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Abstract. The daily highest air temperature (Tmax) is a key
parameter for global and regional high temperature analy-
sis which is very difficult to obtain in areas where there
are no meteorological observation stations. This study pro-
poses an estimation framework for obtaining high-precision
Tmax. Firstly, we build a near-surface air temperature di-
urnal variation model to estimate Tmax with a spatial res-
olution of 0.1◦ for China from 1979 to 2018 based on
multi-source data. Then, in order to further improve the es-
timation accuracy, we divided China into six regions ac-
cording to climate conditions and topography and estab-
lished calibration models for different regions. The analy-
sis shows that the mean absolute error (MAE) of the dataset
(https://doi.org/10.5281/zenodo.6322881, Wang et al., 2021)
after correction with the calibration models is about 1.07 ◦C
and the root mean square error (RMSE) is about 1.52 ◦C,
which is higher than that before correction to nearly 1 ◦C.
The spatial–temporal variations analysis of Tmax in China in-
dicated that the annual and seasonal mean Tmax in most areas
of China showed an increasing trend. In summer and autumn,
the Tmax in northeast China increased the fastest among the
six regions, which was 0.4◦C per 10 years and 0.39◦C per 10
years, respectively. The number of summer days and warm
days showed an increasing trend in all regions while the num-
ber of icing days and cold days showed a decreasing trend.

The abnormal temperature changes mainly occurred in El
Niño years or La Niña years. We found that the influence of
the Indian Ocean basin warming (IOBW) on air temperature
in China was generally greater than those of the North At-
lantic Oscillation and the NINO3.4 area sea surface temper-
ature after making analysis of ocean climate modal indices
with air temperature. In general, this Tmax dataset and analy-
sis are of great significance to the study of climate change in
China, especially for environmental protection.

1 Introduction

In the context of global warming, the frequency of high-
temperature events is increasing and high temperature tends
to increase electricity demand and energy consumption
(Zhang et al., 2021; Sathaye et al., 2013), adversely affect-
ing human health, social economy and ecosystem (Sehra et
al., 2020; Basu, 2009; Gasparrini and Armstrong, 2011). The
daily highest air temperature (Tmax) is the basic parameter
for studying regional-scale high-temperature events. It has a
great influence on the ozone concentration (Abdullah et al.,
2017; Kleinert et al., 2021) and the start time of the plant
growth season on the Tibetan Plateau (Yang et al., 2017).
Tmax is not only an important factor for high temperature dis-
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aster risk assessment but also a key input parameter for crop
growth models and carbon emission models. Sustained and
abnormally high Tmax will cause high temperature heat dam-
age and adversely affect crop growth. Therefore, it is very
important to accurately obtain the temporal and spatial dis-
tribution of Tmax and study the characteristics of high temper-
ature weather. Generally, Tmax is measured on a thermometer
in a louvered box 1.5 m above the ground in the field. How-
ever, the Tmax measured by this method has high accuracy
but not spatial continuity. Therefore, some scholars spatial-
ized the station-based Tmax through methods such as Kriging
interpolation and spline function interpolation. However, the
number of meteorological stations is limited, and stations in
remote areas and areas with complex terrain are even sparser
which makes the accuracy of Tmax obtained by interpolation
difficult to meet the requirements of regional-scale research
in China.

In order to obtain information about the spatial distribu-
tion of the Tmax, many scholars began to use satellite remote
sensing to solve this problem. There are three common re-
mote sensing methods to estimate Tmax. The first method is
regression analysis which uses the correlation between re-
trieved land surface temperature (LST) and Tmax to estab-
lish a regression model to estimate Tmax (Shen and Leptoukh,
2011; Evrendilek et al., 2012; Lin et al., 2012). The second
method is machine learning which can flexibly estimate Tmax
in urban areas with complex features (Yoo et al., 2018). The
third method is to use a diurnal temperature change model
to extend the instantaneous air temperature (Ta) to calcu-
late Tmax either by the temperature–vegetation index (TVX)
method (Wloczyk et al., 2011; Zhu et al., 2013), the energy
balance method (Sun et al., 2005; Zhu et al., 2017), the at-
mospheric temperature profile extrapolation method (Fabi-
ola and Mario, 2010) or other methods. The above meth-
ods of estimating Tmax with LST can better reflect the spa-
tial distribution of Tmax but regression analysis and machine
learning require sufficient and representative samples and
the established model is not universal. TVX cannot estimate
Ta at night and in sparse vegetation areas. Many parame-
ters required by the energy balance method cannot usually
be obtained by remote sensing technology. The estimation
accuracy of atmospheric temperature profile extrapolation
method is greatly affected by the accuracy of the atmospheric
temperature profile. The China Meteorological Administra-
tion (CMA) provided the grid dataset of daily surface tem-
perature in China (V2.0) which contains Tmax data but the
spatial resolution of the data is only 0.5◦ and the data accu-
racy in local areas need to be improved. Therefore, a new
method for estimating Tmax needs to be proposed.

At present, most researches mainly used the extreme cli-
mate indices defined by the Expert Team on Climate Change
Detection and Indices (ETCCDI) to analyze the temporal and
spatial distribution characteristics of high temperature and its
changing laws (Khan et al., 2018; Mcgree et al., 2019; Poudel
et al., 2020; Ruml et al., 2017; Salman et al., 2017; Wang et

al., 2019; Zhang et al., 2019). Zhou et al. (2016) analyzed the
temperature indices changes in China from 1961 to 2010 and
the results indicated that the warm extremes in China exhib-
ited an increasing trend. In addition, the researchers analyzed
the characteristics of high temperature changes in the Three
River Headwaters, Yangtze River basin, Loess Plateau, Inner
Mongolia and Songhua River basin (Ding et al., 2018; Guan
et al., 2015; Sun et al., 2016; Tong et al., 2019; Zhong et
al., 2017). In addition to analyzing the temporal and spatial
changes of high temperature events, many scholars have also
studied the influencing factors of high temperature events.
Studies showed that extreme high temperature over China
was related to abnormal atmospheric circulation disturbances
(You et al., 2011; Zhong et al., 2017) and abnormal sea sur-
face temperature (Y. L. Li et al., 2019; Wu et al., 2011). How-
ever, previous studies on the cause of high temperature events
usually only analyzed the correlation between atmospheric
circulation modes and the temperature indices along the time
dimension without considering the spatial characteristics of
the correlation.

From the above analysis, most of the researches mainly
used the meteorological observation temperature data inter-
polation to analyze local temperature changes, and as far
as we know, no one constructed continuous high-temporal
resolution Tmax for high temperature analysis in China. In
order to better study regional high temperature events, this
study proposes an estimation framework for obtaining high-
precision Tmax. Firstly, we used multi-source data and estab-
lished near-surface Ta diurnal variation model to build Tmax
dataset in China from 1979 to 2018 with a spatial resolution
of 0.1◦. To further improve the accuracy, we divided China
into six regions according to climate conditions and topog-
raphy, and established calibration models, respectively. On
this basis, we further analyzed the spatial–temporal variation
characteristics of Tmax and corresponding influencing factors
in China. This can provide evidence for mitigating global cli-
mate change and reducing regional carbon emissions for en-
vironmental protection.

2 Study area

In order to establish a more high-precision Tmax dataset
to analyze the temporal and spatial characteristics of high-
temperature in China, we divided China into six regions
mainly based on topographic conditions (elevation) and cli-
matic conditions (Ta and precipitation) as shown in Fig. 1.
(i) The northeast region has a temperate monsoon climate.
Affected by the monsoon, Ta in the southern part of the re-
gion is higher than that in the north in winter. The topogra-
phy of this area is dominated by plains, hills and mountains.
Due to the influence of topography, the variability of Ta is
large in local areas. (ii) The northwestern region is domi-
nated by a temperate continental climate (cold in winter and
hot in summer) with a large annual and daily Ta range. The
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Figure 1. Overview of the study area.

area exhibits little annual precipitation which decreases from
east to west. The topography of this area is dominated by
plateau basins and rivers are scarce. (iii) North China is lo-
cated in a semi-humid and humid zone in the warm temperate
zone. Precipitation is mainly concentrated in summer. This
area is dominated by plains and plateaus, bounded by Tai-
hang Mountain, the Loess Plateau in the west and the North
China Plain in the east. (iv) The southeast region is dom-
inated by mountains and hills which belongs to the warm
and humid subtropical oceanic monsoon climate zone and
the tropical monsoon climate zone. The climate is mild with
an annual average Ta of 17–21 ◦C and an average rainfall of
1400–2000 mm. (v) The southwestern region has a subtropi-
cal monsoon climate affected by the southeast monsoon and
southwest monsoon. It is hot and rainy in summers and the
landforms in this area are dominated by plateaus and moun-
tains. (vi) The Qinghai–Tibet Plateau is located in southwest
China with an average elevation of more than 4000 m. The
towering terrain has a great impact on the climate in eastern
and southwestern China. It has a plateau mountainous cli-
mate with cold winters and warm summers with aridity and
little rain throughout the year.

3 Data

3.1 China Meteorological Forcing Dataset (CMFD)

CMFD is developed by the Hydro-meteorological Research
Group of the Institute of Tibetan Plateau Research, Chinese
Academy of Sciences. The dataset can be obtained from the
National Qinghai–Tibet Plateau Science Data Center (https:
//data.tpdc.ac.cn/, last access: 9 December 2020). The near-
surface Ta data of CMFD have a time resolution of 3 h and
a spatial resolution of 0.1◦, and their accuracy in China is

better than Global Land Data Assimilation System (GLDAS)
data (He et al., 2020). CMFD data used ANUSPLIN software
to interpolate the difference between GLDAS Ta data and the
measured Ta data to obtain grid data, and then the difference
grid data and the spatially downscaled GLDAS Ta data were
spatially added to generate high resolution Ta data. The Ta
data of CMFD have been widely used in climate simulation,
hydrological simulation, vegetation greenness research and
cross-validation of new Ta datasets (Luan et al., 2020; Gu et
al., 2020; Wang et al., 2020). Although this dataset has be-
come one of the most widely used climate datasets in China,
it does not provide the Tmax value. In order to perform high
temperature analysis, we need to construct a Tmax dataset.

3.2 ERA5 data

ERA5 data are the fifth generation of global climate reanaly-
sis data produced by the European Centre for Medium-range
Weather Forecast (ECMWF) after ERA-Interim. The model
version used by ERA5 is IFS Cycle 41r2 and its spatial–
temporal resolution and number of vertical layers are much
higher than the ERA-Interim data (Hoffmann et al., 2019;
Urraca et al., 2018; Hersbach et al., 2020). ERA5 reanaly-
sis data provide a variety of meteorological elements includ-
ing atmospheric parameters, land parameters and ocean pa-
rameters spanning a time range from 1950 to present. The
data can be obtained from Copernicus Climate Data Store
(https://cds.climate.copernicus.eu/, last access: 30 Decem-
ber 2020). The ERA5 dataset also does not provide the Tmax.
This study used Ta data from 1979 to 2018 with a time reso-
lution of 1 h and a spatial resolution of 0.25◦ to help build a
Tmax estimation model to generate Tmax value, and we sam-
pled the ERA5 data to the same spatial resolution as the
CMFD data.

3.3 Meteorological station data

Tmax data from the China Surface Climatic Data Daily
Dataset (V3.0) from 1979 to 2018 were used to verify the ac-
curacy of Tmax estimations. The hourly Ta observation data
from China meteorological stations were used to determine
the occurrence times of Tmax and daily lowest air temperature
(Tmin). Both datasets are from CMA National Meteorological
Information Center (http://data.cma.cn/, last access: 9 De-
cember 2020). The data were subjected to preliminary qual-
ity control and evaluation by CMA, and all elements in the
observational data are of high quality and completeness with
the validity rate generally above 99 %. These datasets have
been widely used in Chinese climate research (L. C. Li et al.,
2019; Tong et al., 2019). To ensure the validity of the site
data, manual checks were performed on all observed data in-
cluding extreme value tests and spatial–temporal consistency
tests, and continuous missing data due to instrument damage
and other reasons were eliminated. There are 824 stations for
Tmax observation data and 2633 stations for hourly Ta obser-
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vation data. After performing checks and tests, we used Tmax
data from 760 meteorological ground stations and hourly Ta
data from 2421 meteorological ground stations.

3.4 Ocean climate modal indices

The ocean occupies about 71 % of the earth’s surface area
which has a great impact on climate change. After consid-
ering the distribution characteristics of China’s land and sea,
we analyzed the effects of the following ocean climate modal
indices on high temperature in China: Indian Ocean basin
warming (IOBW) index, North Atlantic Oscillation (NAO)
index, and NINO3.4 area sea surface temperature (NINO3.4)
index. Among them, the IOBW index comes from the Na-
tional Climate Center of CMA (http://cmdp.ncc-cma.net/cn/
index.htm, last access: 1 April 2021) and the NAO index and
NINO3.4 index are from the National Oceanic and Atmo-
spheric Administration of the United States (https://psl.noaa.
gov/data/climateindices/list/, last access: 1 April 2021). The
time range of the three indices is 1979–2018 and the time
scale is monthly.

4 Methodology

4.1 Tmax dataset construction

At present, the data used in the research on high tempera-
ture characteristics are mostly meteorological station data or
grid data obtained by interpolation of station data. A lim-
ited number of stations cannot represent the high temperature
distribution at large scale. For regions where the stations are
very sparse, grid data obtained by spatial interpolation can
hardly meet the accuracy requirements of high temperature
feature analysis. Although LST can be used to estimate Tmax,
LST has degraded value in the presence of clouds or rainfall.
Therefore, in order to obtain a Tmax dataset with high tem-
poral and spatial resolution, we propose a Tmax construction
model that combines meteorological station data and reanal-
ysis data, and consider the Tmax construction under clear sky
and non-clear sky conditions (see Sect. 4.1.1 for details). The
data processing process is shown in Fig. 2 and the data con-
struction model is divided into two steps: Tmax estimation
and Tmax correction. First, the occurrence time of Tmax and
Tmin was determined pixel by pixel (see Sect. 4.1.1 for de-
tails). Then, Tmax was determined according to the weather
state. (1) In clear sky conditions, CMFD 3h near-surface Ta
data were used to construct the Ta diurnal variation model
which, in turn, yielded Tmax. (2) In non-clear sky conditions,
the site and reanalysis data were used to fill pixels. Finally,
the correction model was used to correct the poor quality pix-
els to generate the final Tmax dataset in China.

4.1.1 Tmax estimation

The changes of Ta under different weather conditions are dif-
ferent. The changes of Ta under clear sky conditions are rel-
atively smooth and regular. Under non-clear sky conditions,
Ta changes more drastically. In order to improve the accu-
racy of Tmax estimation, we determined the occurrence time
of Tmax and Tmin pixel by pixel. If there was a meteorologi-
cal station at the pixel location, the analysis could be divided
into two situations. (1) If hourly Ta data were valid, it was
directly used to determine the occurrence time of Tmax and
Tmin. (2) If there was a missing value in the hourly Ta data at
a certain time, then we used the valid data from adjacent sta-
tions at the same time or adjacent time at the same stations to
fill in the missing values. At present, there are not many me-
teorological stations in China and the pixels without stations
account for 97.5 %. If there was no meteorological station at
the pixel location, we used ERA5 hourly Ta data to determine
the occurrence time of Tmax and Tmin. Since the spatial reso-
lution of the ERA5 data is lower than that of the dataset we
produce, in order to match the two data spatially, we sample
the two data to the same resolution and then use latitude and
longitude as control conditions to match the different data.

Studies have shown that the change of Ta under clear sky
conditions follows a certain law: the change curve of Ta dur-
ing the day is close to a sine function (Ephrath et al., 1996;
Johnson and Fitzpatrick, 1977; Parton and Logan, 1981; Zhu
et al., 2013) so we used sine function to simulate the change
of Ta during the day. The appearance time of Tmin is tmin and
the appearance time of Tmax is tmax. According to the peri-
odicity of the sine function, the model of the change of Ta
during the day is obtained like Eq. (1).
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Here, n is the number of CMFD near-surface Ta data used to
construct the Ta change model in a day. CMFD can obtain Ta
data eight times a day. This study uses four daytime Ta data
to construct a Ta variation model so n is 4. Tai is the near-
surface Ta data at the ith time of CMFD and δ is the sum
of squares of the difference between the model-estimated Ta
and the near-surface Ta of the CMFD.

Since the change of Ta under non-clear-sky conditions
does not conform to the sine curve change, we divided the
estimation of Tmax under non-clear sky conditions into two
situations. (1) If there was a station at the location of the
pixel, the measured Tmax at the station was directly used as
the Tmax of the pixel. (2) If there was no measured Tmax at the
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Figure 2. Technical roadmap for Tmax estimation.

pixel location, the highest value of hourly Ta of ERA5 in a
day was taken as Tmax. Then, Tmax determined by the ERA5
data was assigned to the pixel at the corresponding position
of the Tmax image we established using the spatial matching
method.

4.1.2 Tmax correction

The validation of Tmax showed some differences between the
estimated Tmax and the measured Tmax. In order to further
improve the accuracy of Tmax, the measurements taken at
weather stations should be used to correct the estimated Tmax
as shown in Fig. 3. First, determine whether there are station
data at the pixel location. For pixels with stations, if the dif-
ference between the estimated Tmax and the measured Tmax is
less than 1 ◦C, we consider the Tmax of this pixel to be valid.
For a pixel with poor quality, if there are station data at the
location of the pixel, the low-quality pixel will be replaced
with the measured data from the station. If there are no sta-

tion data at the pixel location, the data are corrected by linear
regression method (Ninyerola et al., 2000; Zhao et al., 2020;
Zheng et al., 2013). By establishing the regression relation-
ship on each day between station Tmax and estimated Tmax,
the residuals were calculated according to the measured val-
ues and Tmax regression predicted values, and the spatial dis-
tribution of the residuals on each day was obtained by the
inverse distance weight (IDW) interpolation method. Finally,
the estimated Tmax and the residual were added to obtain the
corrected Tmax. The calibration model is like Eqs. (3) and (4).

Tafter (i,j)= Tbefore (i,j)+ ê (i,j) (3)
ê (i,j)= Ttrue (i,j)− Tforecast (i,j) . (4)

Here, i and j are the row and column numbers of the image,
Tafter (i,j) is Tmax after correction, Tbefore (i,j) is Tmax before
correction, ê (i,j) is the residual, Ttrue (i,j) is the measured
Tmax and Tforecast (i,j) is Tmax predicted by the regression
model.
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We used the jackknife method to randomly divide the sta-
tion data into calibration and verification data (Benali et al.,
2012; Zhao et al., 2020). We selected 80 % of the meteo-
rological stations to establish the regression relationship be-
tween the measured and estimated Tmax values. The other
20 % of the meteorological stations were used to verify the
accuracy of the corrected data. In order to improve data ac-
curacy, the dataset used in the subsequent analysis of spatial–
temporal variation of high temperature were the data cor-
rected by all stations. Due to the different topographic and
climatic characteristics of the six natural regions, the linear
models of estimated Tmax and measured Tmax in each region
were different. In order to obtain a higher-precision correc-
tion, the six regions were corrected separately.

4.2 Extreme temperature indices

ETCCDI proposed a set of extreme climate indices in the Cli-
mate Change Monitoring conference which became the uni-
fied standard for climate change research (Hong and Ying,
2018; Mcgree et al., 2019; Poudel et al., 2020; Zhang et al.,
2019; Zhou et al., 2016). Among them, 27 indices are con-
sidered as core indices which are calculated from daily Ta
and precipitation data and have the characteristics of weak
extremeness, low noise and strong significance. These in-
dices comprehensively capture the frequency, intensity and
duration of extreme climate events, and are recommended
as the core indicators for extreme climate event analysis by
the STARDEX program of the European Union (Guan et al.,
2015; Ruml et al., 2017). In this study, six temperature in-
dices related to Tmax were used to analyze high temperature
characteristics, and their definitions are shown in Table 2.
Among them, the 90th percentile in TX90p and the 10th per-
centile in TX10p were obtained in ascending order based on
the Tmax data of each month during 1979–2018.

4.3 Trend analysis

4.3.1 Sen’s slope estimation

In this study, the trends of Tmax and extreme temperature
indices were calculated using Sen’s slope estimation. Sen’s
slope estimation is a nonparametric estimation method. Even
if there are some outliers in the sample, it can reliably esti-
mate the change trend of the time series so it is widely used
in trend analysis (Sen, 1968; Zhang et al., 2017). Eq. (5) is
used to calculate the slope of each pair of data.

Ki =
xk − xj

k− j
(i = 1,2, · · ·,N), (5)

whereN = n(n−1)
2 , xk and xj are the time series values of the

kth andj th samples, respectively (1≤ j < k ≤ n). Arranging
the N , Ki values in ascending order, the median Sen’s slope

is estimated as Eq. (6).

Slope=

{
K[(N+1)/2], N is odd
K[N/2]+K[(N+2)/2]

2 , N is even
(6)

4.3.2 Mann–Kendall trend test

Mann–Kendall trend test is used to test the trends of Tmax and
extreme temperature indices. Mann–Kendall method does
not require samples to follow a certain distribution and is not
disturbed by a few outliers, and it can test the change trend
of time series (Seenu and Jayakumar, 2021; Tan et al., 2019).
Equation (7) is used to calculate the statistic of the Mann–
Kendall trend test.

S =
∑n−1

i=1

∑n

j=i+1
sgn

(
xj − xi

)
(7)

sgn
(
xj − xi

)
=

 1, xj − xi > 0
0, xj − xi = 0
−1, xj − xi < 0

(8)

Var(S)=
n(n− 1)(2n+ 5)

18
. (9)

Here, xi and xj are the ith and j th data values of the time
series, and n is the length of the time series where n is 40.
Var(S) is the variance of S. The standardized statistic Zc is
computed by using Eq. (10).

Zc =


S−1
√

Var(S)
, S > 0

0, S = 0
S+1
√

Var(S)
, S < 0

(10)

When |Zc|> Z1−α/2, the change trend is considered to be
significant. Here, Z1−α/2 is the standard normal variance, α
is the significance test level when α = 0.05, Z1−α/2 = 1.96
and when α = 0.01, Z1−α/2 = 2.58.

4.4 Mann–Kendall test for abrupt change analysis

Climate system change is an unstable and discontinuous
change process, and one of the commonly used methods to
test its change is the Mann–Kendall mutation test which is
very effective in testing the change of elements from a rel-
atively stable state to another state (Ruml et al., 2017). We
used Mann–Kendall mutation test to test whether extreme
temperature indices have mutation. For a time series x with
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Figure 3. Flow chart of Tmax correction.

Table 2. Definition of extreme temperature indices.

Index Name Definition Category Unit

SU Summer days Annual count of days when Tmax > 25◦C Frequency d
TX90p Warm days Annual count of days when Tmax > 90th percentile Frequency d
TXn Minimum Tmax Annual minimum value of Tmax Intensity ◦C
TXx Maximum Tmax Annual maximum value of Tmax Intensity ◦C
ID Icing days Annual count of days when Tmax < 0◦C Frequency d
TX10p Cold days Annual count of days when Tmax < 10th percentile Frequency d

n samples, Eq. (11) is used to construct an ordered sequence.

sk =
∑k

i=1
ri (k = 2,3, · · ·,n) (11)

ri =

{
+1, xi > xj
0, xi ≤ xj

(j = 1,2, · · ·, i) (12)

UFk =
sk −E(sk)
√

Var(sk)
(k = 1,2, · · ·,n) (13)

E(sk)=
k (k− 1)

4
(14)

Var(sk)=
k (k− 1)(2k+ 5)

72
, (15)

where sk is the cumulative count of the number of values
at time i greater than that at time j . E(sk) and Var(sk) are
the mean and variance of the cumulative number sk , respec-
tively. UFk is a standard normal distribution given the sig-
nificance level α and can be obtained from the normal dis-
tribution table. If |UFk|>Uα , this indicates that the varia-
tion trend of time series is significant. Reverse the time se-
ries x to xnxn−1, · · ·,x1 and repeat the above process with
UBk =−UFk (k = n,n− 1, · · ·,1).

4.5 Correlation analysis

Pearson correlation coefficient is often used to accurately
measure the degree of correlation between two variables and
its size can reflect the strength of the correlation of the vari-
ables. For variables x1x2, · · ·,xn and variables y1y2, · · ·,yn,
the correlation coefficient between them is calculated as
Eq. (16).

R =
n
∑n
i=1 (xi × yi)−

∑n
i=1xi

∑n
i=1yi√

n
∑n
i=1x

2
i
−
(∑n

i=1xi
)2√

n
∑n
i=1y

2
i
−
(∑n

i=1yi
)2 . (16)

Here, n is the total length of the time series. The value of R
is between −1 and 1. R < 0 indicates a negative correlation.
R > 0 indicates a positive correlation. The closer the abso-
lute value of R is to 1, the closer the relationship between the
two elements is.
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5 Results

5.1 Validation

5.1.1 Validation of Tmax in each region

In order to verify the feasibility of Tmax estimation using the
Ta diurnal variation model and to analyze the accuracy of
Tmax estimation in different regions, scatter plots of estimated
Tmax and measured Tmax in six natural regions (I, II, III, IV,
V and VI) were drawn according to the regional division in
Fig. 1. The results are shown in Fig. 4 and the validation in
each region shows that the root mean square error (RMSE)
is between 2.38 and 2.94 ◦C, the mean absolute error (MAE)
is between 1.88 and 2.45 ◦C and the coefficient of determi-
nation (R2) is between 0.95 and 0.99. In six regions, the ac-
curacy in region IV is the highest, while the accuracy is the
lowest in region VI. As can be seen from Fig. 4, although
most of the data are very accurate, some have some room
for improvement. Therefore, further correction is needed to
improve the accuracy of the Tmax dataset.

The correction method in Sect. 4.1.2 was used to correct
the Tmax estimation results of six regions separately. The
comparison between Tmax before and after correction with
the measured Tmax is shown in Fig. 5. It can be seen that
Tmax corrected by the regression model is more consistent
with the measured Tmax. The RMSE decreases from 2.38–
2.94 to 1.14–1.81 ◦C, the MAE decreases from 1.88–2.45 to
0.84–1.38 ◦C and the R2 increases from 0.96–0.99 to 0.97–
0.99. The accuracy of Tmax is improved in each region after
correction. The number of meteorological stations in region I
is denser and the accuracy of Tmax after calibration is signif-
icantly improved. The RMSE reduced from 2.32 to 1.14 ◦C
and the error is reduced by 51 %. The number of meteoro-
logical stations in region VI is small, and the topography is
undulating and the spatial heterogeneity is large. Therefore,
the accuracy in this region is still the lowest among the six
natural areas after correction. In general, the corrected Tmax
dataset has higher consistency with the measured data and
can be applied to research related to regional-scale Tmax.

5.1.2 Validation of Tmax in the whole China region

Figure 6 shows the accuracy of Tmax before correction and
Tmax after correction for the entire China region. It can be
seen that the MAE of the corrected dataset is about 1.07 ◦C
and the RMSE is 1.52 ◦C which is nearly 1 ◦C higher than
that before correction. The accuracy evaluation result of the
dataset for different years shows that the dataset in 2008 has
the highest accuracy and the lowest in 2014 (Fig. 7). It can
be seen from Fig. 8 that the dataset has the highest accu-
racy in September and the lowest accuracy in December. This
may be because there is more clear sky weather in China in
September and the daily temperature change curve is closer

to a sine function which makes the Tmax estimation result
more accurate.

In general, the Tmax dataset has a time range of 1979–2018,
in Celsius with a temporal resolution of 1d and a spatial reso-
lution of 0.1◦. It is produced by using meteorological station
data and Ta reanalysis data (CMFD and ERA5) combined
with diurnal variation model of Ta to establish Tmax data, and
then a correction model is constructed to further correct the
data to improve the data accuracy according to different ge-
ographic partitions. The accuracy assessments indicate that
the dataset exhibits high accuracy and can be used for cli-
mate change analysis in China.

5.2 Temporal and spatial changes of Tmax

5.2.1 Inter-annual variability

Figure 9 shows the annual average change of Tmax in each
region of China during 1979–2018. The Tmax in each re-
gion exhibited an upward trend. However, due to the differ-
ent geographical locations and the influence of atmospheric
circulation in various regions, the change of Tmax was also
different. The order of the Tmax increase in each region
was V> IV> III>Whole>VI> II> I. The Tmax anomaly
ranges of region I–VI and the whole China region were
−1.41–1.53,−1.54–1.16,−1.47–1.12,−1.34–0.92,−0.97–
1.33,−1.31–1.15 and−1.09–0.98 ◦C, respectively. The Tmax
variation coefficients were 0.082, 0.045, 0.036, 0.024, 0.03,
0.088 and 0.038, respectively. It can be seen that Tmax fluc-
tuated the most in region VI and the least in region IV. The
minimum values of region I–VI and China region appeared in
1987, 1984, 1984, 1984, 1989, 1983 and 1984, respectively,
which were distributed in the 1980s. The highest values of
Tmax appeared in 2007, 2007, 2017, 2007, 2013, 1999 and
2007, respectively. Zhai et al. (2016) found that 1999, 2007
and 2013 were among the 10 years with the highest average
Ta in China from 1900 to 2015. From 1998 to 2012, global
surface temperature experienced a warming hiatus (Du et al.,
2019; Li et al., 2015) and Tmax in all regions of China showed
a downward trend during this period.

In order to understand the spatial pattern and regional dif-
ferences of Tmax changes with more detail in China, Sen’s
slope estimation was used to calculate the annual average
Tmax change rate from 1979 to 2018 at the pixel scale
(Fig. 10a). The significance test of the Tmax change trend
was conducted by the Mann–Kendall trend test (Fig. 10b).
At the same time, the average change rate of Tmax in each
region and the area percentage of significant increase and de-
crease (P < 0.05) in Tmax were calculated (Table 3). The re-
sults indicated that the annual average Tmax change rate in
most regions of China (78.24 % of the study area) passed
the significance test with a significance level of 0.05, and
65.84 % of the pixels showed very significant changes in
Tmax (P < 0.01). Figure 10a showed that the annual average
Tmax in most regions of China was on the rise and the fastest
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Figure 4. Validation of Tmax estimation results in each region.

Figure 5. Validation of Tmax after correction.

rising rate of Tmax was in western Yunnan. Only 8.13 % of the
regions in China showed a downward trend in Tmax. These
were concentrated mainly in the north and south of Xinjiang
and the northwest and south of Tibet. Among the six regions,
the average Tmax change rate of region V was the largest
(0.38◦C per 10 years) and the average Tmax change rate of
region I and region II was the lowest (0.31◦C per 10 years)
(Table 3).

5.2.2 Seasonal changes

On the basis of the annual analysis, we also analyzed the
seasonal changes. The seasons are divided according to the
months (spring from March to May, summer from June to
August, autumn from September to November, and winter
from December to February). We plotted the seasonal varia-
tion curve of Tmax in China from 1979 to 2018 (Fig. 11) and
some information on the trend of Tmax changes is shown in
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Figure 6. Box plots of the R2, MAE and RMSE of comparison between Tmax before correction and Tmax after correction in the whole China
region.

Figure 7. Box plots of the R2, MAE and RMSE of Tmax after correction for each year in the whole China region.

Table 4. The results indicated that Tmax in each region fluctu-
ated the most in winter and the least in summer. The highest
Tmax in each region in spring, summer, autumn and winter
mostly occurred in 2018, 2013, 1998 and 2007, while the
minimum Tmax in each region in spring, summer, autumn
and winter mostly occurred in 1988, 1993, 1981 and 1984.
In 2013, Tmax of region IV-VI in summer reached the highest
since 1979 mainly due to the influence of the southwest mon-
soon, East Asian summer monsoon and other factors. Under
the influence of El Niño, Tmax in winter in region I, II and the
whole study area was the highest in 2007. Under the influ-
ence of La Niña, the minimum Tmax in spring and winter in
most areas of China appeared in 1988 and 1984, respectively.
In the same season, the variation trend of Tmax in each re-
gion was significantly different and some even had opposite

trends. However, influenced by La Niña and the Eurasian at-
mospheric circulation, Tmax in winter in each region showed
a consistent decreasing trend from 2007 to 2008. As can be
seen from Table 4, in spring, summer, autumn and winter, the
regions with the fastest Tmax rise are III, I, I and VI respec-
tively, and the regions with the lowest Tmax change rate are
VI, VI, III and II, respectively.

In order to display the seasonal variation characteristics of
Tmax in China more intuitively, we drew the spatial distribu-
tion of the trend of Tmax and conducted a significance test
(Fig. 12). Meanwhile, we counted the percentage of signifi-
cant increase and decrease in Tmax in each region (Table 5).
The results indicated that the areas with increasing Tmax were
more than those with decreasing Tmax in all seasons. From
1979 to 2018, the increasing trend of Tmax was most signifi-
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Figure 8. Box plots of the R2, MAE and RMSE of Tmax after correction for each month in the whole China region.

Figure 9. Inter-annual changes of Tmax anomalies in six regions of China during 1979–2018.

cant in spring which accounted for 92.73 % of the total study
area followed by autumn and summer, while Tmax increased
the least in winter. Specifically, Tmax increased significantly
in most parts of China in spring and the region where Tmax
decreased significantly was mainly concentrated in the re-
gion VI (Fig. 12a). In summer, Tmax in most part of China
showed a significant increasing trend, but Tmax in southern

Xinjiang and northwestern Tibet exhibited a decreasing trend
(Fig. 12b). Compared with spring and summer, the area with
a significant increasing trend of Tmax in autumn was smaller
and the regions with a significant decreasing trend of Tmax
were mainly distributed in Xinjiang and Tibet (Fig. 12c). In
winter, 79.02 % of the regions experienced an increase in
Tmax which was significantly lower than in other seasons. A

Geosci. Model Dev., 15, 6059–6083, 2022 https://doi.org/10.5194/gmd-15-6059-2022



P. Wang et al.: A daily highest air temperature estimation method 6071

Figure 10. Inter-annual change rate of Tmax (a) and results of Mann–Kendall trend test (b).

Table 3. Statistics of Tmax change trends in various regions of China from 1979 to 2018.

Region I II III IV V VI Whole

Mean (◦C per 10 years) 0.31 0.31 0.33 0.35 0.38 0.33 0.33
Significant upward (%) 65.21 69.45 87.03 92.29 87.00 67.93 75.13
Significant downward (%) 0.09 3.14 0 0.32 0.75 7.92 3.11

significant increasing trend of Tmax was observed in the east
of region IV and the southwest of regions V and VI while
the areas where Tmax decreased significantly were mainly ob-
served in Xinjiang (Fig. 12d). We also observed no signifi-
cant decrease in Tmax in regions I and III in spring, I in sum-
mer, I and IV in autumn, and III in winter (Table 5). Further
statistics showed that Tmax of the whole region III showed an
upward trend in spring.

5.3 Temporal and spatial changes of extreme
temperature indices

5.3.1 Change of time

We plotted the inter-annual variation of extreme temperature
indices anomalies in various regions of China from 1979
to 2018 (Fig. 13), and used Sen’s slope estimation and the
Mann–Kendall trend test to calculate statistics on the trend
of extreme temperature indices (Fig. 14). The results indi-
cated that SU, TX90p, TXn and TXx increased at a rate of
3.83d/10a, 6.57d/10a, 0.11◦C per 10 years and 0.32◦C per
10 years, respectively (Fig. 14). Influenced by the strong El
Niño in 1997, the SU in all regions exhibited a consistent
upward trend from 1996 to 1997 (Fig. 13). The change rate
of SU in all regions passed the significance test of 0.01 in-
dicating a significant upward trend (Fig. 14). The increas-
ing trend of TX90p in all regions was also very significant.
The decadal average of TX90p in regions III–VI and the
whole study area had an increasing trend, while the decadal

average of TX90p in region I and region II increased first
and then decreased slightly. The TXn of region II showed
a weak decreasing trend and the sliding average of the 3-
year and 5-year periods also exhibited a weak fluctuation
downward trend. TXn of other regions showed an upward
trend in general and only region VI had a significant in-
creasing trend (P < 0.05) (Fig. 14). Except for region VI,
the change rate of TXx in other regions was higher than that
of TXn. The rate of change of TXx exhibited that the upward
trend of region VI was not significant, while all other regions
passed the significance test of 0.01. During 1979–2018, ID
and TX10p decreased significantly at the rate of −1.48d/10a
and −3.78d/10a, respectively (P < 0.01) (Fig. 14). The ID
of all regions exhibited a downward trend with region VI and
the whole study area showing the most obvious decline pass-
ing the significance test of 0.01 (Fig. 14). Compared with
ID, TX10p decreased more sharply and the highest value of
TX10p in all regions occurred before 1988 (Fig. 13). The
above results indicate that the frequency of high tempera-
ture events in China is on the rise which is in line with the
expected results of global change. In addition, we also found
that the occurrence time of maximum and minimum values of
SU, TXn, TXx and ID during 1979–2018 was consistent with
previous research results by Hong and Ying (2018) which
further proved the correctness of the Tmax dataset constructed
by us, indicating that the dataset can be used to analyze the
spatial–temporal changes of high temperature in China.

In order to analyze the variation rules of extreme tempera-
ture indices in China from 1979 to 2018, the Mann–Kendall
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Figure 11. Changes of Tmax anomalies in various regions of China in spring (a), summer (b), autumn (c) and winter (d) during 1979–2018.

Table 4. Seasonal change rate of Tmax in various regions of China from 1979 to 2018.

I II III IV V VI Whole

Spring 0.035 0.063∗∗ 0.072∗∗ 0.063∗∗ 0.051∗∗ 0.026∗ 0.048∗∗

Summer 0.040∗∗ 0.035∗∗ 0.033∗∗ 0.022∗∗ 0.039∗∗ 0.020∗ 0.031∗∗

Autumn 0.039∗ 0.024 0.014 0.025∗∗ 0.035∗∗ 0.025∗ 0.023∗∗

Winter 0.009 −0.002 0.027 0.037 0.034∗ 0.058∗∗ 0.027

∗, ∗∗ represent the trends that are significant at the level of p = 0.05, p = 0.01, respectively.

mutation test was applied to test the mutation characteristics
of six extreme temperature indices at the significance level of
0.05. The results are shown in Fig. 15. We found that all the
extreme temperature indices had abrupt change from 1979
to 2018 and 40 % of the years where the abrupt changes oc-
curred were El Niño years while 46.7 % were La Niña years.
This finding further confirms that China is greatly affected by
global climate change. TX90p in region I–II and the whole
study area displayed an abrupt change from a period with
lower value to one with higher value in 1996. After mutation
in region II in 2003, TXn turned from an upward trend to
a downward trend but the downward trend was not obvious.
The ID of the whole study area and its six sub-regions tended
to increase first and then decrease.

5.3.2 Spatial change

The spatial distribution of the extreme temperature indices
trends in China during 1979–2018 is shown in Fig. 16a–f
while the area percentage of the increasing and decreasing

trend of extreme temperature indices in each region is shown
in Fig. 17a–f. For SU, TX90p, TXn and TXx, the area with
rising trend is larger than the area with declining trend. The
change of SU in most regions of China passed the signifi-
cance test of 0.05 and the areas with significant increase ac-
counted for 63.3 % of the whole study area (Fig. 17a). The
regions with no significant change in SU were mainly dis-
tributed in region VI (Fig. 16a). There were few days in a
year when Tmax exceeded 25 ◦C in region VI and Tmax in
some regions was even lower than 25 ◦C throughout the year
so the change range of SU was small. The areas with a down-
ward trend of TX90p were mainly distributed in southern
Xinjiang and northern Tibet (Fig. 16b). TX90p increased sig-
nificantly in 75 % of regions in China (P < 0.05) and the area
percentage of TX90p that significantly increased in region V
was the largest among the six regions (Fig. 17b). The trend of
TXn change in most regions of China was not significant and
the significant decrease was mainly concentrated in region
II and region VI (Fig. 16c). While other regions were dom-
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Figure 12. Spatial distribution of the change trend of Tmax in spring (a), summer (b), autumn (c) and winter (d) over China during 1979–2018.
The shaded areas indicate trends that are significant at the 0.05 level.

Table 5. Change trend statistics of Tmax in different seasons over China from 1979 to 2018.

Significant upward (%) Significant downward (%)

Spring Summer Autumn Winter Spring Summer Autumn Winter

I 35.12 74.75 65.75 6.89 0 0 0 0.10
II 81.56 73.47 36.07 8.10 1.01 7.04 3.15 10.87
III 97.71 69.05 14.67 15.99 0 0.38 0.06 0
IV 96.20 46.80 57.26 29.47 0.35 0.68 0 0.44
V 76.48 75.11 58.56 31.62 1.24 1.53 0.06 0.12
VI 50.20 55.11 49.54 68.58 7.00 14.17 10.34 2.28
Whole 71.46 65.39 45.86 29.40 2.29 6.04 3.61 4.01

inated by increasing trend of the TXn, 69.7 % of regions in
region II showed a downward trend (Fig. 17c). For TXx, its
upward trend was slightly stronger than TXn and the region
with the highest change rate was located in western China
(Fig. 16d). The regions with significantly decreased ID were
mainly distributed in region VI (Fig. 16e). There was a de-
clining ID in 75.7 % of the regions and 53 % of the regions

passed the significance test (Fig. 17e). As far as TX10p is
concerned, its cooling trend was much stronger than that
of ID and the areas of significant decline were widely dis-
tributed through all regions of China (Fig. 16f). The area
with a significant decrease in region IV accounted for 75.9 %
of the region which was the largest among the six regions
(Fig. 17f).
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Figure 13. Inter-annual trend of extreme temperature indices anomalies in different regions of China during 1979–2018.

Figure 14. Variation trend of extreme temperature indices in differ-
ent regions of China from 1979 to 2018. (∗ significant at the 0.05
level, ∗∗ significant at the 0.01 level.)

6 Discussion

6.1 The influence of ocean climate modalities on Tmax

The correlation between Tmax anomalies and three climate
modal indices in China during 1979–2018 is shown in

Fig. 18a–c. The results show that there is a significant posi-
tive correlation between Tmax and IOBW in 54.18 % of the
regions in China which indicates that the warming of the
Indian Ocean will contribute to the warming trend of Tmax
in these regions. Tmax had a moderate positive correlation
(0.4<R < 0.6, P < 0.01) with IOBW in southern Yunnan
and eastern Hainan (Fig. 18a). Tmax and NAO had a sig-
nificant positive correlation in northeast China but the cor-
relation was very weak (R < 0.2). The percentage of Tmax
anomaly value negatively correlated with NAO (16.55 %)
was higher than that of NAO positively correlated (5.27 %)
mainly distributed in the west and south of region II, west of
region III, south of region IV and V, and northeast of region
VI. This indicated that the positive phase of NAO contributes
to the decrease in Tmax in these regions (Fig. 18b). Tmax was
significantly positively correlated with NINO3.4 in southern
China, central Xinjiang and southern Gansu indicating that
El Niño events will lead to higher temperatures in these re-
gions. In western China and the middle part of region IV,
Tmax was significantly negatively correlated with NINO3.4
indicating that El Niño events will lead to cooling phenom-
ena in these regions (Fig. 18c).
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Figure 15. MK abrupt change detection for the extreme temperature indices in different regions of China during 1979–2018.

6.2 The influence of ocean climate mode on extreme
temperature indices

Figure 19a–f indicates the spatial distribution of the corre-
lation between extreme temperature indices anomalies and
IOBW in China during 1979–2018. It can be seen that SU,
TX90p, TXn and TXx over most of China are positively
correlated with the IOBW. The region with significant pos-
itive correlation between the SU and IOBW accounted for
42.67 % of the whole study area which indicated that a warm-
ing Indian Ocean would lead to the number of days over
25 ◦C in these regions to increase. Significant negative cor-
relations were found in northwest and southeast Tibet and
the mountainous regions of southern Xinjiang (Fig. 19a). The
area with the largest correlation coefficient is in the north-
east of Hainan (R = 0.48). The significant negative corre-
lation between TX90p and IOBW was mainly distributed
in region VI but the negative correlation was not strong
(|R|< 0.4) (Fig. 19b). The correlation coefficient between
TXn and IOBW ranged from −0.34 to 0.34 and the regions
with significant positive correlation accounted for 16.65 %
of the whole study area. TXn and IOBW were significantly
negatively correlated mainly in western China (Fig. 19c).

Compared with TXn, the regions with significant correla-
tion between TXx and IOBW were more widely distributed
in China among which the correlation coefficients in south-
ern Yunnan and eastern Hainan were moderately positive
(0.4<R < 0.6) (Fig. 19d). ID and TX10p were negatively
correlated with IOBW in most of China. The regions with
significant negative correlation between ID and IOBW were
mainly distributed in region VI and the regions with signifi-
cant positive correlation were mainly distributed in the west
of region II (Fig. 19e). TX10p has a significant negative cor-
relation with IOBW in more areas than ID and the signifi-
cant positive correlation was mainly located in western China
(Fig. 19f).

The influence of NAO on the extreme temperature indices
is shown in Fig. 20a–f. SU, TX90p, TXx and TXn were neg-
atively correlated with the NAO more than they were posi-
tively correlated with NAO indicating that the positive phase
of NAO would lead to the decline of SU, TX90p, TXx and
TXn over most of China. SU and NAO had a significant pos-
itive correlation in southern Xinjiang, western Tibet, north-
ern Qinghai and northern Guizhou but the correlation was
very weak (R < 0.2). There was no significant correlation
between SU and NAO in southern Qinghai, which was con-
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Figure 16. Spatial distribution of trends in extreme temperature indices over China during 1979–2018. The shaded areas indicate trends that
are significant at the 0.05 level.

Figure 17. Area percentage of the trend of extreme temperature indices in different regions of China during 1979–2018.
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Figure 18. Correlation analysis between Tmax and IOBW (a), and NAO (b) and NINO3.4 (c) in China during 1979–2018. The shaded areas
indicate correlations that are significant at the 0.05 level.

Figure 19. Correlation analysis between extreme temperature indices and IOBW in China during 1979–2018. The shaded areas indicate
correlations that are significant at the 0.05 level.

sistent with previous observations (Ding et al., 2018). The re-
gion with the strongest negative correlation between SU and
NAO was located in Tibet (R =−0.18) (Fig. 20a). TX90p
had a weak negative correlation with NAO in eastern Xin-
jiang (R =−0.22, P < 0.01). TX90p was significantly pos-
itively correlated with NAO in the west and south of region
VI but the correlation was extremely weak (Fig. 20b). Shi et
al. (2019) indicated that more regions had a significant posi-
tive correlation between TXn and NAO in China than a sig-
nificant negative correlation which was consistent with our
results. The areas of TXn that had a significant positive corre-
lation with NAO were mainly distributed in northeast China

while the regions with significant negative correlation were
mainly located in central Tibet, eastern Qinghai and Yun-
nan (Fig. 20c). The correlation coefficient between TXx and
NAO varied from−0.16 to 0.21. The regions with significant
positive correlation between TXx and NAO were mainly lo-
cated in Tibet and the region with the strongest correlation
was located in southern Tibet (Fig. 20d). The areas of ID that
were significantly positively correlated with NAO accounted
for 5.86 % of the whole study area and the strongest correla-
tion was found in western Xinjiang (R = 0.23). The regions
with significant negative correlation between ID and NAO
were mainly distributed in eastern and northeastern China
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Figure 20. Correlation analysis between extreme temperature indices and NAO in China during 1979–2018. The shaded areas indicate
correlations that are significant at the 0.05 level.

Figure 21. Correlation analysis between extreme temperature indices and NINO3.4 in China during 1979–2018. The shaded areas indicate
correlations that are significant at the 0.05 level.
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(Fig. 20e). Sun et al. (2016) found a very weak positive corre-
lation between TX10p and NAO in the Loess Plateau which
was consistent with our results. The regions with a significant
negative correlation were mainly concentrated in northeast-
ern China (Fig. 20f).

Figure 21a–f shows the correlation between NINO3.4 and
extreme temperature indices. The regions with significant
positive correlation between SU and NINO3.4 were mainly
distributed in eastern China indicating that the events of El
Niño would lead to an upward trend of SU in these regions.
There were few regions with significant negative correlation
between SU and NINO3.4, only accounting for 1.15 % of
the entire research area, mainly distributed in southeast Ti-
bet and southwest Yunnan (Fig. 21a). The correlation coeffi-
cient between TX90p and NINO3.4 was −0.19–0.26. The
areas of TX90p that had a significant negative correlation
with NINO3.4 were mainly distributed in region IV and VI
(Fig. 21b). There was a significant negative correlation be-
tween TXn and NINO3.4 in 24.59 % of regions and the
region with the strongest negative correlation was located
in Tibet (R =−0.25). TXn was positively correlated with
NINO3.4 in only 10.46 % of regions in China and the re-
gion with the largest correlation coefficient was northwest
Xinjiang (R = 0.11) (Fig. 21c). There was a weak positive
correlation between TXx and NINO3.4 in southern Guang-
dong and northern Hainan (0.2<R < 0.4). The regions of
TXx significantly negatively correlated with NINO3.4 were
mainly distributed in the south of region V and region VI
(Fig. 21d). The significant negative correlation between ID
and NINO3.4 was mainly concentrated in southern China.
The areas with significant positive correlation were mainly
distributed in the western region II and southern region VI,
and the region with the strongest correlation was located in
the western Sichuan (R = 0.31) (Fig. 21e). TX10p in most
regions of regional VI was significantly affected by NINO3.4
and the significant positive correlation area accounted for
69.31 % of the whole region VI. TX10p was significantly
negatively correlated with NINO3.4 in only 0.65 % of re-
gions in China mainly distributed in Hainan and southern
Gansu (Fig. 21f).

7 Conclusions

The global temperature continues to rise and extreme
weather events continue to increase (IPCC, 2021). It is
of great significance to study regional high temperature
changes. In order to obtain the key parameters of high tem-
perature spatial–temporal variation analysis, this study pro-
posed a daily Tmax estimation frame based on the near-
surface Ta grid data and Ta diurnal variation model to build
a Tmax dataset in China from 1979 to 2018. Validation of
Tmax estimation data in six natural regions indicated that the
RMSE of each region was between 2.38 and 2.94 ◦C, the
MAE was between 1.88 and 2.45 ◦C and R2 was between

0.95 and 0.99. After using the regression model to calibrate
the dataset, the accuracy of the estimated Tmax has been sig-
nificantly improved. The RMSE of the Tmax after calibration
reduced to 1.14–1.81 ◦C, the MAE reduced to 0.84–1.38 ◦C
and the R2 increased to 0.97–0.99.

This dataset was used to study the spatial–temporal varia-
tion characteristics of Tmax and the corresponding influenc-
ing factors in China, and to discuss the correlation between
Tmax, extreme temperature indices and ocean climate modal
indices. Tmax in all regions of China exhibited an upward
trend from 1979 to 2018 with the largest rise in region V
and the smallest rise in region I. In spring, Tmax in China in-
creased significantly in most regions and region III has the
fastest rising speed. In winter, Tmax in China had the least
significant rise and region II had the slowest rise rate. SU,
TX90p and TXx in all regions showed an upward trend. Ex-
cept for region II, TXn in other regions also exhibited an
upward trend while ID and TX10p in all regions showed a
downward trend. All extreme temperature indices had abrupt
changes during 1979–2018, and most of the abrupt changes
occurred in El Niño or La Niña years. The region with the
largest increase in SU, TX90p and TXx and the region with
the largest decrease in TX10p were located in western Yun-
nan. The correlation analysis between Tmax and extreme tem-
perature indices and ocean climate modal indices indicated
that the increase in the IOBW usually coincides with the in-
crease in Tmax, SU, TX90p, TXn and TXx and the decrease in
ID and TX10p. NAO had the opposite relationships. In most
regions of China, Tmax, SU, TX90p and TXn were negatively
correlated with NINO.3.4, while TXx, ID and TX10p were
positively correlated with NINO.3.4.

The Tmax dataset we produced can not only be used as
the input parameters of climate change models, crop growth
models and carbon emission models but also can be used to
evaluate the risk of high temperature disasters which has high
practical value. Currently, due to the limitation of the tempo-
ral and spatial scope of the basic data, we have only produced
the dataset of China. If global station data and temperature
data can be obtained in the future, we can continue to pro-
duce Tmax dataset on a global scale. The analysis of regional
high temperature temporal and spatial changes shows that the
temperature changes in different regions of China are incon-
sistent, the mechanism that affects the temperature rise is dif-
ferent in different regions and some regions are highly cor-
related with ocean temperature changes. China is located in
the eastern Eurasian continent and the western Pacific Ocean.
With the influence of the unique topography of the Qinghai–
Tibet Plateau, China’s climate system is very complex. The
temperature change in China is affected by a combination of
factors and the ocean is only one of the factors affecting the
temperature change in China. Our study found that the in-
fluence of the ocean on China’s temperature change is not
particularly strong and we can continue to study the driving
factors that have a strong impact on China’s climate change
in the future. In order to strengthen environmental protection
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and control temperature rise and formulate reasonable car-
bon emission reduction measures, we need further research
in the future.

Code and data availability. CMFD is available from the
National Qinghai–Tibet Plateau Science Data Center
(https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file,
Yang an He, 2019). ERA5 data can be obtained from Copernicus
Climate Data Store (https://doi.org/10.24381/cds.adbb2d47, Hers-
bach et al., 2018). Meteorological station data are available by
CMA National Meteorological Information Center (http://data.cma.
cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.
html, CMA National Meteorological Information Center, 2020a;
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IOBW index can be accessed at the National Climate Center of
CMA (http://cmdp.ncc-cma.net/download/precipitation/diagnosis/
IOBW/iobw-mon-history.tms, National Climate Center of CMA,
2021), and NAO index and NINO3.4 index are from the National
Oceanic and Atmospheric Administration of the United States
(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/
norm.nao.monthly.b5001.current.ascii.table, National Oceanic and
Atmospheric Administration of the United States, 2021a; https:
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can be downloaded at https://doi.org/10.5281/zenodo.6322881
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