Articles | Volume 15, issue 15
https://doi.org/10.5194/gmd-15-6059-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-6059-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A daily highest air temperature estimation method and spatial–temporal changes analysis of high temperature in China from 1979 to 2018
Ping Wang
School of Physics and Electronic-Engineering, Ningxia University,
Yinchuan 750021, China
School of Surveying and Geo-Informatics, Shandong Jianzhu University,
Jinan 250100, China
Institute of agricultural resources and regional planning, Chinese
Academy of Agricultural Sciences, Beijing 100081, China
Fei Meng
School of Surveying and Geo-Informatics, Shandong Jianzhu University,
Jinan 250100, China
Zhihao Qin
Institute of agricultural resources and regional planning, Chinese
Academy of Agricultural Sciences, Beijing 100081, China
School of Earth Sciences and Resources, China University of
Geosciences, Beijing 100083, China
Sayed M. Bateni
Department of Civil and Environmental Engineering and Water Resources
Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
Related authors
Shu Fang, Kebiao Mao, Xueqi Xia, Ping Wang, Jiancheng Shi, Sayed M. Bateni, Tongren Xu, Mengmeng Cao, Essam Heggy, and Zhihao Qin
Earth Syst. Sci. Data, 14, 1413–1432, https://doi.org/10.5194/essd-14-1413-2022, https://doi.org/10.5194/essd-14-1413-2022, 2022
Short summary
Short summary
Air temperature is an important parameter reflecting climate change, and the current method of obtaining daily temperature is affected by many factors. In this study, we constructed a temperature model based on weather conditions and established a correction equation. The dataset of daily air temperature (Tmax, Tmin, and Tavg) in China from 1979 to 2018 was obtained with a spatial resolution of 0.1°. Accuracy verification shows that the dataset has reliable accuracy and high spatial resolution.
Mengmeng Cao, Kebiao Mao, Yibo Yan, Sayed Bateni, and Zhonghua Guo
EGUsphere, https://doi.org/10.5194/egusphere-2025-239, https://doi.org/10.5194/egusphere-2025-239, 2025
Short summary
Short summary
We proposed a novel SST prediction model based on granular computing and a data-knowledge-driven ConvLSTM framework. Validation against observations and cross-comparisons with baseline models demonstrate that our approach generates consistent and more accurate regional SST predictions, making it highly promising for medium- and long-term monthly SST forecasts.
Jungho Seo, Mahdi Panahi, Ji Hyun Kim, Sayed M. Bateni, and Yeonjoo Kim
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-349, https://doi.org/10.5194/essd-2024-349, 2025
Manuscript not accepted for further review
Short summary
Short summary
This study introduces a machine learning-based daily global gridded snow water equivalent (SWE) product (SWEML) at 0.25° from 1980 to 2020. Comparison of SWEML to other global SWE datasets showed that SWEML exhibited high accuracy, especially in mountainous and high-elevation areas, such as the Rocky Mountains in the US. In addition, SWEML effectively depicted snow accumulation during winters and snow melting during springs.
Shu Fang, Kebiao Mao, Xueqi Xia, Ping Wang, Jiancheng Shi, Sayed M. Bateni, Tongren Xu, Mengmeng Cao, Essam Heggy, and Zhihao Qin
Earth Syst. Sci. Data, 14, 1413–1432, https://doi.org/10.5194/essd-14-1413-2022, https://doi.org/10.5194/essd-14-1413-2022, 2022
Short summary
Short summary
Air temperature is an important parameter reflecting climate change, and the current method of obtaining daily temperature is affected by many factors. In this study, we constructed a temperature model based on weather conditions and established a correction equation. The dataset of daily air temperature (Tmax, Tmin, and Tavg) in China from 1979 to 2018 was obtained with a spatial resolution of 0.1°. Accuracy verification shows that the dataset has reliable accuracy and high spatial resolution.
Xiangjin Meng, Kebiao Mao, Fei Meng, Jiancheng Shi, Jiangyuan Zeng, Xinyi Shen, Yaokui Cui, Lingmei Jiang, and Zhonghua Guo
Earth Syst. Sci. Data, 13, 3239–3261, https://doi.org/10.5194/essd-13-3239-2021, https://doi.org/10.5194/essd-13-3239-2021, 2021
Short summary
Short summary
In order to improve the accuracy of China's regional agricultural drought monitoring and climate change research, we produced a long-term series of soil moisture products by constructing a time and depth correction model for three soil moisture products with the help of ground observation data. The spatial resolution is improved by building a spatial weight decomposition model, and validation indicates that the new product can meet application needs.
Mengmeng Cao, Kebiao Mao, Yibo Yan, Jiancheng Shi, Han Wang, Tongren Xu, Shu Fang, and Zijin Yuan
Earth Syst. Sci. Data, 13, 2111–2134, https://doi.org/10.5194/essd-13-2111-2021, https://doi.org/10.5194/essd-13-2111-2021, 2021
Short summary
Short summary
We constructed a temperature depth and observation time correction model to eliminate the sampling depth and temporal differences among different data. Then, we proposed a reconstructed spatial model that filters and removes missing pixels and low-quality pixels contaminated by clouds from raw SST images and retrieves real sea surface temperatures under cloud coverage based on multisource data to generate a high-quality unified global SST product with long-term spatiotemporal continuity.
Bing Zhao, Kebiao Mao, Yulin Cai, Jiancheng Shi, Zhaoliang Li, Zhihao Qin, Xiangjin Meng, Xinyi Shen, and Zhonghua Guo
Earth Syst. Sci. Data, 12, 2555–2577, https://doi.org/10.5194/essd-12-2555-2020, https://doi.org/10.5194/essd-12-2555-2020, 2020
Short summary
Short summary
Land surface temperature is a key variable for climate and ecological environment research. We reconstructed a land surface temperature dataset (2003–2017) to take advantage of the ground observation site through building a reconstruction model which overcomes the effects of cloud. The reconstructed dataset exhibited significant improvements and can be used for the spatiotemporal evaluation of land surface temperature and for high-temperature and drought-monitoring studies.
Cited articles
Abdullah, A. M., Ismail, M., Yuen, F. S., Abdullah, S., and Elhadi, R. E.:
The Relationship between Daily Maximum Temperature and Daily Maximum Ground
Level Ozone Concentration, Pol. J. Environ. Stud., 26,
517–523, https://doi.org/10.15244/pjoes/65366, 2017.
Basu, R.: High ambient temperature and mortality: a review of epidemiologic
studies from 2001 to 2008, Environ. Health, 8, 1–13, https://doi.org/10.1186/1476-069X-8-40, 2009.
Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N., and Santos, A.:
Estimating air surface temperature in Portugal using MODIS LST data,
Remote Sens. Environ., 124, 108–121, https://doi.org/10.1016/j.rse.2012.04.024, 2012.
CMA National Meteorological Information Center: China Surface Climatic Data Daily Dataset [data set], http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html, last access: 9 December 2020a.
CMA National Meteorological Information Center: Hourly Ta observation data [data set], available at: http://data.cma.cn/data/cdcdetail/dataCode/A.0012.0001.html, last access: 9 December 2020b.
Ding, Z. Y., Wang, Y. Y., and Lu, R. J.: An analysis of changes in
temperature extremes in the Three River Headwaters region of the Tibetan
Plateau during 1961–2016, Atmos. Res., 209, 103–114, https://doi.org/10.1016/j.atmosres.2018.04.003, 2018.
Du, Q. Q., Zhang, M. J., Wang, S. J., Che, C. W., Ma, R., and Ma, Z. Z.:
Changes in air temperature over China in response to the recent global
warming hiatus, J. Geogr. Sci., 29, 496–516, https://doi.org/10.1007/s11442-019-1612-3, 2019.
Ephrath, J. E., Goudriaan, J., and Marani, A.: Modelling diurnal patterns of
air temperature, radiation wind speed and relative humidity by equations
from daily characteristics, Agr. Syst., 51, 377–393, https://doi.org/10.1016/0308-521X(95)00068-G, 1996.
Evrendilek, F., Karakaya, N., Gungor, K., and Aslan, G.: Satellite-based and
mesoscale regression modeling of monthly air and soil temperatures over
complex terrain in Turkey, Expert Syst. Appl., 39, 2059–2066,
https://doi.org/10.1016/j.eswa.2011.08.023, 2012.
Fabiola, F. P. and Mario, L. S.: Simple air temperature estimation method
from MODIS satellite images on a regional scale,
Chil. J. Agr. Res., 70, 436–445, https://doi.org/10.4067/S0718-58392010000300011, 2010.
Gasparrini, A. and Armstrong, B.: The impact of heat waves on mortality,
Epidemiology, 22, 68–73, https://doi.org/10.1097/EDE.0b013e3181fdcd99, 2011.
Gu, H. H., Yu, Z. B., Peltier, W. R., and Wang, X. Y.: Sensitivity studies
and comprehensive evaluation of RegCM4. 6.1 high-resolution climate
simulations over the Tibetan Plateau, Clim. Dynam., 54, 3781–3801,
https://doi.org/10.1007/s00382-020-05205-6, 2020.
Guan, Y. H., Zhang, X. C., Zheng, F. L., and Wang, B.: Trends and
variability of daily temperature extremes during 1960–2012 in the Yangtze
River Basin, China, Global Planet. Change, 124, 79–94, https://doi.org/10.1016/j.gloplacha.2014.11.008, 2015.
He, J., Yang, K., Tang, W. J., Lu, H., Qin, J., Chen, Y. Y., and Li, X.: The
first high-resolution meteorological forcing dataset for land process
studies over China, Sci. Data 7, 1–11, https://doi.org/10.1038/s41597-020-0369-y, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmon, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hoffmann, L., Günther, G., Li, D., Stein, O., Wu, X., Griessbach, S., Heng, Y., Konopka, P., Müller, R., Vogel, B., and Wright, J. S.: From ERA-Interim to ERA5: the considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations, Atmos. Chem. Phys., 19, 3097–3124, https://doi.org/10.5194/acp-19-3097-2019, 2019.
Hong, Y. and Ying, S.: Characteristics of extreme temperature and
precipitation in China in 2017 based on ETCCDI indices,
Advances in Climate Change Research, 9, 218–226, https://doi.org/10.1016/j.accre.2019.01.001, 2018.
IPCC: Weather and Climate Extreme Events in a Changing Climate, Cambridge
University Press, Cambridge, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter11.pdf (last access: 19 May 2022), 2021.
Johnson, M. E. and Fitzpatrick, E. A.: A comparison of two methods of
estimating a mean diurnal temperature curve during the daylight hours,
Arch. Meteor. Geophy. B, 25,
251–263, https://doi.org/10.1007/BF02243056, 1977.
Khan, N., Shahid, S., Ismail, T. B., and Wang, X. J.: Spatial distribution
of unidirectional trends in temperature and temperature extremes in
Pakistan, Theor. Appl. Climatol., 136, 899–913, https://doi.org/10.1007/s00704-018-2520-7, 2018.
Kleinert, F., Leufen, L. H., and Schultz, M. G.: IntelliO3-ts v1.0: a neural network approach to predict near-surface ozone concentrations in Germany, Geosci. Model Dev., 14, 1–25, https://doi.org/10.5194/gmd-14-1-2021, 2021.
Li, L. C., Yao, N., Li, Y., Liu, D. L., Wang, B., and Ayantobo, O. O.:
Future projections of extreme temperature events in different sub-regions of
China, Atmos. Res., 217, 150–164, https://doi.org/10.1016/j.atmosres.2018.10.019, 2019.
Li, Q. X., Yang, S., Xu, W. H., Wang, X. L., Jones, P., Parker, D., Zhou, L.
M., Feng, Y., and Gao, Y.: China experiencing the recent warming hiatus,
Geophys. Res. Lett., 42, 889–898, https://doi.org/10.1002/2014GL062773, 2015.
Li, Y. L., Han, W. Q., Zhang, L., and Wang, F.: Decadal SST variability in
the southeast Indian Ocean and its impact on regional climate,
J.
Climate, 32, 6299–6318, https://doi.org/10.1175/JCLI-D-19-0180.1, 2019.
Lin, S. P., Moore, N. J., Messina, J. P., DeVisser, M. H., and Wu, J. P.:
Evaluation of estimating daily maximum and minimum air temperature with
MODIS data in east Africa, International
Journal of Applied Earth Observation and Geoinformation, 18, 128–140, https://doi.org/10.1016/j.jag.2012.01.004, 2012.
Luan, J. K., Zhang, Y. Q., Tian, J., Meresa, H. K., and Liu, D. F.: Coal
mining impacts on catchment runoff, J. Hydrol., 589, 125101,
https://doi.org/10.1016/j.jhydrol.2020.125101, 2020.
McGree, S., Herold, N., Alexander, L., Schreider, S., Kuleshov, Y., Ene, E.,
Finaulahi, S., Inape, K., Mackenzie, B., Malala, H., Ngari, A., Prakash, B.,
and Tahani, L.: Recent changes in mean and extreme temperature and
precipitation in the Western Pacific Islands, J. Climate, 32,
4919–4941, https://doi.org/10.1175/JCLI-D-18-0748.1, 2019.
National Climate Center of CMA: IOBW index [data set], http://cmdp.ncc-cma.net/download/precipitation/diagnosis/IOBW/iobw-mon-history.tms, last access: 1 April 2021.
National Oceanic and Atmospheric Administration of the United States: NAO index [data set], https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/norm.nao.monthly.b5001.current.ascii.table, last access: 1 April 2021a.
National Oceanic and Atmospheric Administration of the United States: NINO3.4 index [data set], https://www.cpc.ncep.noaa.gov/data/indices/ersst5.nino.mth.91-20.ascii, last access: 1 April 2021b.
Ninyerola, M., Pons, X., and Roure, J. M.: A methodological approach of
climatological modelling of air temperature and precipitation through GIS
techniques, Int. J. Climatol., 20, 1823–1841, https://doi.org/10.1002/1097-0088(20001130)20:14<1823::AID-JOC566>3.0.CO;2-B, 2000.
Parton, W. J. and Logan, J. A.: A model for diurnal variation in soil and
air temperature, Agr. Meteorol., 23, 205–216, https://doi.org/10.1016/0002-1571(81)90105-9, 1981.
Poudel, A., Cuo, L., Ding, J., and Gyawali, A. R.: Spatio-temporal
variability of the annual and monthly extreme temperature indices in Nepal,
Int. J. Climatol., 40, 4956–4977, https://doi.org/10.1002/joc.6499, 2020.
Ruml, M., Gregoriæ, E., Vujadinoviæ, M., Radovanoviæ, S.,
Matoviæ, G., Vukoviæ, A., Poèuèa, V., and Stojièiæ,
D.: Observed changes of temperature extremes in Serbia over the period 1961–2010, Atmos. Res., 183, 26–41, https://doi.org/10.1016/j.atmosres.2016.08.013, 2017.
Salman, S. A., Shahid, S., Ismail, T., Chung, E.-S., and Al-Abadi, A. M.:
Long-term trends in daily temperature extremes in Iraq, Atmos. Res., 198, 97–107, https://doi.org/10.1016/j.atmosres.2017.08.011, 2017.
Sathaye, J. A., Dale, L. L., Larsen, P. H., Fitts, G. A., Koy, K., Lewis, S.
M., and de Lucena, A. F. P.: Estimating impacts of warming temperatures on
California's electricity system, Global Environ. Chang., 23, 499–511,
https://doi.org/10.1016/j.gloenvcha.2012.12.005, 2013.
Seenu, P. Z. and Jayakumar, K. V.: Comparative study of innovative trend
analysis technique with Mann-Kendall tests for extreme rainfall,
Arab. J. Geosci., 14, 1–15, https://doi.org/10.1007/s12517-021-06906-w, 2021.
Sehra, S. T., Salciccioli, J. D., Wiebe, D. J., Fundin, S., and Baker, J.
F.: Maximum daily temperature, precipitation, ultraviolet light, and rates
of transmission of severe acute respiratory syndrome coronavirus 2 in the
United States, Clin. Infect. Dis., 71, 2482–2487, https://doi.org/10.1093/cid/ciaa681, 2020.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.2307/2285891 1968.
Shen, S. H. and Leptoukh, G. G.: Estimation of surface air temperature over
central and eastern Eurasia from MODIS land surface temperature,
Environ. Res. Lett., 6, 045206, https://doi.org/10.1088/1748-9326/6/4/045206 2011.
Shi, J., Cui, L. L., Wang, J. B., Du, H. Q., and Wen, K. M.: Changes in the
temperature and precipitation extremes in China during 1961–2015,
Quatern. Int., 527, 64–78, https://doi.org/10.1016/j.quaint.2018.08.008, 2019.
Sun, W. Y., Mu, X. M., Song, X. Y., Wu, D., Cheng, A. F., and Qiu, B.:
Changes in extreme temperature and precipitation events in the Loess Plateau
(China) during 1960–2013 under global warming, Atmos. Res., 168,
33–48, https://doi.org/10.1016/j.atmosres.2015.09.001, 2016.
Sun, Y. J., Wang, J. F., Zhang, R. H., Gillies, R. R., Xue, Y., and Bo, Y.
C.: Air temperature retrieval from remote sensing data based on
thermodynamics, Theor. Appl. Climatol., 80, 37–48, https://doi.org/10.1007/s00704-004-0079-y, 2005.
Tan, M. L., Samat, N., Chan, N. W., Lee, A. J., and Li, C.: Analysis of
Precipitation and Temperature Extremes over the Muda River Basin, Malaysia,
Water, 11, 1–16, https://doi.org/10.3390/w11020283, 2019.
Tong, S. Q., Li, X. Q., Zhang, J. Q., Bao, Y. H., Bao, Y. B., Na, L., and
Si, A. L.: Spatial and temporal variability in extreme temperature and
precipitation events in Inner Mongolia (China) during 1960–2017, Sci.
Total Environ., 649, 75–89, https://doi.org/10.1016/j.scitotenv.2018.08.262, 2019.
Urraca, R., Huld, T., Gracia-Amillo, A., Martinez-de-Pison, F. J., Kaspar,
F., and Sanz-Garcia, A.: Evaluation of global horizontal irradiance
estimates from ERA5 and COSMO-REA6 reanalyses using ground and
satellite-based data, Sol. Energy, 164, 339–354, https://doi.org/10.1016/j.solener.2018.02.059, 2018.
Wang, P., Mao, K., Meng, F., Qin, Z., Fang, S., Bateni, S. M., and Almazroui, M.: A Daily Highest Air Temperature dataset in China from 1979 to 2018, Zenodo [data set],
https://doi.org/10.5281/zenodo.6322881, 2021.
Wang, X. X., Jiang, D. B., and Lang, X. M.: Extreme temperature and
precipitation changes associated with four degree of global warming above
pre-industrial levels, Int. J. Climatol., 39, 1822–1838,
https://doi.org/10.1002/joc.5918, 2019.
Wang, Y., Peng, D. L., Shen, M. G., Xu, X. Y., Yang, X. H., Huang, W. J.,
Yu, L., Liu, L. Y., Li, C. J., and Li, X. W.: Contrasting Effects of
Temperature and Precipitation on Vegetation Greenness along Elevation
Gradients of the Tibetan Plateau, Remote Sensing, 12, 2751, https://doi.org/10.3390/rs12172751, 2020.
Wloczyk, C., Borg, E., Richter, R., and Miegel, K.: Estimation of
instantaneous air temperature above vegetation and soil surfaces from
Landsat 7 ETM+ data in northern Germany, Int. J. Remote
Sens., 32, 9119–9136, https://doi.org/10.1080/01431161.2010.550332, 2011.
Wu, R. G., Yang, S., Liu, S., Sun, L., Lian, Y., and Gao, Z. T.: Northeast
China summer temperature and north Atlantic SST, J. Geophys.
Res., 116, D16, https://doi.org/10.1029/2011JD015779, 2011.
Yang, K. and He, J.: China meteorological forcing dataset (1979–2018), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file, 2019.
Yang, Z. Y., Shen, M. G., Jia, S. G., Guo, L., Yang, W., Wang, C., Chen, X.
H., and Chen, J.: Asymmetric responses of the end of growing season to daily
maximum and minimum temperatures on the Tibetan Plateau, J.
Geophys. Res., 122, 278–287, https://doi.org/10.1002/2017JD027318, 2017.
Yoo, C., Im, J., Park, S., and Quackenbush, L. J.: Estimation of daily
maximum and minimum air temperatures in urban landscapes using MODIS time
series satellite data, ISPRS J. Photogramm.,
137, 149–162, https://doi.org/10.1016/j.isprsjprs.2018.01.018,
2018.
You, Q. L., Kang, S. C., Aguilar, E., Pepin, N., Flügel, W.-A., Yan, Y.
P., Xu, Y. W., Zhang, Y. J., and Huang, J.: Changes in daily climate
extremes in China and their connection to the large scale atmospheric
circulation during 1961–2003, Clim. Dynam., 36, 2399–2417, https://doi.org/10.1007/s00382-009-0735-0, 2011.
Zhai, P. M., Yu, R., Guo, Y. J., Li, Q. X., Ren, X. J., Wang, Y. Q., Xu, W.
H., Liu, Y. J., and Ding, Y. H.: The strong El Niño in 2015/2016 and its
dominant impacts on global and China's climate, Acta Meteorol. Sin.,
74, 309–321, https://doi.org/10.11676/qxxb2016.049, 2016 (in Chinese).
Zhang, H., Da, Y. B., Zhang, X., and Fan, J. L.: The impacts of climate
change on coal-fired power plants: evidence from China,
Energ. Environ. Sci., 14, 4890–4902, https://doi.org/10.1039/D1EE01475G, 2021.
Zhang, M., Du, S. Q., Wu, Y. J., Wen, J. H., Wang, C. X., Xu, M., and Wu, S.
Y.: Spatiotemporal changes in frequency and intensity of high-temperature
events in China during 1961–2014, J. Geogr. Sci., 27,
1027–1043, https://doi.org/10.1007/s11442-017-1419-z, 2017.
Zhang, P. F., Ren, G. Y., Xu, Y., Wang, X. L. L., Qin, Y., Sun, X. B., and
Ren, Y. Y.: Observed changes in extreme temperature over the global land
based on a newly developed station daily dataset, J. Climate, 32,
8489–8509, https://doi.org/10.1175/JCLI-D-18-0733.1 2019.
Zhao, B., Mao, K., Cai, Y., Shi, J., Li, Z., Qin, Z., Meng, X., Shen, X., and Guo, Z.: A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003 to 2017, Earth Syst. Sci. Data, 12, 2555–2577, https://doi.org/10.5194/essd-12-2555-2020, 2020.
Zheng, X., Zhu, J. J., and Yan, Q. L.: Monthly air temperatures over
Northern China estimated by integrating MODIS data with GIS techniques,
J. Appl. Meteorol. Clim., 52, 1987–2000, https://doi.org/10.1175/JAMC-D-12-0264.1, 2013.
Zhong, K. Y., Zheng, F. L., Wu, H. Y., Qin, C., and Xu, X. M.: Dynamic
changes in temperature extremes and their association with atmospheric
circulation patterns in the Songhua River Basin, China, Atmos. Res., 190, 77–88, https://doi.org/10.1016/j.atmosres.2017.02.012, 2017.
Zhou, B. T., Xu, Y., Wu, J., Dong, S. Y., and Shi, Y.: Changes in
temperature and precipitation extreme indices over China: Analysis of a
high-resolution grid dataset, Int. J. Climatol., 36,
1051–1066, https://doi.org/10.1002/joc.4400, 2016.
Zhu, S. Y., Zhou, C. X., Zhang, G. X., Zhang, H. L., and Hua, J. W.:
Preliminary verification of instantaneous air temperature estimation for
clear sky conditions based on SEBAL, Meteorol. Atmos. Phys.,
129, 71–81, https://doi.org/10.1007/s00703-016-0451-3, 2017.
Zhu, W. B., Lû, A. F., and Jia, S. F.: Estimation of daily maximum and
minimum air temperature using MODIS land surface temperature products,
Remote Sens. Environ., 130, 62–73, https://doi.org/10.1016/j.rse.2012.10.034, 2013.
Short summary
In order to obtain the key parameters of high-temperature spatial–temporal variation analysis, this study proposed a daily highest air temperature (Tmax) estimation frame to build a Tmax dataset in China from 1979 to 2018. We found that the annual and seasonal mean Tmax in most areas of China showed an increasing trend. The abnormal temperature changes mainly occurred in El Nin~o years or La Nin~a years. IOBW had a stronger influence on China's warming events than other factors.
In order to obtain the key parameters of high-temperature spatial–temporal variation analysis,...