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Abstract. The air quality downscaling model uEMEP and
its combination with the EMEP MSC-W chemical transport
model are used here to achieve high-resolution air quality
modelling at street level in Europe. By using publicly avail-
able proxy data, this uEMEP–EMEP modelling system is ap-
plied to calculate annual mean NO2, PM2.5, PM10, and O3
concentrations for all of Europe down to 100 m resolution
and is validated against all available AIRBASE monitoring
stations in Europe at 25 m resolution. Downscaling is car-
ried out on annual mean concentrations, requiring special at-
tention to non-linear processes, such as NO2 chemistry for
which frequency distributions are applied to better represent
the non-linear NO2 chemistry. The downscaling shows sig-
nificant improvement in NO2 concentrations for which the
spatial correlation has been doubled for most countries and
bias reduced from −46 % to −18 % for all stations in Eu-
rope. The downscaling of PM2.5 and PM10 does not show
improvement in spatial correlation but does reduce the over-
all bias in the European calculations from −21 % to −11 %
and from−39 % to−30 % for PM2.5 and PM10, respectively.
There is improved spatial correlation in most countries after
downscaling of O3 and a reduced positive bias of O3 con-
centrations from +16 % to +11 %. Sensitivity tests in Nor-
way show that improvements in the emission and emission
proxy data used for the downscaling can significantly im-
prove both the NO2 and PM results. The downscaling de-
velopment opens the way for improved exposure estimates,
improved assessment of emissions, and detailed calculations
of source contributions to exceedances in a consistent way
for all of Europe at high resolution.

1 Introduction

The EMEP Meteorological Synthesizing Centre – West
(EMEP MSC-W) at the Norwegian Meteorological Insti-
tute has been developing and implementing a downscaling
methodology to enhance the capabilities of the EMEP MSC-
W chemical transport model (Simpson et al., 2012, 2020)
(hereafter the EMEP model). This downscaling model is
known as uEMEP (urban EMEP) and can achieve high-
resolution air quality modelling down to 100 m for entire
countries (Denby et al., 2020). Even though the methodology
is referred to as “downscaling”, uEMEP is actually an inde-
pendent Gaussian plume modelling system which is added
as post-processing to the EMEP model. This makes the mod-
elling similar to other local-scale air quality models and al-
lows for a good physical representation of air quality concen-
trations.

The uEMEP was first reported in the 2016 EMEP status
report (Denby and Wind, 2016). Since then uEMEP has been
further developed and operationally implemented in the Nor-
wegian Air Quality Forecasting System (Miljodirektoratet,
2020b) as well as providing air quality data, maps, and infor-
mation to Norwegian municipalities through the Air Quality
Expert Service (Miljodirektoratet, 2020a). These model ap-
plications and validations are described in detail in Denby et
al. (2020).

The long-term aim of the uEMEP–EMEP modelling sys-
tem is to extend uEMEP to cover all of the EMEP model do-
main so that we can have air quality modelling at street level
over all of Europe. Modelling at high resolution provides a
better assessment of air quality mitigation strategies in Eu-
rope, as well as improved population exposure estimates for
use in health impact studies. Previous air quality modelling
across Europe could not reach such a high resolution of
100 m (Sofiev et al., 2015; Menut et al., 2013), or the street-
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level air quality modelling studies were limited to individual
cities (Stocker et al., 2012; Kim et al., 2018). The uEMEP–
EMEP modelling system is now established in Norway,
where access to good-quality emission related data is avail-
able. The Norwegian emissions are summarised in Sect. 5.4,
and details can be found in Sect. S4.2 of Denby et al. (2020).
Unfortunately, the same quality of high-resolution emission
data that is available in Norway is not directly available for
all of Europe. Many countries have suitable high-resolution
data, but these are not readily accessible for use. In order
to implement uEMEP for all of Europe proxy data that can
be used to redistribute emissions to fine scales are required.
Three datasets are available for all of Europe, as well as glob-
ally, and have been used to enable high-resolution modelling
in Europe: OpenStreetMap (OSM) (OpenStreetMap contrib-
utors, 2020) for redistributing road traffic emissions, popula-
tion data from Global Human Settlement (GHS) (Schiavina
et al., 2019) gridded to 0.0025◦ for redistributing residen-
tial heating emissions, and Automatic Identification System
(AIS) (Kystverket, 2020) data for shipping emissions gridded
to 0.0025◦. These datasets allow downscaling of the traffic,
residential heating, and shipping emission sources. All other
sources are not included in the downscaling.

Results of the European modelling for NO2, PM2.5, PM10,
and O3 are presented as example maps in Sect. 3, validation
against AIRBASE stations is in Sect. 4, and results of a num-
ber of sensitivity studies are reported in Sect. 5.

2 Methodology

Downscaling with uEMEP applies the following methodol-
ogy with the steps illustrated in Fig. 1 and additional details
in Sect. 2.1 to 2.4.

– Calculations are made using the EMEP model for all of
Europe in a way similar to the official EMEP model cal-
culations but with the additional output of the EMEP lo-
cal fractions (EMEP Status Report 1/2017, 2017; Wind
et al., 2020).

– uEMEP is implemented as a post-processing routine to
the annual mean output from the EMEP model. EMEP
emission grids per sector and per compound are redis-
tributed onto high-resolution sub-grids using the emis-
sion proxies.

– uEMEP then calculates the local dispersion from these
sub-grid emissions using a dispersion kernel within a
moving window region defined to be the size of 2× 2
EMEP grids.

– uEMEP removes the local fraction contribution from the
EMEP grid, within the same moving window region,
and replaces these with the uEMEP sub-grid results.

– A frequency-distribution-based chemistry scheme is ap-
plied to calculate downscaled NO2 and O3 concen-
trations from annual mean NOx (NO+NO2) and Ox
(O3+NO2) concentrations.

– Resolution of the sub-grids varies according to the ap-
plication, but maps are made at 100 m and calculations
at monitoring sites are made at 25 m.

2.1 EMEP model implementation

The EMEP model setup follows that in EMEP/MSC-W et
al. (2020). Model version rv4.36 is used in this study, with a
horizontal resolution of 0.1◦×0.1◦ and 20 vertical layers (the
lowest layer height of approximately 50 m). The model do-
main covers the geographic area between 30–82◦ N latitude
and 30◦W–90◦ E longitude. The simulation year is 2018.

The meteorological data are taken from the Integrated
Forecast System (IFS) of the European Centre for Medium-
Range Weather Forecasts (ECMWF), with the version IFS
Cycle 40r1 (ECMWF-IFS cy40r1). The emission inventory
for 2018 is based on the official data submissions to the
EMEP Centre on Emission Inventories and Projections (Pin-
terits et al., 2020) in 2020, in which the PM emissions from
the residential combustion sector (GNFR C) are replaced by a
bottom-up estimate of the Netherlands Organisation for Ap-
plied Scientific Research (TNO) (Denier van der Gon et al.,
2020; Fagerli et al., 2020) for 2017. This TNO dataset should
represent an improved estimate of residential combustion
emissions of PM, accounting for condensable organics in a
consistent way.

The EMEP model calculates and outputs the “local frac-
tion” used by the uEMEP downscaling to remove double
counting of emissions (Denby et al., 2020; Wind et al., 2020).
The local fraction is the contribution of emissions in one
EMEP grid to itself and to its neighbouring grids. For this
application only a 3× 3 grid contribution region is calcu-
lated, though for other applications this can be much larger.
By tagging the grid emissions in this way the local contribu-
tion from EMEP can be removed and replaced by the high-
resolution uEMEP sub-grid calculation.

2.2 uEMEP model implementation

The uEMEP model is described in a recent publication
(Denby et al., 2020). In that article the Norwegian forecast
application of uEMEP is described, with hourly downscal-
ing using bottom-up emission inventories carried out. For the
European application calculations are made on annual mean
data, creating air quality maps for Europe down to 100 m res-
olution and calculating concentrations at AIRBASE station
positions down to 25 m.

Downscaling is carried out in the following way. EMEP
grid emissions per sector and per source are redistributed to
uEMEP sub-grids using the proxy emission data described
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Figure 1. Schematic illustration of the uEMEP–EMEP coupled modelling system.

in Sect. 2.3. Each sub-grid dispersion calculation uses only
the emission sub-grids within the moving window emission
region (Fig. 1). For annual mean calculations dispersion is
carried out using a rotationally symmetric Gaussian disper-
sion kernel (Denby et al., 2020), given an initial plume size
and height. These parameters are provided in Table 1. The
initial horizontal plume size is determined by the size of the
sub-grid. The Gaussian dispersion parameters used are based
on the Kz dispersion methodology described in Denby et al.
(2020) but adapted to the rotationally symmetric dispersion
kernel. The EMEP model local fraction contribution originat-
ing from within the moving window region is removed and
replaced with the sub-grid dispersion calculation from uE-
MEP, thus avoiding double counting of emissions (Fig. 1).
For these simulations this region corresponds to 2×2 EMEP
grids, i.e. within an area that is ±0.1◦ in both latitude and
longitude. This ensures that no matter where the uEMEP cal-
culation sub-grid is placed the moving window region will
always be covered by the 3× 3 local fraction region.

Downscaling with uEMEP occurs only for primary emis-
sions. NO2 is calculated from NOx and Ox using the same
travel time parameterisation described in Denby et al. (2020)
but applied to annual mean wind speeds, photo-dissociation
rates, and concentrations. To account for non-linearity in
the NO2 chemistry, when calculating with annual means, an
additional frequency distribution correction factor is imple-

Table 1. Initial dispersion (σz0) and emission height (hemis) for the
three downscaled sources for all primary pollutants.

Source Initial dispersion Emission height
(σz0) (hemis)

Traffic (GNFR6) 2 m 1 m
Residential heating (GNFR3) 10 m 15 m
Shipping (GNFR7) 15 m 70 m

mented (Sect. 2.4). Annual mean downscaled O3 is also de-
termined using this same parameterisation.

To improve efficiency of the calculations, Europe is split
into a number of tiles that cover the European land domain.
For the 100 m resolution mapping calculations there are 1097
tiles, each of which is 100km×100km. These tiling regions
are shown in Fig. 2.

2.3 The uEMEP proxy data

We use road data from OSM to redistribute the traffic emis-
sions. Though the spatial coverage of OSM is very good,
it does not contain actual traffic data. Redistribution of the
emission data is achieved by weighting the different road
categories provided in OSM. The following road categories
are considered: motorway, trunk, primary, secondary, ter-
tiary, unclassified, and residential. Each is weighted relative
to the other so that emissions can be redistributed and at-
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Figure 2. Annual mean PM2.5 concentrations calculated with the
EMEP model at 0.1◦ for 2018. Shown are the uEMEP tiling regions
used in the calculations. In total, 1097 100km× 100km tiles with
100 m resolution are used to model Europe.

Figure 3. Weighting of the OpenStreetMap road categories used to
redistribute EMEP traffic emissions for downscaling. Applied to all
primary pollutants.

tributed to the road links. Estimates of the weights are based
on the representative average daily traffic (ADT) for differ-
ent road categories for Norwegian average road situations.
The weighting currently employed for the redistribution is
shown in Fig. 3. It is also worth noting that for major roads,
such as motorways, OSM often represents these as dual car-
riageways, i.e. as two separate road links. In these cases the
weighting of a motorway will be twice that indicated here.
Sensitivity tests with alternative weighting (Sect. 5.2) show
that the choice of weighting does impact the results but that
the current choice provides close to optimal spatial correla-
tion when compared to measurements.

A global population dataset from the GHS is used as the
proxy for redistributing residential heating emissions. We
choose the highest available resolution of 9 arcsec (0.0025◦)
from the year 2015. The coordinate system is WGS84. This
dataset indicates the distribution of population as the number
of people per cell. A number of alternative formulations of
the population proxy, as well as an alternative proxy based
on building density, are assessed in Sect. 5.3

AIS data for shipping emissions are provided by the Nor-
wegian Coastal Administration. The raw data, which contain
a list of instantaneous point emissions, are averaged over the
year 2017 and gridded to 0.0025◦. Though these data are ac-
tual emissions we still use them as proxy data to redistribute
EMEP gridded emissions to be consistent in the methodol-
ogy.

2.4 uEMEP chemistry parameterisation for annual
mean NO2

The uEMEP downscales only primary pollutants. It is thus
necessary to apply chemistry parameterisations to the NOx
and EMEP O3 concentrations to derive downscaled NO2 and
O3 concentrations. Two methods for doing this are described
in Denby et al. (2020): one for hourly concentrations using
a weighted travel time parcel method and the other for an-
nual means, which is based on a simple empirical relation-
ship between observed NO2 and NOx . It is desirable to apply
the model-based chemistry scheme rather than an empirical
scheme; however, due to the non-linearity of the NO2 chem-
istry the chemical scheme cannot be directly applied to an-
nual mean concentrations.

To solve this, chemistry is not calculated on just a single
annual mean value for NOx and O3 but on a frequency distri-
bution for these parameters that represent the variability over
a year. This can be illustrated for the photostationary case in
which the NO2 concentrations can be derived from NOx and
Ox using

[NO2] =
1
2

(
([NOx] + [Ox] + J/k1)

−

√
([NOx] + [Ox] + J/k1)

2
− 4[NOx][Ox]

)
, (1)

where the concentrations are annual mean values in
molecules per cubic centimetre (molec. cm−3), k1 is the pro-
duction reaction rate, and J the photo-dissociation rate for
NO2. If the frequency distribution for the three annual mean
variables [NOx], [Ox], and J/k1 is known then we can inte-
grate over Eq. (1) using these distributions as weighting func-
tions. An appropriate probability distribution function for the
concentrations is the log-normal distribution, which can be
written as

PDFx =
1

xσ
√

2π
exp

(
−
(log(x)−µ)2

2σ 2

)
, (2)
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where the log-normal parameters µ and σ are determined
from the mean (m) and the standard deviation (s) by

µ= log
(

m2
√
m2+ s2

)
and σ 2

= log
(

1+
s2

m2

)
.

The frequency distribution of J is not log-normally dis-
tributed, since it is dependent on the solar zenith angle
(ZA) and various other meteorological parameters, such as
cloud cover and water vapour content. The EMEP model
uses lookup tables based on precalculated J values from the
Phodis model (Jonson et al., 2000). In order to implement
the frequency distribution of J in uEMEP a power-law fit is
made to the tabulated values. This can be written as

J = Cj cos(ZA)−pj , (3)

where Cj is a constant that is normalised out when produc-
ing the normalised frequency distribution and pj = 0.28. The
standard deviation of k1, dependent on air temperature, is sig-
nificantly smaller than for J so it is treated as a constant.

A new value [NO2]pdf can then be determined using these
frequency distributions:

[NO2]pdf

=

∞∫ ∫ ∫
0

[NO2]PDFoxPDFnoxPDFjd[NOx]d[Ox]dJ, (4)

and a correction term showing its difference from the mean
is defined as

fno2,pdf =
[NO2]pdf

[NO2]mean
− 1. (5)

When calculating in three orthogonal dimensions it is as-
sumed there is no correlation between the variables.

To implement this procedure the standard deviation s must
be known for NOx and Ox . Values for snox and sox have been
derived from earlier model calculations for Norwegian sta-
tions. Linear regression provides robust values for sox/mox
and snox/mnox of 0.21 and 1.14, respectively (Fig. S5). The
variability of NOx reflects the variability of the traffic emis-
sions for stations within the influence of traffic, and this
should be generally applicable throughout Europe. A total
of 72 sites are used for the calculation. The calculation of the
distribution correction is carried out numerically after calcu-
lation of the NO2 concentrations.

Implementation of the frequency distribution for concen-
trations has a significant impact, with a general reduction in
NO2 concentrations compared to the annual mean calcula-
tion using Eq. (1). This reduction leads to correction terms
(fno2,pdf) of between 0 % and −25 %. The highest correc-
tions occur around NOx = Ox , where Eq. (1) shows the most
non-linear behaviour. On average for all station sites in Eu-
rope, around a −16 % reduction on the initially calculated

[NO2]mean has been determined. In contrast to the distribu-
tion correction for concentrations, the distribution correction
for J leads to an increase in NO2 of around 6 %. This is be-
cause roughly half of the frequency distribution for J is 0, i.e.
night-time, when there is no photo-dissociation. In Sect. 5.5
the impact of this and other chemistry schemes is further
discussed. More information concerning this scheme is con-
tained in the Supplement.

3 Example maps

In this section we present example maps that are generated
from the EMEP model and uEMEP simulations. The 100 km
example tiles are shown in Figs. 4–6, demonstrating the orig-
inal EMEP model calculations and the downscaled maps us-
ing uEMEP for NO2, O3, and PM2.5. The uEMEP calcu-
lations are made on an x–y projected map commonly used
for European mapping. The projection used is the European
ETRS89-LAEA projection (EPSG: 3035). Maps presented
are shown on latitude and longitude, which means that the
projected uEMEP tiled maps do not necessarily follow the
north–south direction.

The downscaled maps resolve more variability between
stations. Compared with the EMEP model maps, uEMEP
maps have higher concentrations of NO2 and PM2.5, as well
as lower concentration of O3, in heavy traffic and populated
areas due to the high-resolution proxy dataset.

4 Validation

Observed annual mean concentrations of NO2, PM2.5, PM10,
and O3 from AIRBASE (European Environment Agency,
2018) are used for comparison with both the EMEP model
and uEMEP calculations. All valid AIRBASE stations with
more than 75 % coverage are used in the validation and are
assumed to be sited at 3 m above the surface. Results for the
year 2018 are presented. Results focus on the spatial cor-
relation, expressed in terms of the coefficient of determina-
tion (r2), and on the relative bias (bias). For station sites the
downscaling with uEMEP is performed on 25 m sub-grids,
which is of sufficient resolution to spatially represent traf-
fic sites. However, since the Gaussian model used does not
take into account buildings or obstacles, traffic sites in street
canyons or built-up areas may be underestimated. A study by
Lefebvre et al. (2013) in Antwerp, where both Gaussian and
street canyon models were applied at 15 street canyon mod-
elling sites, showed an average street canyon modelling in-
crement of just 11 % for NO2. We include all available sites
in this study because in Europe the majority of traffic sites
appear not to be street canyons, though information on this
is unclear (Tarrasón et al., 2021). Also, even without includ-
ing obstacles, the increased model resolution (up to 25 m)
allows the concentration gradients at roadsides to be better
described.
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Figure 4. Calculated NO2 concentrations in the 100 km tile (no. 328) for 2018, which is part of the all European calculation at 100 m
resolution. (a) The EMEP model calculation at 0.1◦ and (b) the uEMEP calculation at 100 m resolution. The city in this tile is Milan.
AIRBASE stations are shown as circles.

Figure 5. Calculated O3 concentrations in the 100 km tile (no. 328) for 2018, which is part of the all European calculation at 100 m resolution.
(a) The EMEP model calculation at 0.1◦ and (b) the uEMEP calculation at 100 m resolution. The city in this tile is Milan. AIRBASE stations
are shown as circles. This is the same tile shown in Fig. 4.

4.1 NO2

In Figs. S6 and S7 scatter plots for NO2 are shown for each
country and Europe as a whole. These results are summarised
in Fig. 7 where the annual mean concentration and spatial
correlation are shown.

In a majority of countries the spatial correlation for NO2 is
more than doubled when implementing uEMEP. The two ex-
ceptions are Ireland (IE), where the spatial correlation hardly

changes with the downscaling, and Bosnia and Herzegovina
(BA), where the spatial correlation is significantly reduced.
Both these countries have very few stations. The highest spa-
tial correlation is for Poland (PL) with r2

= 0.85.
It is worth noting that the average spatial correlation per

country is r2
= 0.62, which is higher than the spatial corre-

lation when assessed for all stations in Europe (r2
= 0.57).

This indicates that some of the variability occurs between
countries and can be interpreted to reflect differences related
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Figure 6. Calculated PM2.5 concentrations in the 100 km tile (no. 79) for 2018, which is part of the all European calculation at 100 m
resolution. (a) The EMEP model calculation at 0.1◦ and (b) the uEMEP calculation at 100 m resolution. The city in this tile is Madrid.
AIRBASE stations are shown as circles.

Figure 7. Annual mean NO2 concentrations and spatial correlation (coefficient of determination r2) per country for 2018 calculated with
the EMEP model and uEMEP compared to AIRBASE observations. Only countries with 10 or more stations are shown, but all stations are
included in the final EU result. A total of 3313 stations are included in the comparison.
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to emission reporting from each country. If the NOx emis-
sions from individual countries have uncorrelated bias, this
will reduce the overall spatial correlation.

The relative bias is improved for all countries with the
exception of Greece (EL), which is the only country with
a significant positive bias. Overall for Europe, bias is im-
proved from −46 % for the EMEP model to −18 % when
using uEMEP. Of the 28 countries with 10 or more monitor-
ing sites, 18 of these have an absolute bias less than 25 %
after downscaling. Turkey (TR) has the largest negative bias,
after downscaling, of −45 %.

4.2 PM2.5

In Figs. S8 and S9 scatter plots for PM2.5 are shown for each
country and Europe as a whole. These results are summarised
in Fig. 8 where the annual mean concentration and spatial
correlation are presented.

Unlike the NO2 downscaling, there is generally no im-
provement in the spatial correlation when applying uEMEP
for PM2.5. Only 6 out of 17 countries show improved spatial
correlation, and overall for Europe there is a slight decrease
from r2

= 0.49 for the EMEP model to 0.46 for uEMEP. This
result is further discussed in Sect. 6.

The relative bias, however, is reduced for almost all coun-
tries. For Europe as a whole the relative bias went from
−21 % for the EMEP model to −11 % for uEMEP. Only the
three countries Austria (AT), Sweden (SE), and Finland (FI),
which had almost no bias with the EMEP model calculation,
achieve a positive bias with uEMEP.

4.3 PM10

In Figs. S10 and S11 scatter plots for PM10 are shown for
each country and Europe as a whole. These are summarised
in Fig. 9.

The results for PM10 are similar to those for PM2.5. In
this case though the majority of countries, 21 out of 27, have
improved spatial correlation with the application of uEMEP.
The spatial correlation for all of Europe using uEMEP is
unaltered compared to the EMEP model calculation, with
r2
= 0.34. This is lower than the spatial correlation found

for PM2.5 by around 0.12.
As with PM2.5 the relative bias is reduced with the uEMEP

downscaling. For Europe we see that the relative bias went
from −39 % for the EMEP model to −30 % for uEMEP.

4.4 O3

In Figs. S12 and S13 scatter plots for O3 are shown for each
country and Europe as a whole. These are summarised in
Fig. 10.

Ozone is generally reduced with the downscaling due to
an increase in NOx concentrations. In general for Europe we
see a reduced positive bias from+16 % for the EMEP model
to +11 % for uEMEP. Spatial correlation is also improved in

21 of the 24 countries. The only countries to show significant
degradation in the downscaling results are Switzerland (CH)
and Greece (EL). This is likely due to the overestimated NOx
concentrations there (Fig. 7).

5 Sensitivity studies

In this section we present the results of several sensitivity cal-
culations using uEMEP. These include sensitivity to sub-grid
resolution, traffic emission proxies, residential combustion
emission proxies, alternative bottom-up emissions in Nor-
way, and the NO2 chemistry scheme.

5.1 Sensitivity to resolution

When calculating concentrations at station positions a grid
resolution of 25 m is used. However, when mapping all of
Europe a lower resolution of 100 m is employed. In Fig. 11
we show the results of a change in resolution of the annual
mean NO2 and PM2.5 concentrations for resolutions from 25
to 500 m.

For NO2 both bias and spatial correlation improve with
increasing resolution. The 100 m calculations are on average
4 % lower than the 25 m calculations. For PM2.5 there is little
change in bias between the different resolutions. Both ship-
ping and residential combustion sources are only provided at
250 m, so any further change in model results at lower res-
olutions will be due to the traffic contribution only. Spatial
correlation is basically unchanged for PM2.5 at all resolu-
tions.

5.2 Sensitivity to OSM weighting

In Fig. 3 the weighting imposed on the OSM road categories
is shown. This weighting specifies the relative contribution
of the different road categories to the redistribution of the
gridded traffic emissions in uEMEP. This weighting is based
on an analysis of Norwegian traffic data, but it is worthwhile
to assess the sensitivity of the calculated NO2 concentrations
using different weights. To assess this sensitivity a power law
is applied to the weighting. For power indices greater than 1
more weighting is applied to the major roads, and for power-
law indices less than 1 more weight is applied to the minor
roads. The different weights for the different power-law in-
dices are shown in Fig. 12. The results of this sensitivity test,
presented in terms of relative bias and spatial correlation (r2),
are shown in Fig. 13.

Bias is quite strongly affected by the change in weight-
ing. Higher concentrations are calculated when more weight
is given to the minor roads. This is likely because most mea-
surement sites are not on major roads. Increasing the weight-
ing to minor roads will generally increase the urban back-
ground levels. The spatial correlation is among the highest
for the current weighting with a power index of 1. This con-
firms that the initial estimate, based on Norwegian traffic, re-
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Figure 8. Annual mean PM2.5 concentrations and spatial correlation (coefficient of determination r2) per country for 2018 calculated with
the EMEP model and uEMEP compared to AIRBASE observations including all types of stations. Only countries with 10 or more stations
are shown, but all stations are included in the final EU result. A total of 1376 stations are included in the comparison.

flects a good general distribution of traffic in Europe. If real
traffic volume were available the weighting would be more
precise. Tests on Norwegian data in Sect. 5.4 confirm that
spatial correlation is significantly improved when using real
traffic data for the redistribution weighting.

5.3 Sensitivity to the residential combustion emission
proxy

For the PM2.5 calculations presented in Sect. 4.2 population
density data at 0.0025◦ have been used to redistribute the res-
idential combustion emissions in uEMEP. The results indi-
cate a slightly reduced spatial correlation but also with an
improved negative bias. In this section we assess the sensi-
tivity of the redistribution proxy to a number of alternative
proxies. Firstly a power law is applied to the population den-
sity data. A lower power-law index will reduce the weight-
ing towards highly populated regions. A power-law index of
0 will work as a mask, redistributing the EMEP emissions
evenly to any 250 m sub-grid that contains population. As an
alternative to the population data, building density data have
also been extracted from the OpenStreetMap dataset. These
have also been placed on a 0.0025◦ grid for all of Europe.

Two alternatives with this proxy are tested: the first using
building density as the weighting proxy and the second using
building density masked with population so that only areas
with both buildings and population are used for redistribu-
tion. In addition to the alternative proxy data the sensitivity
of the calculations to emission height, currently set to 15 m,
is also assessed.

The results are shown in Fig. 14. Here we see that a power
law of 0.25 gives slightly improved spatial correlation and
that the use of building density also slightly improves spatial
correlation compared to population. However, none of the
alternative proxies significantly improve the spatial distribu-
tion of PM2.5 and none attain the spatial correlation of the
EMEP model calculations at 0.1◦. There is a general trend
for reduced negative bias to lead to reduced spatial correla-
tion in all calculations, so when the contribution from the
downscaled residential combustion increases spatial correla-
tion decreases. This implies that the redistribution is not im-
proving the results.

In addition to the proxy sensitivity the result of the EMEP
model calculation wherein all local EMEP model grid contri-
butions (±1◦) have been removed is shown in Fig. 14. This
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Figure 9. Annual mean PM10 concentrations and spatial correlation (coefficient of determination r2) per country for 2018 calculated with
the EMEP model and uEMEP compared to AIRBASE observations including all types of stations. Only countries with 10 or more stations
are shown, but all stations are included in the final EU result. A total of 2891 stations are included in the comparison.

shows firstly that around 10 % of the PM2.5 in the EMEP
model comes from within this local region and that the inclu-
sion of these emissions does add to improved spatial correla-
tion at the EMEP model 0.1◦ scale, from r2

= 0.467 to 0.488.
Here we see more clearly that while the bias is improved by
downscaling the spatial correlation is not and is similar to the
spatial correlation obtained from the non-local contributions.
However, it is possible to achieve improved spatial correla-
tion when more appropriate downscaling proxies are used.
This is presented in Sect. 5.4.

5.4 Results of improved emission data in Norway

Throughout the uEMEP downscaling simulations we used
the 0.1◦ country-reported emission data and redistributed
them using population, OpenStreetMap, and AIS shipping
data as redistribution proxies. However, many countries have
more detailed emission data sets, including Norway, that
could be used to improve the downscaling calculations. To
test the impact of more realistic spatial distributions of emis-
sions, the emission and emission proxy data used in Nor-
way are replaced in the EMEP model and uEMEP calcula-
tions with the emission data currently used in the national
air quality forecasting in Norway. Details surrounding these

emissions can be found in Denby et al. (2020) and Grythe
et al. (2019). The most important differences between the
Norwegian and European emissions and emission proxy data
include the fact that (1) traffic volume data from the Norwe-
gian national road database are used instead of OSM weight-
ing. Exhaust emissions are based on emission factors using
a bottom-up methodology, and NOx emissions are addition-
ally corrected for temperature. (2) The non-exhaust road dust
emissions are calculated with the NORTRIP model (Denby et
al., 2013a, b), which are significantly larger than the current
national estimates reported for Norway. (3) The total Nor-
wegian residential heating emissions of PM are the same for
both the Norwegian and the European emissions, but the Nor-
wegian emissions have been redistributed using the MetVed
model (Grythe et al., 2019), which uses much more detailed
information than just population to distribute the residential
heating emissions at 250 m. (4) The Norwegian emissions
and the uEMEP proxy data are entirely consistent with each
other since the Norwegian emissions are aggregated grid
emissions based on the fine-scale emission data.

We make four separate downscaling calculations for Nor-
way using the two emissions “European emissions” and
“Norwegian emissions” as well as the two high-resolution
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Figure 10. Annual mean O3 concentrations and spatial correlation (coefficient of determination r2) per country for 2018 calculated with the
EMEP model and uEMEP compared to AIRBASE observations including all types of stations. Only countries with 10 or more stations are
shown, but all stations are included in the final EU result. A total of 1974 stations are included in the comparison.

Figure 11. Change in bias and spatial correlation (coefficient of determination r2) as a result of changes in uEMEP resolution. Shown are the
results for NO2 and PM2.5. Also included is the EMEP model 0.1◦ calculation in yellow. The results are based on the European calculations,
and all available AIRBASE stations are included.
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Figure 12. OSM weighting, relative to motorways, that results with
a change in the power-law index when applied to the initial weights.
The scenarios are tested in the European calculations.

proxy datasets “European proxy downscaling” and “Nor-
wegian proxy downscaling”, respectively. Shipping is not
changed in these simulations, and in this case the calculation
year is 2017. Though the resolution of the EMEP model in
the Norwegian forecasting system is nominally 2.5 km, for
these simulations we use the same 0.1◦ EMEP model grid
resolution. The results are shown in Fig. 15 for NO2, PM2.5,
and PM10 with the relative bias (%) and spatial correlation
(r2) presented.

For NO2 in Norway the large negative bias seen in the
EMEP model is almost completely removed by the use of
the traffic downscaling using either the Norwegian or Euro-
pean emission data. On a national level the local Norwegian
(bottom-up) traffic NOx emissions are roughly 25 % higher
than the EMEP (top-down) emissions. NO2 concentrations
are slightly overestimated when using the Norwegian proxy
data for traffic. Spatial correlation is improved with the use
of the Norwegian proxy data for traffic compared to Euro-
pean emissions that use OSM data, from r2

= 0.6 to 0.72. It
is worth noting that in the complete Norwegian calculation
reported in Denby et al. (2020) using hourly calculations the
spatial correlation is even higher at r2

= 0.78, but the bias is
less at −5 %.

For PM2.5 biases are very similar for both the European
and Norwegian proxy data sets when using either the Euro-
pean or Norwegian emissions. The spatial correlation, how-
ever, is significantly higher when using the Norwegian emis-
sions both at grid level and after downscaling. There is sig-
nificant improvement (r2 increases from 0.37 to 0.55) when
changing European emissions to Norwegian emissions and
changing the residential heating proxy from population (Eu-
ropean proxy) to the MetVed model (Norwegian proxy). This
indicates that improved spatial representation can be attained
when both the gridded and the proxy data are consistent and
more representative. However, little can be improved with
downscaling when the initial gridded emissions are not well
distributed, even with improved proxy data. Interestingly, we
see the same result as reported in Sect. 4.2 that the spatial cor-
relation is reduced when applying the European proxy data

to the European emissions. These results indicate that signifi-
cant improvements can still be obtained in the downscaling if
improved emissions and emission proxies are implemented.

For PM10 both bias and spatial correlation are significantly
improved with the implementation of the local emissions and
proxies. This is to a large extent due to the improvement
in the road dust emission contribution but also due to an
improvement in the residential heating distribution. Spatial
correlation is also significantly increased from r2

= 0.27 to
0.49.

5.5 Sensitivity to the NO2 chemistry scheme

Included in uEMEP are a number of simplified NO2 chem-
istry schemes used to derive downscaled NO2 concentrations
from NOx and O3 concentrations. In the results presented
so far we have used the weighted travel time parcel method,
as applied and described in Denby et al. (2020), with the
additional use of the frequency distribution correction de-
scribed in Sect. 2.4 (“Travel time” in Fig. 16). Two addi-
tional chemistry-based schemes and two experience-based
schemes are also available. The two alternative chemistry
schemes are the photostationary formulation (“Photostation-
ary” in Fig. 16) and an alternative stationary formulation
(“Stationary” in Fig. 16) that also allows for deviation from
the photostationary state (Maiheu et al., 2017). The first
empirical scheme is the Romberg scheme (Romberg et al.,
1996) (“Romberg” in Fig. 16), also described in Denby et al.
(2020), that directly converts NOx to NO2 concentrations.
The parameters for this equation have been updated by fit-
ting to all available AIRBASE data for the year 2017. The
other empirical formulation is the SRM scheme (Wesseling
and van Velze, 2014) (“SRM” in Fig. 16) that is also based on
a fit to measurement data but includes background O3 as one
of the input parameters. The advantage of the two empirical
fits is that they should convert NOx to NO2 in a manner that is
consistent with the observations and as such can be applied to
annual mean concentrations directly without any correction
for non-linearity. All methods are described in Sect. S1.

In Fig. 16 we provide the results of the sensitivity tests,
showing bias and spatial correlation for both NO2 and O3.
The three chemistry-based schemes give similar results, in-
dicating that in all three cases the calculations are close to
photostationary. The two empirical fits also give similar re-
sults, with the largest negative bias in NO2 given by the
Romberg scheme with −25 %. Since the Romberg scheme
is specifically designed to reflect measurements, providing
the correct NO2/NOx ratio, it can be regarded as the clos-
est to the measurements. The bias differences between chem-
istry schemes and the Romberg scheme indicate that chem-
istry schemes have higher concentrations of NO2 than the
Romberg scheme, thus overestimating the NO2 contribution
when applied to annual mean concentrations. This is partially
due to the positive bias in the EMEP model O3 concentra-
tions of 16 %, but this only accounts for around 4 % of the
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Figure 13. Change in bias and spatial correlation (coefficient of determination r2) for NO2 as a result of changes in the power-law index
applied to the OSM road traffic weighting. Lower power-law indices give more weight to minor roads, and higher power-law indices give
more weight to major roads. The results are based on the European calculations, and all available AIRBASE stations are included.

Figure 14. Change in bias and spatial correlation (coefficient of determination r2) for PM2.5 as a result of changes in the residential
combustion proxy. A lower power-law index gives less weight to the population redistribution, and a higher power-law indices give more
weight. “Building/population” is the building density masked by population data. See text for details.

additional NO2. Included in Fig. 16 is the annual mean calcu-
lation without the frequency distribution correction (“Travel
time (annual)”), showing a 10 % difference in bias when
compared to calculations that use this correction. Spatial cor-
relation is also improved by using the frequency distribution
methodology.

6 Discussion

Downscaling only applies to emissions within a limited re-
gion of ±0.1◦ surrounding each receptor sub-grid. Based on
the uEMEP calculation, the local contributions to NOx are
significantly larger than for PM. The different source contri-
butions at measurement sites are given in Table 2, and this
shows that, on average in Europe, 58 % of the NOx contribu-
tion comes from traffic within this limited region. In contrast,
only 19 % of the PM2.5 is attributable to residential heating,
the largest downscaled contribution, from inside this region.

NO2 is well modelled with high spatial correlation for
many countries, but still with a significant negative bias of
−18 %. There is significant variation in bias between coun-
tries even though the methodology is consistently applied to
all countries. This may be attributable to the various methods
used for generation of the national emissions. Though the
problem remains that uEMEP does not take into account dis-

persion in street canyons, where a number of traffic site mea-
surements are made, it is generally the case that the spatial
representativeness of the uEMEP calculations is suitable for
comparison with these measurements (Lefebvre et al., 2013).
Variation in bias between countries is then no longer a case
of a mismatch in resolution but most likely reflects bias in
the national emissions. The uEMEP may be used to inves-
tigate this variability between countries further and to help
harmonise future emission inventories across Europe.

There is a significant difference between the results
achieved for the downscaling of PM compared to NO2. NO2
is dominated by traffic emissions, and this is spatially well
defined using OSM as a proxy. The largest contributor to PM
in the downscaled sources is residential heating, with contri-
butions of 19 % and 16 % for PM2.5 and PM10, respectively
(Table 2). This is in line with other estimates of residential
combustion in Europe. Thunis et al. (2017) calculated a con-
tribution of 13 % from residential combustion from primary
PM2.5 averaged over 150 European cities without downscal-
ing. Population is used as a downscaling proxy for the resi-
dential source, but it appears that this is not a good proxy for
high-resolution emission redistribution. Though clearly resi-
dential heating emissions occur where people live there can
be large variation from city to city and from urban to sub-
urban to rural areas as heating practices vary significantly
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Figure 15. Change in bias and spatial correlation (coefficient of determination r2) as a result of changes in Norwegian emission and emission
proxy data for NO2, PM2.5, and PM10 calculations. “European emissions” represents the emissions used for all of Europe, and “Norwegian
emissions” replaces these emissions for traffic and residential heating with alternative emissions used in the Norwegian air quality forecasting
system. “European” and “Norwegian” proxy downscaling is explained in the text. Calculation year is 2017. The number of available stations
is 41, 36, and 44 for NO2, PM2.5, and PM10, respectively.

Table 2. Source contribution to all air quality stations in Europe calculated with uEMEP. The uEMEP local contributions are from primary
emissions within a region of 2×2 EMEP grids (±0.1◦) in both latitude and longitude. Non-local EMEP model contributions are all emissions
from outside this region for the downscaled sources, as well as all other primary and precursor emission sources from within this region that
are not downscaled.

Source NOx PM2.5 PM10
(µgm−3) (µgm−3) (µgm−3)

Traffic (GNFR6) 13.9 (58 %) 0.71 (6 %) 1.1 (7 %)
Residential heating (GNFR3) 1.8 (8 %) 2.2 (19 %) 2.6 (16 %)
Shipping (GNFR7) 0.30 (1 %) 0.01 (0.1 %) 0.01 (0.1 %)
Non-local EMEP 7.9 (33 %) 8.4 (75 %) 12.3 (77 %)

Total 23.9 (100 %) 11.3 (100 %) 16.0 (100 %)
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Figure 16. Change in bias and spatial correlation (coefficient of determination r2) for NO2 and O3 with implementation of six different
versions of the chemistry schemes. See text for details.

depending on housing type and on availability of alterna-
tive heating sources. To some extent this has been taken into
account in the emission inventory at 0.1◦, but the emission
proxy used in uEMEP is likely not consistent with the EMEP
emission inventory.

The Norwegian sensitivity tests show that when consistent
emissions and emission proxies are used spatial correlation
can be significantly improved. For the application of uEMEP
in Europe this was not the case since each country has its
own methodology for calculating gridded EMEP emissions
that may or may not make use of the downscaling proxies
applied in uEMEP. A more consistent approach, as applied
in Norway, would be to use the same spatial redistribution
proxies in both the gridded EMEP emissions and the down-
scaling proxies. This would require additional interaction and
cooperation between emission inventory developers and air
quality modellers.

It is worth noting that no selection of the AIRBASE mon-
itoring data was carried out. All available stations with more
than 75 % coverage were used. This includes mountain sta-
tions, all traffic stations, and industrially sited stations. In
comparisons with the EMEP model these types of sites are
often removed. All stations were also assumed to be sited at
3 m above the surface. It is quite possible that different re-
sults would be obtained if a selection of stations was carried
out. This will be assessed at a later time.

7 Conclusions

Downscaling of annual mean concentrations from the EMEP
model have been carried out for NO2, PM2.5, PM10, and O3

using the uEMEP model. Downscaling redistributes EMEP
gridded emission data using suitable proxy data to high-
resolution sub-grids and then calculates the sub-grid concen-
trations using a Gaussian dispersion model. These are then
recombined with the EMEP model concentrations in a con-
sistent way that avoids double counting of the emissions.
Maps for all of Europe have been produced at a resolution
of 100 m, and concentrations at all AIRBASE measurement
sites have been calculated at 25 m.

The results for NO2 show significant improvement with a
doubling of spatial correlation for most countries and a sig-
nificant reduction in negative bias. For NO2 the downscaling
works very well, which is due to the fact that NOx emissions
are mainly attributable to traffic, and these emissions are well
defined spatially with the proxy data used. O3 concentrations
are decreased due to higher NOx concentrations. Both con-
centrations and spatial correlations of O3 are better simulated
with uEMEP.

Neither PM2.5 nor PM10 shows any improvement in spatial
correlation with the downscaling, though the negative bias in
PM concentrations is improved. The spatial distribution of
PM emissions can be improved, as demonstrated for Nor-
way, with more accurate proxy data, but emissions of PM
remain difficult to quantify properly at high resolutions and
will require further effort. One way forward is to harmonise
the proxies used for both the EMEP gridded emissions and
the uEMEP downscaling. This has been shown to improve
results in Norway.

Downscaling can provide additional information concern-
ing the contributions of local sources. This may be combined
with the EMEP model source–receptor calculations to pro-
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vide a more complete picture of local and long-transported
contributions. The method can lead to a better assessment
of local versus regional mitigation strategies to improve air
quality in Europe at high resolution. It also shows good po-
tential to be used to improve exposure estimates.

Code and data availability. The uEMEP_v6 model
used in this study is archived on Zenodo
(https://doi.org/10.5281/zenodo.4923185, Denby, 2021a),
as are MATLAB scripts for visualisation of European uE-
MEP calculations (https://doi.org/10.5281/zenodo.4923224,
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