Articles | Volume 15, issue 2
https://doi.org/10.5194/gmd-15-449-2022
https://doi.org/10.5194/gmd-15-449-2022
Development and technical paper
 | 
19 Jan 2022
Development and technical paper |  | 19 Jan 2022

Downscaling of air pollutants in Europe using uEMEP_v6

Qing Mu, Bruce Rolstad Denby, Eivind Grøtting Wærsted, and Hilde Fagerli

Related authors

Heterogeneous reaction kinetics influencing benzo(a)pyrene global atmospheric distribution and related lifetime lung cancer risk
Mega Octaviani, Benjamin A. Musa Bandowe, Qing Mu, Jake Wilson, Holger Tost, Hang Su, Yafang Cheng, Manabu Shiraiwa, Ulrich Pöschl, Thomas Berkemeier, and Gerhard Lammel
EGUsphere, https://doi.org/10.5194/egusphere-2025-186,https://doi.org/10.5194/egusphere-2025-186, 2025
Short summary
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024,https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Recommendations on benchmarks for chemical transport model applications in China – Part 2: Ozone and Uncertainty Analysis
Ling Huang, Xinxin Zhang, Chris Emery, Qing Mu, Greg Yarwood, Hehe Zhai, Zhixu Sun, Shuhui Xue, Yangjun Wang, Joshua S. Fu, and Li Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-2199,https://doi.org/10.5194/egusphere-2024-2199, 2024
Short summary
Description of the uEMEP_v5 downscaling approach for the EMEP MSC-W chemistry transport model
Bruce Rolstad Denby, Michael Gauss, Peter Wind, Qing Mu, Eivind Grøtting Wærsted, Hilde Fagerli, Alvaro Valdebenito, and Heiko Klein
Geosci. Model Dev., 13, 6303–6323, https://doi.org/10.5194/gmd-13-6303-2020,https://doi.org/10.5194/gmd-13-6303-2020, 2020
Short summary

Related subject area

Atmospheric sciences
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025,https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025,https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary
Updates and evaluation of NOAA's online-coupled air quality model version 7 (AQMv7) within the Unified Forecast System
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025,https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Quantifying the analysis uncertainty for nowcasting application
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025,https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary
Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
Geosci. Model Dev., 18, 1505–1544, https://doi.org/10.5194/gmd-18-1505-2025,https://doi.org/10.5194/gmd-18-1505-2025, 2025
Short summary

Cited articles

Denby, B. R.: metno/uEMEP: uEMEPv6 (6.0), Zenodo [code], https://doi.org/10.5281/zenodo.4923185, 2021a. a
Denby, B. R.: uEMEP matlab plotting scripts for visualisation of European uEMEP calculations, Zenodo [code], https://doi.org/10.5281/zenodo.4923224, 2021b. a
Denby, B. and Wind, P.: Development of a downscaling methodology for urban applications (uEMEP), in: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components, The Norwegian Meteorological Institute, Oslo, Norway, EMEP Status Report 1/2016, 75–88, 2016. a
Denby, B., Sundvor, I., Johansson, C., Pirjola, L., Ketzel, M., Norman, M., Kupiainen, K., Gustafsson, M., Blomqvist, G., Kauhaniemi, M., and Omstedt, G.: A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 2: Surface moisture and salt impact modelling, Atmos. Environ., 81, 485–503, https://doi.org/10.1016/j.atmosenv.2013.09.003, 2013a. a
Denby, B., Sundvor, I., Johansson, C., Pirjola, L., Ketzel, M., Norman, M., Kupiainen, K., Gustafsson, M., Blomqvist, G., and Omstedt, G.: A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 1: Road dust loading and suspension modelling, Atmos. Environ., 77, 283–300, https://doi.org/10.1016/j.atmosenv.2013.04.069, 2013b. a
Download
Short summary
Our study has achieved air quality modelling down to 100 m for all of Europe. This solves the current problem that street-level air quality modelling is usually limited to individual cities. With publicly available downscaling proxy data, even regions without their own high-resolution proxy data can obtain air quality maps at 100 m. The work is of significance for air quality mitigation strategies and human health exposure studies.
Share