Articles | Volume 15, issue 15
https://doi.org/10.5194/gmd-15-6059-2022
https://doi.org/10.5194/gmd-15-6059-2022
Development and technical paper
 | 
03 Aug 2022
Development and technical paper |  | 03 Aug 2022

A daily highest air temperature estimation method and spatial–temporal changes analysis of high temperature in China from 1979 to 2018

Ping Wang, Kebiao Mao, Fei Meng, Zhihao Qin, Shu Fang, and Sayed M. Bateni

Related authors

Dataset of daily near-surface air temperature in China from 1979 to 2018
Shu Fang, Kebiao Mao, Xueqi Xia, Ping Wang, Jiancheng Shi, Sayed M. Bateni, Tongren Xu, Mengmeng Cao, Essam Heggy, and Zhihao Qin
Earth Syst. Sci. Data, 14, 1413–1432, https://doi.org/10.5194/essd-14-1413-2022,https://doi.org/10.5194/essd-14-1413-2022, 2022
Short summary

Related subject area

Atmospheric sciences
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary
Improving winter condition simulations in SURFEX-TEB v9.0 with a multi-layer snow model and ice
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025,https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary

Cited articles

Abdullah, A. M., Ismail, M., Yuen, F. S., Abdullah, S., and Elhadi, R. E.: The Relationship between Daily Maximum Temperature and Daily Maximum Ground Level Ozone Concentration, Pol. J. Environ. Stud., 26, 517–523, https://doi.org/10.15244/pjoes/65366, 2017. 
Basu, R.: High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008, Environ. Health, 8, 1–13, https://doi.org/10.1186/1476-069X-8-40, 2009. 
Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N., and Santos, A.: Estimating air surface temperature in Portugal using MODIS LST data, Remote Sens. Environ., 124, 108–121, https://doi.org/10.1016/j.rse.2012.04.024, 2012. 
CMA National Meteorological Information Center: China Surface Climatic Data Daily Dataset [data set], http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html, last access: 9 December 2020a. 
CMA National Meteorological Information Center: Hourly Ta observation data [data set], available at: http://data.cma.cn/data/cdcdetail/dataCode/A.0012.0001.html, last access: 9 December 2020b. 
Download
Short summary
In order to obtain the key parameters of high-temperature spatial–temporal variation analysis, this study proposed a daily highest air temperature (Tmax) estimation frame to build a Tmax dataset in China from 1979 to 2018. We found that the annual and seasonal mean Tmax in most areas of China showed an increasing trend. The abnormal temperature changes mainly occurred in El Nin~o years or La Nin~a years. IOBW had a stronger influence on China's warming events than other factors.
Share