Articles | Volume 15, issue 13
https://doi.org/10.5194/gmd-15-5309-2022
https://doi.org/10.5194/gmd-15-5309-2022
Development and technical paper
 | 
13 Jul 2022
Development and technical paper |  | 13 Jul 2022

uDALES 1.0: a large-eddy simulation model for urban environments

Ivo Suter, Tom Grylls, Birgit S. Sützl, Sam O. Owens, Chris E. Wilson, and Maarten van Reeuwijk

Related authors

Building-resolving simulations of anthropogenic and biospheric CO2 in the city of Zurich with GRAMM/GRAL
Dominik Brunner, Ivo Suter, Leonie Bernet, Lionel Constantin, Stuart K. Grange, Pascal Rubli, Junwei Li, Jia Chen, Alessandro Bigi, and Lukas Emmenegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-640,https://doi.org/10.5194/egusphere-2025-640, 2025
Short summary

Cited articles

Ambirajan, A. and Venkateshan, S. P.: Accurate determination of diffuse view factors between planar surfaces, Int. J. Heat Mass Transf., 36, 2203–2208, https://doi.org/10.1016/S0017-9310(05)80151-6, 1993. a
American Society of Civil Engineers Task Committee on Outdoor Human Comfort ASCE​​​​​​​: Outdoor human comfort and its assessment: state of the art, American Society of Civil Engineers (ASCE), Reston, VA, 68 pp., ISBN 0784406847, 2004. a
American Society of Civil Engineers Task Committee on Urban Aerodynamics ASCE: Urban aerodynamics: wind engineering for urban planners and designers, American Society of Civil Engineers (ASCE), Reston, VA, 63 pp., ISBN 9780784411797, 2011. a
American Society of Heating Refrigerating and Air-Conditioning Engineers Inc. (ASHRAE): 2011 ASHRAE Handbook: Heating, Ventilating, and Air-Conditioning Applications, chapter 35, Solar energy use, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1108 pp., ISBN 978-1-936504-07-7, 2011. a
Aoyagi, T. and Takahashi, S.: Development of an Urban Multilayer Radiation Scheme and Its Application to the Urban Surface Warming Potential, Bound.-Lay. Meteorol., 142, 305–328, https://doi.org/10.1007/s10546-011-9679-0, 2012. a
Download
Short summary
Cities are increasingly moving to the fore of climate and air quality research due to their central role in the population’s health and well-being, while suitable models remain scarce. This article describes the development of a new urban LES model, which allows examining the effects of various processes, infrastructure and vegetation on the local climate and air quality. Possible applications are demonstrated and a comparison to an experiment is shown.
Share