Articles | Volume 15, issue 13
https://doi.org/10.5194/gmd-15-5309-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-5309-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
uDALES 1.0: a large-eddy simulation model for urban environments
Ivo Suter
Department of Civil and Environmental Engineering, Imperial College London, London, UK
Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
Tom Grylls
Department of Civil and Environmental Engineering, Imperial College London, London, UK
Birgit S. Sützl
Department of Civil and Environmental Engineering, Imperial College London, London, UK
Chair of Building Physics, ETH, Zürich, Switzerland
Sam O. Owens
Department of Civil and Environmental Engineering, Imperial College London, London, UK
Chris E. Wilson
Department of Civil and Environmental Engineering, Imperial College London, London, UK
Maarten van Reeuwijk
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Imperial College London, London, UK
Related authors
Dominik Brunner, Ivo Suter, Leonie Bernet, Lionel Constantin, Stuart K. Grange, Pascal Rubli, Junwei Li, Jia Chen, Alessandro Bigi, and Lukas Emmenegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-640, https://doi.org/10.5194/egusphere-2025-640, 2025
Short summary
Short summary
In order to support the city of Zurich in tracking its path to net-zero greenhouse gas emissions planned to be reached by 2040, a CO2 emission monitoring system was established. The system combines a dense network of CO2 sensors with a high-resolution atmospheric transport model GRAMM/GRAL. This study presents the setup of the model together with its numerous inputs and evaluates its performance in comparison with the observations from the CO2 sensor network.
Dominik Brunner, Ivo Suter, Leonie Bernet, Lionel Constantin, Stuart K. Grange, Pascal Rubli, Junwei Li, Jia Chen, Alessandro Bigi, and Lukas Emmenegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-640, https://doi.org/10.5194/egusphere-2025-640, 2025
Short summary
Short summary
In order to support the city of Zurich in tracking its path to net-zero greenhouse gas emissions planned to be reached by 2040, a CO2 emission monitoring system was established. The system combines a dense network of CO2 sensors with a high-resolution atmospheric transport model GRAMM/GRAL. This study presents the setup of the model together with its numerous inputs and evaluates its performance in comparison with the observations from the CO2 sensor network.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Cited articles
Ambirajan, A. and Venkateshan, S. P.: Accurate determination of diffuse view
factors between planar surfaces, Int. J. Heat Mass Transf., 36, 2203–2208,
https://doi.org/10.1016/S0017-9310(05)80151-6, 1993. a
American Society of Civil Engineers Task Committee on Outdoor Human Comfort ASCE: Outdoor human comfort and its assessment: state of the art, American Society of Civil Engineers (ASCE), Reston, VA, 68 pp., ISBN 0784406847, 2004. a
American Society of Civil Engineers Task Committee on Urban Aerodynamics ASCE: Urban aerodynamics: wind engineering for urban planners and designers, American Society of Civil Engineers (ASCE), Reston, VA, 63 pp., ISBN 9780784411797, 2011. a
American Society of Heating Refrigerating and Air-Conditioning Engineers Inc. (ASHRAE): 2011 ASHRAE Handbook: Heating, Ventilating, and Air-Conditioning Applications, chapter 35, Solar energy use, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1108 pp., ISBN 978-1-936504-07-7, 2011. a
Aoyagi, T. and Takahashi, S.: Development of an Urban Multilayer Radiation
Scheme and Its Application to the Urban Surface Warming Potential,
Bound.-Lay. Meteorol., 142, 305–328, https://doi.org/10.1007/s10546-011-9679-0,
2012. a
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical
processes of the UCLA general circulation model, in: Methods Comput. Phys.,
edited by: Chang, J., vol. 17, Academic Press, New York, NY,
USA, pp. 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977. a
Arnfield, A. J.: Two decades of urban climate research: A review of
turbulence, exchanges of energy and water, and the urban heat island, Int.
J. Climatol., 23, 1–26, https://doi.org/10.1002/joc.859, 2003. a
Arnold, S., ApSimon, H., Barlow, J. F., Belcher, S. E., Bell, M., Boddy, J.,
Britter, R., Cheng, H., Clark, R., and Colvile, R.: Introduction to the
DAPPLE Air Pollution Project, Sci. Total Environ., 332,
139–153, https://doi.org/10.1016/j.scitotenv.2004.04.020, 2004. a
Barlow, J. F.: Progress in observing and modelling the urban boundary layer,
Urban Clim., 10, 216–240, https://doi.org/10.1016/j.uclim.2014.03.011, 2014. a, b
Bartholomew, P., Deskos, G., Frantz, R. A., Schuch, F. N., Lamballais, E., and
Laizet, S.: Xcompact3D: An open-source framework for solving turbulence
problems on a Cartesian mesh, SoftwareX, 12, 100550,
https://doi.org/10.1016/j.softx.2020.100550, 2020. a
Blocken, B.: Computational Fluid Dynamics for urban physics: Importance,
scales, possibilities, limitations and ten tips and tricks towards accurate
and reliable simulations, Build. Environ., 91, 219–245,
https://doi.org/10.1016/j.buildenv.2015.02.015, 2015. a, b
Blocken, B., Roels, S., and Carmeliet, J.: A numerical study of wind nuisance
for a high-rise building group, in: Proceedings of the 2nd International
conference on Research in Building Physics, Leuven,
Belgium, 14–18 September 2003, edited by: Carmeliet, J., Hens, H., and Vermeir, G., pp. 981–990, https://doi.org/10.1201/9781003078852,
2003. a
Blocken, B., Stathopoulos, T., and van Beeck, J.: Pedestrian-level wind
conditions around buildings: Review of wind-tunnel and CFD techniques and
their accuracy for wind comfort assessment, Build. Environ., 100, 50–81, https://doi.org/10.1016/j.buildenv.2016.02.004, 2016. a
Bohnenstengel, S., Evans, S., Clark, P. A., and Belcher, S.: Simulations of the
London urban heat island, Q. J. Roy. Meteor.
Soc., 137, 1625–1640, 2011. a
Bolton, D.: The computation of equivalent potential temperature, Mon. Weather
Rev., 108, 1046–1053,
https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2, 1980. a
Borge, R., Santiago, J. L., de la Paz, D., Martín, F., Domingo, J., Valdés, C., Sánchez, B., Rivas, E., Rozas, M. T., Lázaro, S., Pérez, J., and Fernández, Á.: Application of a short term air quality action plan in Madrid (Spain) under a high-pollution episode-Part II: Assessment from multi-scale modelling, Sci. Total Environ., 635, 1574–1584, https://doi.org/10.1016/j.scitotenv.2018.04.323, 2018. a
Bozovic, R., Maksimovic, C., Mijic, A., Smith, K., Suter, I., and Van Reeuwijk,
M.: Blue Green Solutions. A Systems Approach to Sustainable and
Cost-effective Urban Development, Tech. Rep., Imperial College London,
https://doi.org/10.13140/RG.2.2.30628.07046, 2017. a
Cai, X.-M.: Effects of differential wall heating in street canyons on
dispersion and ventilation characteristics of a passive scalar, Atmos.
Environ., 51, 268–277, https://doi.org/10.1016/j.atmosenv.2012.01.010,
2012b. a
Carpentieri, M. and Robins, A. G.: Tracer Flux Balance at an Urban Canyon
Intersection, Bound.-Lay. Meteorol., 135, 229–242,
https://doi.org/10.1007/s10546-010-9471-6, 2010. a, b, c
Carpentieri, M., Robins, A. G., and Baldi, S.: Three-Dimensional Mapping of Air
Flow at an Urban Canyon Intersection, Bound.-Lay. Meteorol., 133,
277–296, https://doi.org/10.1007/s10546-009-9425-z, 2009. a, b
Carpentieri, M., Hayden, P., and Robins, A. G.: Wind tunnel measurements of
pollutant turbulent fluxes in urban intersections, Atmos. Environ.,
46, 669–674, https://doi.org/10.1016/j.atmosenv.2011.09.083, 2012. a, b
Castleton, H. F., Stovin, V., Beck, S. B. M., and Davison, J. B.: Green roofs;
building energy savings and the potential for retrofit, Energy Build., 42,
1582–1591, https://doi.org/10.1016/j.enbuild.2010.05.004, 2010. a
Caton, F., Britter, R. E., and Dalziel, S.: Dispersion mechanisms in a street
canyon, Atmos. Environ., 37, 693–702,
https://doi.org/10.1016/S1352-2310(02)00830-0, 2003. a, b
Cheng, H. and Robins, A. G.: Wind tunnel simulation of field tracer release in London, in: Fourth International Conference on Fluid Mechanics, Dalian, China, 28–31 July 2004, 2004. a
COST Action 732: Model evaluation guidance and protocol document, edited by: Britter, R. E. and Schatzmann, M., Tech. Rep.,
University of Hamburg, 28 pp., ISBN 3-00-018312-4, https://mi-pub.cen.uni-hamburg.de/fileadmin/files/forschung/techmet/cost/cost_732/pdf/GUIDANCE_AND_PROTOCOL_DOCUMENT_1-5-2007_www.pdf (last access: 8 June 2022), 2007. a
Ehrhard, J., Khatib, I. A., Winkler, C., Kunz, R., Moussiopoulos, N., and
Ernst, G.: The microscale model MIMO: development and assessment, J. Wind
Eng. Ind. Aerodyn., 85, 163–176, https://doi.org/10.1016/S0167-6105(99)00137-3, 2000. a
Emanuel, K. A.: Atmospheric convection, Oxford University Press on Demand, ISBN 9780195066302,
1994. a
Erdélyi, R., Wang, Y., Guo, W., Hanna, E., and Colantuono, G.:
Three-dimensional SOlar RAdiation Model (SORAM) and its application to 3-D
urban planning, Sol. Energy, 101, 63–73,
https://doi.org/10.1016/j.solener.2013.12.023, 2014. a
Erell, E., Pearlmutter, D., and Williamson, T.: Urban microclimate – Designing
the spaces between buildings, 1st edn., Routledge, ISBN 9781844074679, 2011. a
Garratt, J. R.: The atmospheric boundary layer, 1st edn., Cambridge Univeristy Press, 316 pp., ISBN 0521380529,
1992. a
Girard, P., Nadeau, D. F., Pardyjak, E. R., Overby, M., Willemsen, P., Stoll,
R., Bailey, B. N., and Parlange, M. B.: Evaluation of the QUIC-URB wind
solver and QESRadiant radiation-transfer model using a dense array of urban
meteorological observations, Urban Clim., 24, 657–674,
https://doi.org/10.1016/j.uclim.2017.08.006, 2017. a
Grimmond, C. S. B., Blackett, M., Best, M. J., Barlow, J., Baik, J. J.,
Belcher, S. E., and Bohnenstengel, S. I.: The International Urban Energy
Balance Models Comparison Project: First Results from Phase 1, J. Appl.
Meteor. Clim., 49, 1268–1292, https://doi.org/10.1175/2010JAMC2354.1, 2010. a, b
Grimmond, S.: Urbanization and global environmental change: local effects of
urban warming, Geogr. J., 173, 83–88,
https://doi.org/10.1111/j.1475-4959.2007.232_3.x, 2007. a
Grylls, T.: Simulating air pollution in the urban microclimate, PhD thesis,
Imperial College London, https://doi.org/10.25560/91884, 2020. a
Grylls, T. and van Reeuwijk, M.: Tree model with drag, transpiration, shading
and deposition: Identification of cooling regimes and large-eddy simulation,
Agr. Forest Meteorol., 298–299, 108288,
https://doi.org/10.1016/j.agrformet.2020.108288, 2021. a
Grylls, T., Le Cornec, C. M., Salizzoni, P., Soulhac, L., Stettler, M. E.,
and van Reeuwijk, M.: Evaluation of an operational air quality model using
large-eddy simulation, Atmos. Environ. X, 3, 100041,
https://doi.org/10.1016/j.aeaoa.2019.100041, 2019. a, b, c, d
Grylls, T., Suter, I., Sützl, B., Owens, S., Meyer, D., and van Reeuwijk, M.:
uDALES: large-eddy-simulation software for urban flow, dispersion, and
microclimate modelling, J. Open Source Softw., 6, 3055,
https://doi.org/10.21105/joss.03055, 2021a. a
Grylls, T., Suter, I., Sützl, B., Owens, S., Meyer, D., and van Reeuwijk, M.: uDALES: large-eddy-simulation software for urban flow, dispersion, and microclimate modelling (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.5111497, 2021b. a
Hanjalić, K. and Kenjereš, S.: Some developments in turbulence
modeling for wind and environmental engineering, J. Wind Eng.
Ind. Aerod., 96, 1537–1570, 2008. a
Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Pier Siebesma, A., Axelsen, S., van den Dries, K., Geoffroy, O., Moene, A. F., Pino, D., de Roode, S. R., and Vilà-Guerau de Arellano, J.: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications, Geosci. Model Dev., 3, 415–444, https://doi.org/10.5194/gmd-3-415-2010, 2010. a, b, c, d, e, f
Hölling, M. and Herwig, H.: Asymptotic analysis of the near-wall region
of turbulent natural convection flows, J. Fluid Mech., 541, 383–397,
https://doi.org/10.1017/S0022112005006300, 2005. a
Hundsdorfer, W., Koren, B., vanLoon, M., and Verwer, J. G.: A positive finite-difference
advection scheme, J. Comput. Phys., 117, 35–46, https://doi.org/10.1006/jcph.1995.1042, 1995. a
Huttner, S.: Further development and application of the 3D microclimate
simulation ENVI-met, PhD thesis, Johannes Gutenberg-Universität
Mainz, https://doi.org/10.25358/openscience-2022, 2012. a
Isymov, N. and Davenport, A. G.: The ground level wind environment in built up
areas, in: Proceedings of the 4th International Conference on Wind Effects on
Buildings and Structures, edited by: Eaton, K. J., Heathrow, 1975, pp.
403–422, Cambridge University Press, ISBN 9780521208017, 1975. a
Järvi, L., Grimmond, C. S. B., and Christen, A.: The surface urban
energy and water balance scheme (SUEWS): Evaluation in Los Angeles and
Vancouver, J. Hydrol., 411, 219–237, https://doi.org/10.1016/j.jhydrol.2011.10.001,
2011. a
Jarvis, P. G.: The Interpretation of the Variations in Leaf Water Potential
and Stomatal Conductance Found in Canopies in the Field, Philos. Trans. R.
Soc. London B Biol. Sci., 273, 593–610, https://doi.org/10.1098/rstb.1976.0035, 1976. a
Kong, H., Choi, H., and Lee, J. S.: Direct numerical simulation of turbulent
thermal boundary layers, Phys. Fluids, 12, 2555–2568,
https://doi.org/10.1063/1.1287912, 2000. a
Kotthaus, S. and Grimmond, C. S. B.: Atmospheric boundary-layer characteristics
from ceilometer measurements. Part 2: Application to London's urban boundary
layer, Q. J. Roy. Meteorol. Soc., 144,
1511–1524, 2018. a
Krayenhoff, E. S. and Voogt, J.: A microscale three-dimensional urban energy
balance model for studying surface temperatures, Bound.-Lay. Meteorol.,
123, 433–461, https://doi.org/10.1007/s10546-006-9153-6, 2007. a, b
Krayenhoff, E. S., Christen, A., Martilli, A., and Oke, T. R.: A Multi-layer
Radiation Model for Urban Neighbourhoods with Trees, Bound.-Lay.
Meteorol., 151, 139–178, https://doi.org/10.1007/s10546-013-9883-1, 2014. a, b
Lawson, T. V. and Penwarden, A. D.: The effect of wind on people in the
vicinity of buildings, in: Proceedings of the 4th International Conference on
Wind Effects on Buildings and Structures, Heathrow, 1975, edited by: Eaton,
K. J., Cambridge University Press, ISBN 9780521208017, 1975. a
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371,
https://doi.org/10.1038/nature15371, 2015. a, b
Li, N. and Laizet, S.: 2DECOMP&FFT – A Highly Scalable 2D Decomposition
Library and FFT Interface,
https://www.turbulencesimulation.com/uploads/5/8/7/2/58724623/2010_laizet_nag.pdf (last access: 8 June 2022), 2010. a
Lindberg, F., Holmer, B., and Thorsson, S.: SOLWEIG 1.0 – Modelling spatial
variations of 3D radiant fluxes and mean radiant temperature in complex urban
settings, Int. J. Biometeorol., 52, 697–713,
https://doi.org/10.1007/s00484-008-0162-7, 2008. a
Llaguno-Munitxa, M. and Bou-Zeid, E.: Shaping buildings to promote street
ventilation: A large-eddy simulation study, Urban Clim., 26, 76–94, 2018. a
Luc Int Panis, Steven Broekx, R. L.: Modelling instantaneous traffic emission
and the influence of traffic speed limits, Sci. Total Environ.,
371, 270–285, 2006. a
Macdonald, R. W., Griffiths, R. F., and Hall, D. J.: An improved method for the
estimation of surface roughness of obstacle arrays, Atmos. Environ.,
32, 1857–1864, https://doi.org/10.1016/S1352-2310(97)00403-2, 1998. a
Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge, C., Knoop, H., Krč, P., Kurppa, M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M., Pavlik, D., Pfafferott, J., Resler, J., Rissmann, S., Russo, E., Salim, M., Schrempf, M., Schwenkel, J., Seckmeyer, G., Schubert, S., Sühring, M., von Tils, R., Vollmer, L., Ward, S., Witha, B., Wurps, H., Zeidler, J., and Raasch, S.: Overview of the PALM model system 6.0, Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, 2020. a
Masson, V.: A physically-based scheme for the urban energy budget in
atmospheric models, Bound.-Lay. Meteorol., 94, 357–397,
https://doi.org/10.1023/A:1002463829265, 2000. a
Matzarakis, A., Rutz, F., and Mayer, H.: Modelling radiation fluxes in simple
and complex environments: basics of the RayMan model, Int. J. Biometeorol.,
54, 131–139, https://doi.org/10.1007/s00484-006-0061-8, 2010. a
Mirzaei, P. A.: Recent challenges in modeling of urban heat island, Sustain.
Cities Soc., 19, 200–206, https://doi.org/10.1016/j.scs.2015.04.001, 2015. a
Mirzaei, P. A. and Haghighat, F.: Approaches to study urban heat island –
abilities and limitations, Build. Environ., 45, 2192–2201, 2010. a
Mittal, R. and Iaccarino, G.: Immersed Boundary Methods, Annu. Rev. Fluid
Mech., 37, 239–261, https://doi.org/10.1146/annurev.fluid.37.061903.175743, 2005. a
Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the surface
layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 24,
163–187, 1954. a
Moonen, P., Defraeye, T., Dorer, V., Blocken, B., and Carmeliet, J.: Urban
Physics: Effect of the micro-climate on comfort, health and energy demand,
Front. Archit. Res., 1, 197–228, https://doi.org/10.1016/j.foar.2012.05.002, 2012. a
Morris, C. W.: The anisotropy of diffuse solar radiation, PhD thesis,
Texas Tech University, http://hdl.handle.net/2346/9001 (last access: 8 June 2022), 1969. a
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and
supercooled water for atmospheric applications, Q. J. Roy. Meteor. Soc.,
131, 1539–1565, https://doi.org/10.1256/qj.04.94, 2005. a
Musy, M., Malys, L., Morille, B., and Inard, C.: The use of SOLENE-microclimat
model to assess adaptation strategies at the district scale, Urban Clim.,
14, 213–223, https://doi.org/10.1016/j.uclim.2015.07.004, 2015. a
NOAA: Solar Position Calculator,
https://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html (last access: 8 June 2022), 2018. a
Noilhan, J. and Planton, S.: A Simple Parameterization of Land Surface
Processes for Meteorological Models, Mon. Weather Rev., 117, 536–549,
https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2, 1989. a
Obukhov, A. M.: Turbulence in an atmosphere with inhomogeneous temperature,
Tr, Inst. Teor. Geofis. Akad. Nauk. SSSR, 1, 95–115, 1946. a
Oke, T. R.: The energetic basis of the urban heat island, Q. J. Roy. Meteor.
Soc., 108, 1–24, https://doi.org/10.1002/qj.49710845502, 1982. a
Oke, T. R., Mills, G., Christen, A., and Voogt, J. A.: Urban Climates, 1st edn.,
Cambridge University Press, ISBN 9780521849500, https://doi.org/10.1017/9781139016476, 2017. a, b, c, d
Peyret, R. and Taylor, T. D.: Computational methods for fluid flow, 1st edn., Springer
Science & Business Media, 358 pp., ISBN 9783642859526, https://doi.org/10.1007/978-3-642-85952-6, 1983. a
Pourquie, M., Breugem, W. P., and Boersma, B. J.: Some Issues Related to the
Use of Immersed Boundary Methods to Represent Square Obstacles, Int. J.
Multiscale Comput. Eng., 7, 509–522, https://doi.org/10.1615/IntJMultCompEng.v7.i6.30,
2009. a
PTV AG: PTV VISSIM 9 User Manual, PTV AG, 1084 pp., https://www.myptv.com/en/mobility-software/ptv-vissim (last access: 8 June 2022), 2017. a
Pyrgou, A. and Santamouris, M.: Increasing Probability of Heat-Related
Mortality in a Mediterranean City Due to Urban Warming, Int. J. Environ. Res.
Public Health, 15, 1571, https://doi.org/10.3390/ijerph15081571, 2018. a
Rao, V. R. and Sastri, V. M. K.: Efficient evaluation of diffuse view factors
for radiation, Int. J. Heat Mass Transf., 39, 1281–1286,
https://doi.org/10.1016/0017-9310(95)00203-0, 1996. a, b
Resler, J., Krč, P., Belda, M., Juruš, P., Benešová, N., Lopata, J., Vlček, O., Damašková, D., Eben, K., Derbek, P., Maronga, B., and Kanani-Sühring, F.: PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model, Geosci. Model Dev., 10, 3635–3659, https://doi.org/10.5194/gmd-10-3635-2017, 2017. a
Resler, J., Eben, K., Geletič, J., Krč, P., Rosecký, M., Sühring, M., Belda, M., Fuka, V., Halenka, T., Huszár, P., Karlický, J., Benešová, N., Ďoubalová, J., Honzáková, K., Keder, J., Nápravníková, Š., and Vlček, O.: Validation of the PALM model system 6.0 in a real urban environment: a case study in Dejvice, Prague, the Czech Republic, Geosci. Model Dev., 14, 4797–4842, https://doi.org/10.5194/gmd-14-4797-2021, 2021. a
Rizwan, A. M., Dennis, L. Y. C., and Liu, C.: A review on the generation,
determination and mitigation of Urban Heat Island, J. Environ. Sci., 20,
120–128, https://doi.org/10.1016/S1001-0742(08)60019-4, 2008. a
Rosenzweig, C., Solecki, W., Romero-Lankao, P., Mehrotra, S., Dhakal, S.,
Bowman, T., and Ibrahim, S. A.: ARC3.2 Summary for City Leaders – Climate Change and Cities: Second
Assessment Report of the Urban Climate Change Research Network, Tech. Rep., Urban
Climate Change Research Network (UCCRN), https://pubs.giss.nasa.gov/abs/ro02510w.html (last access: 8 June 2022), 2015. a
Salim, M. H., Schlünzen, K. H., Grawe, D., Boettcher, M., Gierisch, A. M. U., and Fock, B. H.: The microscale obstacle-resolving meteorological model MITRAS v2.0: model theory, Geosci. Model Dev., 11, 3427–3445, https://doi.org/10.5194/gmd-11-3427-2018, 2018. a
Santamouris, M.: Cooling the cities – A review of reflective and green roof
mitigation technologies to fight heat island and improve comfort in urban
environments, Sol. Energy, 103, 682–703,
https://doi.org/10.1016/j.solener.2012.07.003, 2014. a
Schlünzen, K. H., Hinneburg, D., Knoth, O., Lambrecht, M., Leitl, B.,
Lopez, S., Lüpkes, C., Panskus, H., Renner, E., and Schatzmann, M.:
Flow and transport in the obstacle layer: First results of the micro-scale
model MITRAS, J. Atmos. Chem., 44, 113–130, 2003. a
Seneviratne, S., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A.,
Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh,
M., Vicente-Serrano, S., Wehner, M., and Zhou, B.: 2021: Weather and Climate
Extreme Events in a Changing Climate, in: Climate Change 2021: The Physical
Science Basis, Contribution of Working Group I to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change, Tech. Rep.,
Intergovernmental Panel on Climate Change, https://www.ipcc.ch/report/ar6/wg1/downloads/ (last access: 8 June 2022), 2021. a
Siegel, R. and Howell, J. R.: Thermal radiation heat transfer, 4th edn.,
Taylor and Francis-Hemisphere, Washington, ISBN 1560328398, 2001. a
Sievers, U.: Das kleinskalige Strömungsmodell MUKLIMO_3. Teil 2:
Thermodynamische Erweiterungen, Deutscher Wetterdienst, 151 pp., ISBN 9783881484909, https://www.dwd.de/DE/leistungen/pbfb_verlag_berichte/pdf_einzelbaende/248_pdf.html (last access: 8 June 2022), 2016. a
Sikkema, J. K., Ong, S.-K., and Alleman, J. E.: Photocatalytic concrete
pavements: Laboratory investigation of NO oxidation rate under varied
environmental conditions, Constr. Build. Mater., 100, 305–314,
2015. a
Smagorinsky, J.: General circulation experiments with the primitive
equations, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a
Stewart, J. B.: Modelling surface conductance of pine forest, Agric. For.
Meteorol., 43, 19–35, https://doi.org/10.1016/0168-1923(88)90003-2, 1988. a
Suter, I.: Simulating the impact of blue-green infrastructure on the
microclimate of urban areas, PhD thesis, Imperial College London, https://doi.org/10.25560/78715, 2019. a, b, c, d
Suter, I.: uDALES 1.0: a large-eddy-simulation model for urban environments, Zenodo [data set], https://doi.org/10.5281/zenodo.5480826, 2021. a
Suter, I., Maksimović, Č., and van Reeuwijk, M.: A
neighbourhood-scale estimate for the cooling potential of green roofs, Urban
Clim., 20, 33–45, https://doi.org/10.1016/j.uclim.2017.02.007, 2017. a
Suter, I., Grylls, T., Sützl, B., Owens, S., Meyer, D., and van Reeuwijk, M.: uDALES, Github [code], https://github.com/uDALES/u-dales, last access: 8 June 2022. a
Sützl, B. S., Rooney, G. G., and van Reeuwijk, M.: Drag Distribution in
Idealized Heterogeneous Urban Environments, Bound.-Lay. Meteorol., 178,
225–248, https://doi.org/10.1007/s10546-020-00567-0, 2021b. a, b
Swinbank, W. C.: Long-wave radiation from clear skies, Q. J. Roy. Meteor.
Soc., 89, 339–348, https://doi.org/10.1002/qj.49708938105, 1963. a
Tomas, J. M.: Obstacle-resolving large-eddy simulation of dispersion in urban
environments Effects of stability and roughness geometry, PhD thesis, TU
Delft, https://doi.org/10.4233/uuid:5d93a697-be49-4f63-b871-b763bc327139, 2016. a
Tomas, J. M., Pourquie, M. J. B. M., and Jonker, H. J. J.: Stable
Stratification Effects on Flow and Pollutant Dispersion in Boundary Layers
Entering a Generic Urban Environment, Bound.-Lay. Meteorol., 159,
221–239, https://doi.org/10.1007/s10546-015-0124-7, 2016. a
United Nations Framework Convention on Climate Change (UNFCCC): Report of the Conference of the Parties on its twenty-fifth session, held in Madrid from 2 to 15 December 2019; Addendum Part two: Action taken by the Conference of the Parties at its twenty-fifth session, Tech. Rep.,
United Nations Framework Convention on Climate Change, https://unfccc.int/documents/210471 (last access: 8 June 2022), 2020. a
United Nations Population Fund (UNFPA): State of World Population 2012, Tech. Rep., United Nations Population
Fund, 128 pp., ISBN 978-1-61800-009-5, https://www.unfpa.org/publications/state-world-population-2012 (last access: 8 June 2022), 2012. a
Uno, I., Cai, X. M., Steyn, D. G., and Emori, S.: A simple extension of the
Louis method for rough surface layer modelling, Bound.-Lay. Meteorol.,
76, 395–409, https://doi.org/10.1007/BF00709241, 1995. a, b
Van den Hurk, B., Viterbo, P., Beljaars, A. C. M., and Betts, A. K.: Offline
validation of the ERA40 surface scheme, 295, Tech. Rep., ECMWF, https://www.ecmwf.int/node/12900 (last access: 8 June 2022), 2000. a
Van Reeuwijk, M.: Efficient simulation of non-hydrostatic free-surface flow,
Master's thesis, TU Delft, Delft, http://resolver.tudelft.nl/uuid:be73f057-804a-41bf-9170-c577e2f14d83 (last access: 8 June 2022), 2002. a
Vreman, A. W.: An eddy-viscosity subgrid-scale model for turbulent shear flow:
Algebraic theory and applications, Phys. Fluids, 16, 3670–3681,
https://doi.org/10.1063/1.1785131, 2004. a
Walker, T., Xue, S.-C., and Barton, G. W.: Numerical determination of
radiative view factors using ray tracing, J. Heat Transfer, 132, 72702,
https://doi.org/10.1115/1.4000974, 2010. a
Wallace, J. M. and Hobbs, P. V.: Chapter 5 – Atmospheric Chemistry, in:
Atmospheric Science: An Introductory Survey, second edn., edited by: Wallace, J. M. and Hobbs,
P. V., Academic Press, San Diego, pp. 153–207, ISBN 9780127329512, 2006. a
Wicker, L. J. and Skamarock, W. C.: Time-Splitting Methods for Elastic Models
Using Forward Time Schemes, Mon. Weather Rev., 130, 2088–2097,
https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2, 2002. a
World Heath Organization: WHO global air quality guidelines: particulate
matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon
monoxide, Tech. Rep., WHO, ISBN 9789240034228, https://apps.who.int/iris/handle/10665/345329 (last access: 8 June 2022), 2021. a
Wu, L.: URBAN4: An Urban Canopy Layer Surface Energy Balance Climate Model,
PhD thesis, University of California, Los Angeles, Dissertation Abstracts International, Section: B, 56–11, 6009, 1995. a
Xie, Z.-T. and Castro, I. P.: Efficient Generation of Inflow Conditions for Large Eddy Simulation of Street-Scale Flows, Flow Turbul. Combust., 81,
449–470, https://doi.org/10.1007/s10494-008-9151-5, 2008. a
Xie, Z.-T. and Castro, I. P.: Large-eddy simulation for flow and dispersion in
urban streets, Atmos. Environ., 43, 2174–2185,
https://doi.org/10.1016/j.atmosenv.2009.01.016, 2009. a, b
Yaghoobian, N. and Kleissl, J.: Effect of reflective pavements on building
energy use, Urban Clim., 2, 25–42, https://doi.org/10.1016/j.uclim.2012.09.002, 2012. a
Zhong, J., Cai, X.-M., and Bloss, W. J.: Large eddy simulation of reactive
pollutants in a deep urban street canyon: Coupling dynamics with O3-NOx-VOC
chemistry, Environ. Pollut., 224, 171–184, 2017. a
Short summary
Cities are increasingly moving to the fore of climate and air quality research due to their central role in the population’s health and well-being, while suitable models remain scarce. This article describes the development of a new urban LES model, which allows examining the effects of various processes, infrastructure and vegetation on the local climate and air quality. Possible applications are demonstrated and a comparison to an experiment is shown.
Cities are increasingly moving to the fore of climate and air quality research due to their...