Articles | Volume 15, issue 10
https://doi.org/10.5194/gmd-15-4027-2022
https://doi.org/10.5194/gmd-15-4027-2022
Model description paper
 | 
24 May 2022
Model description paper |  | 24 May 2022

An emergency response model for the formation and dispersion of plumes originating from major fires (BUOYANT v4.20)

Jaakko Kukkonen, Juha Nikmo, Kari Riikonen, Ilmo Westerholm, Pekko Ilvessalo, Tuomo Bergman, and Klaus Haikarainen

Related authors

Measurement report: The effects of SECA regulations on the atmospheric SO2 concentrations in the Baltic Sea, based on long-term observations on the Finnish island, Utö
Androniki Maragkidou, Tiia Grönholm, Laura Rautiainen, Juha Nikmo, Jukka-Pekka Jalkanen, Timo Mäkelä, Timo Anttila, Lauri Laakso, and Jaakko Kukkonen
Atmos. Chem. Phys., 25, 2443–2457, https://doi.org/10.5194/acp-25-2443-2025,https://doi.org/10.5194/acp-25-2443-2025, 2025
Short summary
The contribution of residential wood combustion to the PM2.5 concentrations in the Helsinki metropolitan area
Leena Kangas, Jaakko Kukkonen, Mari Kauhaniemi, Kari Riikonen, Mikhail Sofiev, Anu Kousa, Jarkko V. Niemi, and Ari Karppinen
Atmos. Chem. Phys., 24, 1489–1507, https://doi.org/10.5194/acp-24-1489-2024,https://doi.org/10.5194/acp-24-1489-2024, 2024
Short summary
Effects of temperature and salinity on bubble-bursting aerosol formation simulated with a bubble-generating chamber
Svetlana Sofieva, Eija Asmi, Nina S. Atanasova, Aino E. Heikkinen, Emeline Vidal, Jonathan Duplissy, Martin Romantschuk, Rostislav Kouznetsov, Jaakko Kukkonen, Dennis H. Bamford, Antti-Pekka Hyvärinen, and Mikhail Sofiev
Atmos. Meas. Tech., 15, 6201–6219, https://doi.org/10.5194/amt-15-6201-2022,https://doi.org/10.5194/amt-15-6201-2022, 2022
Short summary
Description and evaluation of the community aerosol dynamics model MAFOR v2.0
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022,https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Advances in air quality research – current and emerging challenges
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys., 22, 4615–4703, https://doi.org/10.5194/acp-22-4615-2022,https://doi.org/10.5194/acp-22-4615-2022, 2022
Short summary

Related subject area

Atmospheric sciences
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025,https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary

Cited articles

Abramowitz, M. and Stegun, I. A. (Eds.): Handbook of mathematical functions with formulas, graphs, and mathematical tables, 10th printing, National Bureau of Standards, United States Department of Commerce, 1046 pp., 1972. 
Achtemeier, G. L., Goodrick, S. A., and Liu, Y.: Modeling multiple-core updraft plume rise for an aerial ignition prescribed burn by coupling Daysmoke with a cellular automata fire model, Atmosphere, 3, 352–376, https://doi.org/10.3390/atmos3030352, 2012. 
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. 
Anderson, G. K., Sandberg, D. V., and Norheim, R. A.: Fire Emission Production Simulator (FEPS) User's Guide, Version 1.0, https://www.fs.fed.us/pnw/fera/feps/FEPS_users_guide.pdf (last access 21 September 2020), 2004. 
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001. 
Download
Short summary
A mathematical model has been developed for the dispersion of plumes originating from major fires. We have refined the model for the early evolution of the fire plumes; such a module has not been previously presented. We have evaluated the model against experimental field-scale data. The predicted concentrations agreed well with the aircraft measurements. We have also compiled an operational version of the model, which can be used for emergency contingency planning in the case of major fires.
Share