versions 1.3.1 and 2.3.1 of the satellite product. A mass balance method is implemented to provide improved emissions for simulating NO2 distribution over the study area.
Laurent Menut
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-306, https://doi.org/10.5194/gmd-2022-306, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
This study analyzes the forecast that were made in 2021 to help trigger measurements during the CADDIWA experiment. The WRF-CHIMERE models were run each day and the first goal is to quantify the variability of the forecast as a function of forecast leads and forecast location. The possibility of using the different leads as an ensemble is also tested. For some locations, the correlation scores are better with this approach. This could be tested on operational forecast chains in the future.
Daan R. Scheepens, Irene Schicker, Kateřina Hlaváčková-Schindler, and Claudia Plant
Geosci. Model Dev., 16, 251–270, https://doi.org/10.5194/gmd-16-251-2023, https://doi.org/10.5194/gmd-16-251-2023, 2023
Short summary
Short summary
The production of wind energy is increasing rapidly and relies heavily on atmospheric conditions. To ensure power grid stability, accurate predictions of wind speed are needed, especially in the short range and for extreme wind speed ranges. In this work, we demonstrate the forecasting skills of a data-driven deep learning model with model adaptations to suit higher wind speed ranges. The resulting model can be applied to other data and parameters, too, to improve nowcasting predictions.
Haixia Xiao, Yaqiang Wang, Yu Zheng, Yuanyuan Zheng, Xiaoran Zhuang, Hongyan Wang, and Mei Gao
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-272, https://doi.org/10.5194/gmd-2022-272, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Due to the small-scale and nonstationary nature of convective wind gusts (CGs), reliable CGs nowcasting has remained unattainable. Here, we developed a deep learning model – namely CGsNet – for 0–2 hours of quantitative CGs nowcasting, first achieving minute-kilometer-level forecasts. Based on CGsNet model, the average surface wind speed (ASWS) and peak wind gust speed (PWGS) predictions are obtained. Experiments indicate that CGsNet exhibits higher accuracy than the traditional method.
Peter J. M. Bosman and Maarten C. Krol
Geosci. Model Dev., 16, 47–74, https://doi.org/10.5194/gmd-16-47-2023, https://doi.org/10.5194/gmd-16-47-2023, 2023
Short summary
Short summary
We describe an inverse modelling framework constructed around a simple model for the atmospheric boundary layer. This framework can be fed with various observation types to study the boundary layer and land–atmosphere exchange. With this framework, it is possible to estimate model parameters and the associated uncertainties. Some of these parameters are difficult to obtain directly by observations. An example application for a grassland in the Netherlands is included.
Cited articles
Abdi, D. S., Giraldo, F. X., Constantinescu, E., Lester III, C., Wilcox, L.,
and Warburton, T.: Acceleration of the Implicit-Explicit Non-Hydrostatic
Unified Model of the Atmosphere (NUMA) on Manycore Processors, Int.
J. High Perform. C., 33, 242–267,
https://doi.org/10.1177/1094342017732395, 2017a. a
Ahmad, N. and Lindeman, J.: Euler solutions using flux-based wave
decomposition, Int. J. Numer. Meth. Fl., 54,
47–72, https://doi.org/10.1002/fld.1392, 2007. a, b, c
Balaji, V.: Climbing down Charney's ladder: machine learning and the
post-Dennard era of computational climate science, Philos.
T. Roy. Soc. A, 379, 20200085, https://doi.org/10.1098/rsta.2020.0085, 2021. a
Bao, L., Klöfkorn, R., and Nair, R. D.: Horizontally Explicit and Vertically
Implicit (HEVI) Time Discretization Scheme for a Discontinuous Galerkin
Nonhydrostatic Model, Mon. Weather Rev., 143, 972–990,
https://doi.org/10.1175/MWR-D-14-00083.1, 2015. a
Bassi, F. and Rebay, S.: A high-order discontinuous Galerkin finite element
method solution of the 2d Euler equations, J. Comput. Phys.,
138, 251–285, https://doi.org/10.1006/jcph.1997.5454, 1997. a, b
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A Fresh
Approach to Numerical Computing, SIAM Rev., 59, 65–98,
https://doi.org/10.1137/141000671, 2017. a
Bezanson, J., Chen, J., Chung, B., Karpinski, S., Shah, V. B., Vitek, J., and
Zoubritzky, L.: Julia: Dynamism and Performance Reconciled by Design, Proc.
ACM Program. Lang., 2, 1–23, https://doi.org/10.1145/3276490, 2018. a
Boyd, J. P.: The erfc-log filter and the asymptotics of the Euler and
Vandeven sequence accelerations, edited by: Ilin, A. V. and Scott, L. R., Proceedings
of the Third International Conference on Spectral and High Order Methods,
Houston Journal of Mathematics, 267–276, 1996. a
Brachet, M. E.: Direct simulation of three-dimensional turbulence in the
Taylor-Green vortex, Fluid Dyn. Res., 8, 1–8,
https://doi.org/10.1016/0169-5983(91)90026-f, 1991. a
Brachet, M. E., Meiron, D. I., Orszag, A., Nickel, B. G., Morf, R. H., and
Frisch, U.: Small-scale structure of the Taylor-Green vortex, J.
Fluid Mech., 130, 411–452, https://doi.org/10.1017/S0022112083001159, 1983. a, b
Canuto, V. M.: Compressible turbulence, Astrophys. J., 482, 827–851,
https://doi.org/10.1086/304175, 1997. a
Carpenter, M. H. and Kennedy, C. A.: Fourth-order 2N-storage Runge-Kutta
schemes, Tech. Rep. NASA TM-109112, National Aeronautics and Space
Administration, Langley Research Center, Hampton, VA, 1994. a
Chow, F. K. and Moin, P.: A further study of numerical errors in large-eddy
simulations, J. Comput. Phys., 184, 366–380,
https://doi.org/10.1016/S0021-9991(02)00020-7, 2003. a
Climate Modeling Alliance: ClimateMachine.jl (0.2.0), Zenodo [code], https://doi.org/10.5281/zenodo.5542395, 2020. a, b
Deardorff, J. W.: A numerical study of three-dimensional turbulent channel flow
at large Reynolds numbers, J. Fluid Mech., 41, 452–480,
https://doi.org/10.1017/S0022112070000691, 1970. a, b
Deardorff, J. W.: Three-dimensional numerical study of the height and mean
structure of a heated planetary boundary layer, Bound. Lay. Meteorol.,
7, 81–106, https://doi.org/10.1007/BF00224974, 1974. a
Deardorff, J. W.: Usefulness of liquid-water potential temperature in a
shallow-cloud model, J. Appl. Meteorol., 15, 98–102,
https://doi.org/10.1175/1520-0450(1976)015<0098:UOLWPT>2.0.CO;2, 1976. a
Deardorff, J. W.: Stratocumulus-capped mixed layers derived from a
three-dimensional model, Bound. Lay. Meteorol., 18, 495–527,
https://doi.org/10.1007/BF00119502, 1980. a, b, c
Deville, M. O., Fischer, P. F., and Mund, E. H.: High-order methods for
incompressible fluid flow, Cambridge University Press,
https://doi.org/10.1017/CBO9780511546792, 2002. a
Dipankar, A., Stevens, B., Heinze, R., Moseley, C., Zängl, G., Giorgetta, M.,
and Brdar, S.: Large eddy simulation using the general circulation model
ICON, J. Adv. Model. Earth Sy., 7, 963–986,
https://doi.org/10.1002/2015MS000431, 2015. a
Drikakis, D., Fureby, C., and Youngs, F.: Simulation of transition and
turbulence decay in the Taylor–Green vortex, J. Turbulence, 8,
1–12, https://doi.org/10.1080/14685240701250289, 2007. a
Durran, D. and Klemp, J.: A compressible model for the simulation of moist
mountain waves, Mon. Weather Rev., 111, 2341–2361,
https://doi.org/10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2, 1983. a
Toro, E. F., Spruce, M., and Speares, W.: Restoration of the Contact
Surface in the HLL–Riemann Solver, Shock Waves, 4, 25–34,
https://doi.org/10.1007/BF01414629, 1994. a
Fuhrer, O., Osuna, C., Lapillonne, X., Gysi, T., Cumming, B., Bianco, M.,
Arteaga, A., and Schulthess, T. C.: Towards a performance portable,
architecture agnostic implementation strategy for weather and climate models,
Supercomput. Front. Inn., 1, 45–62,
https://doi.org/10.14529/jsfi140103, 2014. a
Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Lüthi, D., Osuna, C., Schär, C., Schulthess, T. C., and Vogt, H.: Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0, Geosci. Model Dev., 11, 1665–1681, https://doi.org/10.5194/gmd-11-1665-2018, 2018. a
Gal-Chen, T. and Somerville, R.: Numerical solution of the Navier-Stokes
equations with topography, J. Comput. Phys., 17, 276–310,
https://doi.org/10.1016/0021-9991(75)90054-6, 1975. a
Ghosal, S.: An Analysis of Numerical Errors in Large-Eddy Simulations of
Turbulence, J. Comput. Phys., 125, 187–206,
https://doi.org/10.1006/jcph.1996.0088, 1996. a
Giraldo, F. X.: An Introduction to Element-based Galerkin Methods on
Tensor-Product Bases: Analysis, Algorithms, and Applications, Springer,
https://doi.org/10.1007/978-3-030-55069-1, 2020. a
Giraldo, F. X. and Restelli, M.: A study of spectral element and
discontinuous Galerkin methods for the Navier-Stokes equations in
nonhydrostatic mesoscale atmospheric modeling: Equation sets and test
cases, J. Comput. Phys., 227, 3849–3877,
https://doi.org/10.1016/j.jcp.2007.12.009, 2008. a, b, c, d, e, f, g, h
Giraldo, F. X., Hesthaven, J. S., and Warburton, T.: Nodal high-order
discontinuous Galerkin methods for spherical shallow water equations, J.
Comput. Phys., 181, 499–525, https://doi.org/10.1006/jcph.2002.7139, 2002. a
Giraldo, F. X., Kelly, J. F., and Constantinescu, E. M.: Implicit-explicit
formulations of a three-dimensional nonhydrostatic unified model of the
atmosphere (NUMA), SIAM J. Sci. Comput., 35, B1162–B1194,
https://doi.org/10.1137/120876034, 2013. a
Harten, A.: High resolution schemes for hyperbolic conservation laws, J.
Comput. Phys., 49, 357–393, https://doi.org/10.1016/0021-9991(83)90136-5, 1983. a
Hesthaven, J. and Warburton, T.: Nodal discontinuous Galerkin method,
Algorithms, analysis and applications, Springer,
https://doi.org/10.1007/978-0-387-72067-8, 2008a. a
Hesthaven, J. S. and Warburton, T.: Nodal discontinuous Galerkin methods:
algorithms, analysis, and applications, vol. 54, Springer-Verlag New York
Inc, https://doi.org/10.1007/978-0-387-72067-8, 2008b. a, b
Holland, J. Z. and Rasmusson, E. M.: Measurements of the atmospheric mass,
energy, and momentum budgets over a 500-kilometer square of tropical ocean,
Mon. Weather Rev, 101, 44–57,
https://doi.org/10.1175/1520-0493(1973)101<0044:MOTAME>2.3.CO;2, 1973. a
Hunt, J. C. R., Wray, A., and Moin, P.: Eddies, stream, and convergence zones
in turbulent flows, Tech. Rep. CTR-S88, Center for Turbulence Research Report
CTR-S88, Stanford University, 1988. a
Jähn, M., Knoth, O., König, M., and Vogelsberg, U.: ASAM v2.7: a compressible atmospheric model with a Cartesian cut cell approach, Geosci. Model Dev., 8, 317–340, https://doi.org/10.5194/gmd-8-317-2015, 2015. a
Karniadakis, G. and Sherwin, S.: Spectral/hp element methods for CFD,
Oxford University Press, https://doi.org/10.1093/acprof:oso/9780198528692.001.0001,
1999. a
Kelly, J. F. and Giraldo, F. X.: Continuous and discontinuous Galerkin
methods for a scalable three-dimensional nonhydrostatic atmospheric model:
limited-area mode, J. Comput. Phys., 231, 7988–8008,
https://doi.org/10.1016/j.jcp.2012.04.042, 2012. a, b
Kennedy, C. A. and Carpenter, M. H.: Higher-order additive Runge–Kutta schemes
for ordinary differential equations, Appl. Numer. Math., 136,
183–205, https://doi.org/10.1016/j.apnum.2018.10.007, 2019. a
Kopriva, D. A.: Implementing spectral methods for partial differential
equations: Algorithms for scientists and engineers, Springer Science &
Business Media, https://doi.org/10.1007/978-90-481-2261-5, 2009. a
Kurowski, M., Grabowski, W. W., and Smolarkiewicz, P. K.: Anelastic and
compressible simulation of moist deep convection, J. Atmos.
Sci., 71, 3767–3787, https://doi.org/10.1175/JAS-D-14-0017.1, 2014. a
Light, D. and Durran, D.: Preserving Nonnegativity in Discontinuous Galerkin
Approximations to Scalar Transport via Truncation and Mass Aware Rescaling
(TMAR), Mon. Weather Rev., 144, 4771–4786,
https://doi.org/10.1175/MWR-D-16-0220.1, 2016. a
Lilly, D. K.: On the numerical simulation of buoyant convection, Tellus, 14,
148–172, https://doi.org/10.3402/tellusa.v14i2.9537, 1962. a, b
Lilly, D. K.: On the application of the eddy viscosity concept in the inertial
sub-range of turbulence, NCAR manuscript, 123, https://doi.org/10.5065/D67H1GGQ, 1966. a
Lin, W.-C. and McIntosh-Smith, S.: Comparing Julia to Performance Portable
Parallel Programming Models for HPC, in: 2021 International Workshop on
Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS), 94–105, https://doi.org/10.1109/PMBS54543.2021.00016,
2021. a
Marras, S. and Giraldo, F. X.: A parameter-free dynamic alternative to
hyper-viscosity for coupled transport equations: application to the
simulation of 3D squall lines using spectral elements, J. Comput. Phys.,
283, 360–373, https://doi.org/10.1016/j.jcp.2014.11.046, 2015. a
Marras, S., Kelly, J. F., Giraldo, F. X., and Vázquez, M.:
Variational multiscale stabilization of high-order spectral elements for the
advection-diffusion equation, J. Comput. Phys., 231, 7187–7213, 2012. a
Marras, S., Kelly, J. F., Moragues, M., Müller, A., Kopera, M. A., Vázquez,
M., Giraldo, F. X., Houzeaux, G., and Jorba, O.: A Variational Multiscale
Stabilized Finite Element Method for the Solution of the Euler Equations
of Nonhydrostatic Stratified Flows, Arch. Comput. Methods Eng., 23, 673–722,
https://doi.org/10.1016/j.jcp.2012.10.056, 2015. a
Mason, P. J. and Callen, N. S.: On the magnitude of the subgrid-scale eddy
coefficient in large-eddy simulations of turbulent channel flow, J.
Fluid Mech., 162, 439–462, https://doi.org/10.1017/S0022112086002112, 1986. a
Matheou, G.: Numerical discretization and subgrid-scale model effects on
large-eddy simulations of a stable boundary layer, Q. J. Roy. Meteor. Soc.,
142, 3050–3062, 2016. a
Matheou, G. and Teixeira, J.: Sensitivity to Physical and Numerical Aspects of
Large-Eddy Simulation of Stratocumulus, Mon. Weather Rev., 147,
2621–2639, 2019. a
Matheou, G., Chung, D., Nuijens, L., Stevens, B., and Teixeira, J.: On the
fidelity of large-eddy simulation of shallow precipitating cumulus
convection, Mon. Weather. Rev., 139, 2918–2939, https://doi.org/10.1175/2011MWR3599.1,
2011. a
Mellado, J.: Cloud-Top Entrainment in Stratocumulus Clouds, Annu. Rev.
Fluid Mech., 49, 145–169, 2017. a
Mellado, J. P., Bretherton, C. S., Stevens, B., and Wyant, M. C.: DNS and
LES for Simulating Stratocumulus: Better Together, J. Adv.
Model. Earth Sy., 10, 1421–1438, https://doi.org/10.1029/2018MS001312, 2018. a
Moeng, C., McWilliams, J., Rotunno, R., Sullivan, P., and Weil, J.:
Investigating 2D modelling of atmospheric convection in the PBL, J. Atmos.
Sci., 61, 889–903, 2003. a
Moeng, C. H.: A Large-Eddy simulation model for the study of planetary
boundary-layer turbulence, J. Atmos. Sci., 41, 2052–2062, 1984. a
Moeng, C. H. and Wyngaard, J. C.: Spectral analysis of large-eddy simulations
of the convective boundary layer, J. Atmos. Sci., 45,
3573–3587, 1988. a
Müller, A., Kopera, M., Marras, S., Wilcox, L., Isaac, T., and Giraldo, F.:
Strong scaling for numerical weather prediction at petascale with the
atmospheric model NUMA, Int. J. High Perform. C., 33, 411–426, https://doi.org/10.1177/1094342018763966, 2018. a
Niegemann, J., Diehl, R., and Busch, K.: Efficient low-storage Runge–Kutta
schemes with optimized stability regions, J. Comput. Phys.,
231, 364–372, https://doi.org/10.1016/j.jcp.2011.09.003, 2012. a, b
Palmer, T.: Climate forecasting: build high-resolution global climate models,
Nature, 515, 338–339, https://doi.org/10.1038/515338a, 2014. a
Pressel, K. G., Kaul, C. M., Schneider, T., Tan, Z., and Mishra, S.: Large-eddy
simulation in an anelastic framework with closed water and entropy balances,
J. Adv. Model. Earth Sy., 7, 1425–1456,
https://doi.org/10.1002/2015MS000496, 2015. a, b, c, d
Pressel, K. G., Mishra, S., Schneider, T., Kaul, C. M., and Tan, Z.: Numerics
and Subgrid-Scale Modeling in Large Eddy Simulations of Stratocumulus Clouds,
J. Adv. Model. Earth Sy., 9, 1342–1365,
https://doi.org/10.1002/2016MS000778, 2017. a
Raymond, D. J.: Sources and sinks of entropy in the atmosphere, J.
Adv. Model. Earth Sy., 5, 755–763, 2013. a
Reddy, S., Tissaoui, Y., De Bragan ça Alves, F., Marras, S., and Giraldo,
F.: Comparison of Sub-Grid Scale Models for Large-Eddy Simulation Using a
High-Order Spectral Element Approximation of the Compressible Navier-Stokes
Equations at Low Mach Number, J. Comput. Phys.,
https://doi.org/10.13140/RG.2.2.17576.90885, in review, 2022. a
Roe, P.: Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes, J. Comput. Phys., 43, 357–372,
https://doi.org/10.1016/0021-9991(81)90128-5, 1981. a
Romps, D. M.: The dry-entropy budget of a moist atmosphere, J. Atmos. Sci., 65,
3779–3799, https://doi.org/10.1175/2008JAS2679.1, 2008. a, b, c, d
Rusanov, V.: Calculation of Interaction of Non–Steady Shock Waves with
obstacles, USSR Comp. Math. Math., 1,
267–279, https://doi.org/10.1016/0041-5553(62)90062-9, 1961. a
Savic-Jovcic, V. and Stevens, B.: The structure and mesoscale organization of
precipitating stratocumulus, J. Atmos. Sci., 65, 1587–1605,
https://doi.org/10.1175/2007JAS2456.1, 2008. a
Schalkwijk, J., Griffith, E., Post, H., and Jonker, H. J. J.: High performance
simulations of turbulent clouds on a desktop PC: Exploiting the GPU,
B. Am. Meteorol. Soc., 93, 307–314,
https://doi.org/10.1175/BAMS-D-11-00059.1, 2012. a, b
Schalkwijk, J., Jonker, H., Siebesma, A., and Bosveld, F.: A year-long
Large-Eddy Simulation of the weather over Cabauw: an overview, Mon.
Weather Rev., 143, 828–844, https://doi.org/10.1175/MWR-D-14-00293.1, 2015. a, b
Schär, C., Leuenberger, D., Fuhrer, O., Luthic, D., and Girard, C.:
A new terrain-following vertical coordinate formulation for atmospheric
prediction models, Mon. Weather Rev., 130, 2459–2480,
https://doi.org/10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2, 2002. a, b, c
Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di Girolamo, S.,
Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D., Osterried, K.,
Panosetti, D., Rüdisühli, S., Schlemmer, L., Schulthess, T. C., Sprenger,
M., Ubbiali, S., and Wernli, H.: Kilometer-Scale Climate Models: Prospects
and Challenges, B. Am. Meteorol. Soc., 101,
E567–E587, https://doi.org/10.1175/BAMS-D-18-0167.1, 2020. a
Schneider, T., Kaul, C., and Pressel, K.: Possible climate transitions from
breakup of stratocumulus decks under greenhouse warming, Nat. Geosci.,
12, 163–167, https://doi.org/10.1038/s41561-019-0310-1, 2019. a
Shi, X., Chow, F. K., Street, R. L., and Bryan, G. H.: An Evaluation of LES
Turbulence Models for Scalar Mixing in the Stratocumulus-Capped Boundary
Layer, J. Atmos. Sci., 75, 1499–1507,
https://doi.org/10.1175/JAS-D-17-0392.1, 2018. a
Shu, C.-W. and Osher, S.: Efficient implementation of essentially
non-oscillatory shock-capturing schemes, J. Comput. Phys.,
77, 439–471, https://doi.org/10.1016/0021-9991(88)90177-5, 1988. a
Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J.,
Duynkerke, P. G., Jiang, H., Khairoutdinov, M., Lewellen, D., Moeng, C.-H.,
Sanchez, E., Stevens, B., and Stevens, D. E.: A large eddy simulation intercomparison study of shallow cumulus
convection, J. Atmos. Sci., 60, 1201–1219,
https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2, 2003. a, b, c, d, e
Smagorinsky, J.: General Circulation Experiments with the Primitive
Equations: I. The basic experiement, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a, b
Smith, R.: Linear theory of stratified hydrostatic flow past an isolated
mountain, Tellus, 32, 348–364, https://doi.org/10.3402/tellusa.v32i4.10590, 1980. a
Smith, R. B.: The influence of mountains on the atmosphere, Adv.
Geophys., 21, 87–230, https://doi.org/10.1016/S0065-2687(08)60262-9,
1979. a
Stevens, B., Lenschow, D. H., Vali, G., Gerber, H., Bandy, A., Blomquist, B.,
Brenguier, J.-L., Bretherton, C. S., Burnet, F., Campos, T., Chai, S.,
Faloona, I., Friesen, D., Haimov, S., Laursen, K., Lilly, D. K., Loehrer, S. M., Malinowski, S. P.,
Morley, B., Petters, M. D., Rogers, D. C., Russell, L., Savic-Jovcic, V., Snider, J. R., Straub, D., Szumowski, M. J.,
Takagi, H., Thornton, D. C., Tschudi, M., Twohy, C., Wetzel, M., and van Zanten, M. C.: Dynamics and chemistry of marine
stratocumulus–DYCOMS-II, B. Am. Meteorol. Soc., 84, 579–593,
https://doi.org/10.1175/BAMS-84-5-579, 2003.
a
Stevens, B., Moeng, C.-H., Ackerman, A. S., Bretherton, C. S., Chlond, A., de
Roode, S., Edwards, J., Golaz, J.-C., Jiang, H., Khairoutdinov, M.,
Kirkpatrick, M. O., Lewellen, D. C., Lock, A., Müller, F., Stevens,
D. E., Whelan, E., and Zhu, P.: Evaluation of Large-Eddy Simulations via
Observations of Nocturnal Marine Stratocumulus, Mon. Weather Rev., 133,
1443–1462, https://doi.org/10.1175/MWR2930.1, 2005. a, b, c, d
Straka, J., Wilhelmson, R., Wicker, L., Anderson, J., and
Droegemeier, K.: Numerical solution of a nonlinear density current: a
benchmark solution and comparisons, Int. J. Numer.
Meth. Fl., 17, 1–22, https://doi.org/10.1002/fld.1650170103,
1993. a, b, c
Sullivan, P., McWilliams, J., and Moeng, C.: A subgrid-scale model for
large-eddy simulation of planetary boundary-layer flows, Bound.-Lay.
Meteorol., 71, 247–276, https://doi.org/10.1007/BF00713741, 1994. a
Tao, W.-K., Simpson, J., and McCumber, M.: An Ice-Water Saturation Adjustment,
Mon. Weather Rev., 117, 231–235, 1989. a
Vandeven, H.: Family of spectral filters for discontinuous problems, J.
Sci. Comput., 6, 159–192, https://doi.org/10.1007/BF01062118, 1991. a
Vreman, A.: An eddy-viscosity subgrid-scale model for turbulent shear flow:
algebraic theory and applications, Phys. Fluid., 16, 3670–3681,
https://doi.org/10.1063/1.1785131, 2004. a
Yamaguchi, T. and Feingold, G.: Technical note: Large-eddy simulation of cloudy
boundary layer with the Advanced Research WRF model, J. Adv. Model. Earth
Sy., 4, M09003, https://doi.org/10.1029/2012MS000164, 2012. a
Yu, M. L., Giraldo, F. X., Peng, M., and Wang, Z. J.: Localized Artificial
Viscosity Stabilization of Discontinuous Galerkin Methods for Nonhydrostatic
Mesoscale Atmospheric Modeling, Mon. Weather Rev., 143, 4823–4845,
https://doi.org/10.1175/MWR-D-15-0134.1, 2015. a
Short summary
ClimateMachine is a new open-source Julia-language atmospheric modeling code. We describe its limited-area configuration and the model equations, and we demonstrate applicability through benchmark problems, including atmospheric flow in the shallow cumulus regime. We show that the discontinuous Galerkin numerics and model equations allow global conservation of key variables (up to sources and sinks). We assess CPU strong scaling and GPU weak scaling to show its suitability for large simulations.
ClimateMachine is a new open-source Julia-language atmospheric modeling code. We describe its...