Articles | Volume 15, issue 10
https://doi.org/10.5194/gmd-15-4027-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-4027-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An emergency response model for the formation and dispersion of plumes originating from major fires (BUOYANT v4.20)
Jaakko Kukkonen
CORRESPONDING AUTHOR
Finnish Meteorological Institute, Erik Palménin aukio 1, P.O. Box 503, 00101, Helsinki, Finland
Centre for Atmospheric and Climate Physics Research, and Centre for
Climate Change Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
Juha Nikmo
Finnish Meteorological Institute, Erik Palménin aukio 1, P.O. Box 503, 00101, Helsinki, Finland
Kari Riikonen
Finnish Meteorological Institute, Erik Palménin aukio 1, P.O. Box 503, 00101, Helsinki, Finland
Ilmo Westerholm
Finnish Meteorological Institute, Erik Palménin aukio 1, P.O. Box 503, 00101, Helsinki, Finland
Pekko Ilvessalo
Finnish Meteorological Institute, Erik Palménin aukio 1, P.O. Box 503, 00101, Helsinki, Finland
Tuomo Bergman
Finnish Meteorological Institute, Erik Palménin aukio 1, P.O. Box 503, 00101, Helsinki, Finland
Klaus Haikarainen
Finnish Meteorological Institute, Erik Palménin aukio 1, P.O. Box 503, 00101, Helsinki, Finland
Related authors
Androniki Maragkidou, Tiia Grönholm, Laura Rautiainen, Juha Nikmo, Jukka-Pekka Jalkanen, Timo Mäkelä, Timo Anttila, Lauri Laakso, and Jaakko Kukkonen
Atmos. Chem. Phys., 25, 2443–2457, https://doi.org/10.5194/acp-25-2443-2025, https://doi.org/10.5194/acp-25-2443-2025, 2025
Short summary
Short summary
The Baltic Sea's designation as a sulfur emission control area in 2006, with subsequent regulations, significantly reduced sulfur emissions from shipping. Our study analysed air quality data from 2003 to 2020 on the island Utö and employed modelling, showing a continuous decrease in SO2 concentrations since 2003 and thus evidencing the effectiveness of such regulations in improving air quality. It also underscored the importance of long-term, high-resolution monitoring at remote marine sites.
Leena Kangas, Jaakko Kukkonen, Mari Kauhaniemi, Kari Riikonen, Mikhail Sofiev, Anu Kousa, Jarkko V. Niemi, and Ari Karppinen
Atmos. Chem. Phys., 24, 1489–1507, https://doi.org/10.5194/acp-24-1489-2024, https://doi.org/10.5194/acp-24-1489-2024, 2024
Short summary
Short summary
Residential wood combustion is a major source of fine particulate matter. This study has evaluated the contribution of residential wood combustion to fine particle concentrations and its year-to-year and seasonal variation in te Helsinki metropolitan area. The average concentrations attributed to wood combustion in winter were up to 10- or 15-fold compared to summer. Wood combustion caused 12 % to 14 % of annual fine particle concentrations. In winter, the contribution ranged from 16 % to 21 %.
Svetlana Sofieva, Eija Asmi, Nina S. Atanasova, Aino E. Heikkinen, Emeline Vidal, Jonathan Duplissy, Martin Romantschuk, Rostislav Kouznetsov, Jaakko Kukkonen, Dennis H. Bamford, Antti-Pekka Hyvärinen, and Mikhail Sofiev
Atmos. Meas. Tech., 15, 6201–6219, https://doi.org/10.5194/amt-15-6201-2022, https://doi.org/10.5194/amt-15-6201-2022, 2022
Short summary
Short summary
A new bubble-generating glass chamber design with an extensive set of aerosol production experiments is presented to re-evaluate bubble-bursting-mediated aerosol production as a function of water parameters: bubbling air flow, water salinity, and temperature. Our main findings suggest modest dependence of aerosol production on the water salinity and a strong dependence on temperature below ~ 10 °C.
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022, https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Short summary
The community aerosol dynamics model MAFOR includes several advanced features: coupling with an up-to-date chemistry mechanism for volatile organic compounds, a revised Brownian coagulation kernel that takes into account the fractal geometry of soot particles, a multitude of nucleation parameterizations, size-resolved partitioning of semi-volatile inorganics, and a hybrid method for the formation of secondary organic aerosols within the framework of condensation and evaporation.
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys., 22, 4615–4703, https://doi.org/10.5194/acp-22-4615-2022, https://doi.org/10.5194/acp-22-4615-2022, 2022
Short summary
Short summary
This review of air quality research focuses on developments over the past decade. The article considers current and future challenges that are important from air quality research and policy perspectives and highlights emerging prominent gaps of knowledge. The review also examines how air pollution management needs to adapt to new challenges and makes recommendations to guide the direction for future air quality research within the wider community and to provide support for policy.
Androniki Maragkidou, Tiia Grönholm, Laura Rautiainen, Juha Nikmo, Jukka-Pekka Jalkanen, Timo Mäkelä, Timo Anttila, Lauri Laakso, and Jaakko Kukkonen
Atmos. Chem. Phys., 25, 2443–2457, https://doi.org/10.5194/acp-25-2443-2025, https://doi.org/10.5194/acp-25-2443-2025, 2025
Short summary
Short summary
The Baltic Sea's designation as a sulfur emission control area in 2006, with subsequent regulations, significantly reduced sulfur emissions from shipping. Our study analysed air quality data from 2003 to 2020 on the island Utö and employed modelling, showing a continuous decrease in SO2 concentrations since 2003 and thus evidencing the effectiveness of such regulations in improving air quality. It also underscored the importance of long-term, high-resolution monitoring at remote marine sites.
Leena Kangas, Jaakko Kukkonen, Mari Kauhaniemi, Kari Riikonen, Mikhail Sofiev, Anu Kousa, Jarkko V. Niemi, and Ari Karppinen
Atmos. Chem. Phys., 24, 1489–1507, https://doi.org/10.5194/acp-24-1489-2024, https://doi.org/10.5194/acp-24-1489-2024, 2024
Short summary
Short summary
Residential wood combustion is a major source of fine particulate matter. This study has evaluated the contribution of residential wood combustion to fine particle concentrations and its year-to-year and seasonal variation in te Helsinki metropolitan area. The average concentrations attributed to wood combustion in winter were up to 10- or 15-fold compared to summer. Wood combustion caused 12 % to 14 % of annual fine particle concentrations. In winter, the contribution ranged from 16 % to 21 %.
Svetlana Sofieva, Eija Asmi, Nina S. Atanasova, Aino E. Heikkinen, Emeline Vidal, Jonathan Duplissy, Martin Romantschuk, Rostislav Kouznetsov, Jaakko Kukkonen, Dennis H. Bamford, Antti-Pekka Hyvärinen, and Mikhail Sofiev
Atmos. Meas. Tech., 15, 6201–6219, https://doi.org/10.5194/amt-15-6201-2022, https://doi.org/10.5194/amt-15-6201-2022, 2022
Short summary
Short summary
A new bubble-generating glass chamber design with an extensive set of aerosol production experiments is presented to re-evaluate bubble-bursting-mediated aerosol production as a function of water parameters: bubbling air flow, water salinity, and temperature. Our main findings suggest modest dependence of aerosol production on the water salinity and a strong dependence on temperature below ~ 10 °C.
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022, https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Short summary
The community aerosol dynamics model MAFOR includes several advanced features: coupling with an up-to-date chemistry mechanism for volatile organic compounds, a revised Brownian coagulation kernel that takes into account the fractal geometry of soot particles, a multitude of nucleation parameterizations, size-resolved partitioning of semi-volatile inorganics, and a hybrid method for the formation of secondary organic aerosols within the framework of condensation and evaporation.
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys., 22, 4615–4703, https://doi.org/10.5194/acp-22-4615-2022, https://doi.org/10.5194/acp-22-4615-2022, 2022
Short summary
Short summary
This review of air quality research focuses on developments over the past decade. The article considers current and future challenges that are important from air quality research and policy perspectives and highlights emerging prominent gaps of knowledge. The review also examines how air pollution management needs to adapt to new challenges and makes recommendations to guide the direction for future air quality research within the wider community and to provide support for policy.
Cited articles
Abramowitz, M. and Stegun, I. A. (Eds.): Handbook of mathematical functions
with formulas, graphs, and mathematical tables, 10th printing, National
Bureau of Standards, United States Department of Commerce, 1046 pp., 1972.
Achtemeier, G. L., Goodrick, S. A., and Liu, Y.: Modeling multiple-core
updraft plume rise for an aerial ignition prescribed burn by coupling
Daysmoke with a cellular automata fire model, Atmosphere, 3, 352–376, https://doi.org/10.3390/atmos3030352, 2012.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Anderson, G. K., Sandberg, D. V., and Norheim, R. A.: Fire Emission Production Simulator (FEPS) User's Guide, Version 1.0, https://www.fs.fed.us/pnw/fera/feps/FEPS_users_guide.pdf (last access 21 September 2020), 2004.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from
biomass burning, Global Biochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001.
Babrauskas, V.: Estimating large pool fire burning rates, Fire Technol., 19,
251–261, https://doi.org/10.1007/BF02380810, 1983.
Babrauskas, V.: Heat release rates, in: SFPE Handbook of Fire Protection
Engineering, edited by: Hurley, M. J., 5th edn., Springer Science+Business Media LLC New York, 799–904, https://doi.org/10.1007/978-1-4939-2565-0_26, 2016.
Beyler, C. L.: Fire hazard calculations for large, open hydrocarbon fires,
in: SFPE Handbook of Fire Protection Engineering, edited by: Hurley, M. J.,
5th edn., Springer Science+Business Media LLC New York, 2591–2663, https://doi.org/10.1007/978-1-4939-2565-0_66, 2016.
Blinov, V. I. and Khudiakov, G. N.: Certain laws governing diffusive burning
of liquids, Dokl Akad Nauk SSSR+, 113, 1094–1098, 1957.
Block, J. A.: A theoretical and experimental study of nonpropagating
free-burning fires, Symposium (International) on Combustion, 13, 971–978,
https://doi.org/10.1016/S0082-0784(71)80097-8, 1971.
Brambilla, S. and Manca, D.: Accidents involving liquids: A step ahead in
modeling pool spreading, evaporation and burning, J. Hazard. Mater., 161,
1265–1280, https://doi.org/10.1016/j.jhazmat.2008.04.109, 2009.
Brent, R. P.: An algorithm with guaranteed convergence for finding a zero of
a function, Comput. J., 14, 422–425, https://doi.org/10.1093/comjnl/14.4.422, 1971.
Chatris, J. M., Quintela, J., Folch, J., Planas, E., Arnaldos, J., and Casal,
J.: Experimental study of burning rate in hydrocarbon pool fires, Combust.
Flame, 126, 1373–1383, https://doi.org/10.1016/S0010-2180(01)00262-0, 2001.
Clements, C. B., Lareau, N. P., Seto, D., Contezac, J., Davis, B., Teske, C.,
Zajkowski, T. J., Hudak, A. T., Bright, B. C., Dickinson, M. B., Butler, B. W., Jimenez, D., and Hiers, J. K.: Fire weather conditions and fire–atmosphere interactions observed during low-intensity prescribed fires – RxCADRE 2012, Int. J. Wildland Fire, 25, 90–101, https://doi.org/10.1071/WF14173, 2016.
Clements, C. B., Kochanski, A. K., Seto, D., Davis, B., Camacho, C., Lareau,
N. P., Contezac, J., Restaino, J., Heilman, W. E., Krueger, S. K., Butler, B., Ottmar, R. D., Vihnanek, R., Flynn, J., Filippi, J.-B., Barboni, T., Hall, D. E., Mandel, J., Jenkins, M. A., O'Brien, J., Hornsby, B., and Teske, C.: The FireFlux II experiment: a model-guided field experiment to improve
understanding of fire–atmosphere interactions and fire spread, Int. J.
Wildland Fire, 28, 308–326, https://doi.org/10.1071/WF18089, 2019.
de Groot, W. J., Landry, R., Kurz, W. A., Anderson, K. R., Englefield, P.,
Fraser, R. H., Hall, R. J., Banfield, E., Raymond, D. A., Decker, V., Lynham,
T. J., and Pritchard, J. M.: Estimating direct carbon emissions from Canadian
wildland fires, Int. J. Wildland Fire, 16, 593–606, https://doi.org/10.1071/WF06150, 2007.
de Groot, W. J., Pritchard, J. M., and Lynham, T. J.: Forest floor fuel
consumption and carbon emissions in Canadian boreal forest fires, Can. J.
Forest Res., 39, 367–382, https://doi.org/10.1139/X08-192, 2009.
Dennis, A., Fraser, M., Anderson, S., and Allen, D.: Air pollutant emissions
associated with forest, grassland, and agricultural burning in Texas, Atmos.
Environ., 36, 3779–3792, https://doi.org/10.1016/S1352-2310(02)00219-4, 2002.
Devenish, B. J., Rooney, G. G., Webster, H. N., and Thomson, D. J.: The
entrainment rate for buoyant plumes in a crossflow, Bound.-Lay. Meteorol.,
134, 411-439, https://doi.org/10.1007/s10546-009-9464-5, 2010.
Dickinson, M. B., Hudak, A. T., Zajkowski, T., Loudermilk, E. L., Schroeder,
W., Ellison, L., Kremens, R. L., Holley, W., Martinez, O., Paxton, A.,
Bright, B. C., O'Brien, J. J., Hornsby, B., Ichoku, C., Faulring, J., Gerace,
A., Peterson, D., and Mauceri, J.: Measuring radiant emissions from entire
prescribed fires with ground, airborne and satellite sensors – RxCADRE 2012,
Int. J. Wildland Fire, 25, 48–61, https://doi.org/10.1071/WF15090, 2016.
Drysdale, D. D.: Ignition of liquids, in: SFPE Handbook of Fire Protection
Engineering, edited by: Hurley, M. J., 5th edn., Springer Science+Business Media LLC New York, 554–580, https://doi.org/10.1007/978-1-4939-2565-0_18, 2016.
Dupuy, J. L., Maréchal, J., and Morvan, D.: Fires from a cylindrical
forest fuel burner: combustion dynamics and flame properties, Combust.
Flame, 135, 65–76, https://doi.org/10.1016/S0010-2180(03)00147-0, 2003.
Fay, J. A.: Model of large pool fires, J. Hazard. Mater., 136, 219–232, https://doi.org/10.1016/j.jhazmat.2005.11.095, 2006.
Fingas, M.: Review of emissions from oil fires, International Oil Spill Conference Proceedings, 2014, 1795–1805, https://doi.org/10.7901/2169-3358-2014.1.1795, 2014.
Fochesatto, G. J.: Methodology for determining multilayered temperature inversions, Atmos. Meas. Tech., 8, 2051–2060, https://doi.org/10.5194/amt-8-2051-2015, 2015.
Freeborn, P. H., Wooster, M. J., Hao, W. M., Ryan, C. A., Nordgren, B. L., Baker, S. P., and Ichoku, C.: Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires, J.
Geophys. Res., 113, D01301, https://doi.org/10.1029/2007JD008679, 2008.
Freitas, S. R., Longo, K. M., Chatfield, R., Latham, D., Silva Dias, M. A. F., Andreae, M. O., Prins, E., Santos, J. C., Gielow, R., and Carvalho Jr., J. A.: Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models, Atmos. Chem. Phys., 7, 3385–3398, https://doi.org/10.5194/acp-7-3385-2007, 2007.
Freitas, S. R., Longo, K. M., Trentmann, J., and Latham, D.: Technical Note: Sensitivity of 1-D smoke plume rise models to the inclusion of environmental wind drag, Atmos. Chem. Phys., 10, 585–594, https://doi.org/10.5194/acp-10-585-2010, 2010.
Gassó, S. and Hegg, D. A.: Comparison of columnar aerosol optical properties measured by the MODIS airborne simulator with in situ measurements: A case study, Remote Sens. Environ., 66, 138–152, https://doi.org/10.1016/S0034-4257(98)00052-2, 1998.
George Jr., W. K., Alpert, R. L., and Tamanini, F.: Turbulence measurements in an axisymmetric buoyant plume, Int. J. Heat Mass Tran., 20, 1145–1154, https://doi.org/10.1016/0017-9310(77)90123-5, 1977.
Gross, D.: Experiments on the burning of cross piles of wood, J. Res. NBS C
Eng. Inst., 66C, 99–105, https://doi.org/10.6028/jres.066C.010, 1962.
Grove, B. S. and Quintiere, J. G.: Calculating entrainment and flame height
in fire plumes of axisymmetric and infinite line geometries, J. Fire Prot.
Eng., 12, 117–137, https://doi.org/10.1177/10423910260620464, 2002.
Hertzberg, M.: The theory of free ambient fires. The convectively mixed
combustion of fuel reservoirs, Combust. Flame, 21, 195–209, https://doi.org/10.1016/S0010-2180(73)80024-0, 1973.
Heskestad, G.: Modeling of enclosure fires, Symposium (International) on
Combustion, 14, 1021–1030, https://doi.org/10.1016/S0082-0784(73)80092-X, 1973.
Heskestad, G.: Engineering relations for fire plumes, Fire Safety J., 7,
25–32, https://doi.org/10.1016/0379-7112(84)90005-5, 1984.
Heskestad, G.: Dynamics of the fire plume, Philos. T. Roy. Soc. A, 356,
2815–2833, https://doi.org/10.1098/rsta.1998.0299, 1998.
Heskestad, G.: Fire plumes, flame height, and air entrainment, in: SFPE
Handbook of Fire Protection Engineering, edited by: Hurley, M. J., 5th
edn., Springer Science+Business Media LLC New
York, 396–428, https://doi.org/10.1007/978-1-4939-2565-0_13, 2016.
Hobbs, P. V., Reid, J. S., Herring, J. A., Nance, J. D., Weiss, R. E., Ross,
J. L., Hegg, D. A., Ottmar, R. D., and Liousse, C.: Particle and trace-gas
measurements in the smoke from prescribed burns of forest products in the
Pacific Northwest, in: Biomass Burning and Global Change, edited by: Levine,
J. S., MIT Press, Cambridge, MA, 697–715, 1996.
Hoelzemann, J. J., Schultz, M. G., Brasseur, G. P., and Granier, C.: Global
Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt
satellite data, J. Geophys. Res., 109, D14S04, https://doi.org/10.1029/2003JD003666, 2004.
Hostikka, S., McGrattan, K. B., and Hamins, A.: Numerical modeling of pool
fires using LES and Finite Volume Method for radiation, Fire Safety Science,
7, 383–394, https://doi.org/10.3801/IAFSS.FSS.7-383, 2003.
Hottel, H. C.: Certain laws governing diffusive burning of liquids by V. I.
Blinov and G. N. Khudiakov, Fire Research Abstracts and Reviews 1, 41–44,
1959.
Hudak, A. T., Bright, B. C., Kremens, R. L., and Dickinson, M. B.: RxCADRE 2011 and 2012: Wildfire Airborne Sensor Program long wave infrared calibrated
image mosaics, Forest Service Research Data Archive [data set], Fort Collins, CO, https://doi.org/10.2737/RDS-2016-0008, 2016a.
Hudak, A. T., Dickinson, M. B., Bright, B. C., Kremens, R. L., Loudermilk, E. L., O'Brien, J. J., Hornsby, B. S., and Ottmar, R. D.: Measurements relating fire radiative energy density and surface fuel consumption – RxCADRE 2011 and 2012, Int. J. Wildland Fire, 25, 25–37, https://doi.org/10.1071/WF14159, 2016b.
Hudak, A. T., Bright, B. C., Williams, B. W., and Hiers, J. K.: RxCADRE 2011 and 2012: Ignition data, Forest Service Research Data Archive [data set], Fort Collins, CO, https://doi.org/10.2737/RDS-2017-0065, 2017 (updated 31 May 2018).
Hurley, M. J. (Ed.): SFPE Handbook of Fire Protection Engineering, 5th edn., Springer Science+Business Media LLC New York, 3493 pp., https://doi.org/10.1007/978-1-4939-2565-0, 2016.
Ichoku, C. and Kaufman, Y. J.: A method to derive smoke emission rates from
MODIS fire radiative energy measurements, IEEE T. Geosci. Remote, 43,
2636–2649, https://doi.org/10.1109/TGRS.2005.857328, 2005.
Ichoku, C., Kahn, R., and Chin, M.: Satellite contributions to the
quantitative characterization of biomass burning for climate modeling,
Atmos. Res., 111, 1–28, https://doi.org/10.1016/j.atmosres.2012.03.007, 2012.
Ito, A. and Penner, J. E.: Global estimates of biomass burning emissions
based on satellite imagery for the year 2000, J. Geophys. Res., 109, D14S05,
https://doi.org/10.1029/2003JD004423, 2004.
Jimenez, D. M. and Butler, B. W.: RxCADRE 2012: RxCADRE 2012: In-situ fire
behavior measurements, Forest Service Research Data Archive [data set], Fort Collins, CO, https://doi.org/10.2737/RDS-2016-0038, 2016.
Jirka, G. H.: Integral model for turbulent buoyant jets in unbounded
stratified flows, Part I: Single round jet, Environ. Fluid Mech., 4, 1–56, https://doi.org/10.1023/A:1025583110842, 2004.
Kahn, R. A., Chen, Y., Nelson, D. L., Leung, F.-Y., Li, Q., Diner, D. J., and
Logan, J. A.: Wildfire smoke injection heights: Two perspectives from space,
Geophys. Res. Lett., 35, L04809, https://doi.org/10.1029/2007GL032165, 2008.
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.: Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527–554, https://doi.org/10.5194/bg-9-527-2012, 2012.
Kaufman, Y. J., Remer, L. A., Ottmar, R. D., Ward, D. E., Li, R.-R., Kleidman, R., Fraser, R. S., Flynn, L., McDougal, D., and Shelton, G.: Relationship between remotely sensed fire intensity and rate of emission of smoke: SCAR-C experiment, in: Biomass Burning and Global Change, edited by: Levine, J. S., MIT Press, Cambridge, MA, 685–696, 1996.
Khan, M. M., Tewarson, A., and Chaos, M.: Combustion characteristics of
materials and generation of fire products, in: SFPE Handbook of Fire
Protection Engineering, edited by: Hurley, M. J., 5th edn., Springer Science+Business Media LLC New York, 1143–1232, https://doi.org/10.1007/978-1-4939-2565-0_36, 2016.
Koseki, H.: Combustion properties of large liquid pool fires, Fire Technol.,
25, 241–255, https://doi.org/10.1007/BF01039781, 1989.
Kukkonen, J., Nikmo, J., Ramsdale, S. A., Martin, D., Webber, D. M.,
Schatzmann, M., and Liedtke, J.: Dispersion from strongly buoyant sources,
in: Air Pollution Modeling and its Application XIII, edited by: Gryning,
S.-E. and Batchvarova, E., Kluwer Academic/Plenum Publishers, 539–547,
2000.
Kukkonen, J., Nikmo, J., Sofiev, M., Riikonen, K., Petäjä, T., Virkkula, A., Levula, J., Schobesberger, S., and Webber, D. M.: Applicability of an integrated plume rise model for the dispersion from wild-land fires, Geosci. Model Dev., 7, 2663–2681, https://doi.org/10.5194/gmd-7-2663-2014, 2014.
Kukkonen, J., Nikmo, J., and Riikonen, K.: An emergency response model for
evaluating the formation and dispersion of plumes originating from major
fires (BUOYANT v4.20), Version 4.20, Zenodo [code], https://doi.org/10.5281/zenodo.4744300, 2021.
Kung, H.-C. and Stavrianidis, P.: Buoyant plumes of large-scale pool fires,
Symposium (International) on Combustion, 19, 905–912, https://doi.org/10.1016/S0082-0784(82)80266-X, 1982.
Kung, H.-C., You, H.-Z., and Spaulding, R. D.: Ceiling flows of growing rack
storage fires, Symposium (International) on Combustion, 21, 121–128, https://doi.org/10.1016/S0082-0784(88)80238-8, 1988.
Lareau, N. P. and Clements, C. B.: The mean and turbulent properties of a
wildfire convective plume, J. Appl. Meteorol. Clim., 56, 2289–2299, https://doi.org/10.1175/JAMC-D-16-0384.1, 2017.
Lavoué, D., Liousse, C., Cachier, H., Stocks, B. J., and Goldammer, J. G.: Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes, J. Geophys. Res., 105, 26871–26890, https://doi.org/10.1029/2000JD900180, 2000.
Lemieux, P. M., Lutes, C. C., and Santoianni, D. A.: Emissions of organic air
toxics from open burning: a comprehensive review, Prog. Energ. Combust., 30,
1–32, https://doi.org/10.1016/j.pecs.2003.08.001, 2004.
Liousse, C., Penner, J. E., Chuang, C., Walton, J. J., Eddleman, H., and
Cachier, H.: A global three-dimensional model study of carbonaceous
aerosols, J. Geophys. Res., 101, 19411–19432, https://doi.org/10.1029/95JD03426, 1996.
Luketa, A. and Blanchat, T.: The phoenix series large-scale methane gas
burner experiments and liquid methane pool fires experiments on water,
Combust. Flame, 162, 4497–4513, https://doi.org/10.1016/j.combustflame.2015.08.025, 2015.
Luketa-Hanlin, A.: A review of large-scale LNG spills: Experiments and
modeling, J. Hazard. Mater., 132, 119–140, https://doi.org/10.1016/j.jhazmat.2005.10.008, 2006.
Mäkisara, K., Katila, M., and Peräsaari, J.: The Multi-Source
National Forest Inventory of Finland – methods and results 2015, Natural
resources and bioeconomy studies 8/2019, Natural Resources Institute
Finland, Helsinki, 57 pp., http://urn.fi/URN:ISBN:978-952-326-711-4 (last access: 11 May 2022), 2019.
Mallia, D. V., Kochanski, A. K., Urbanski, S. P., and Lin, J. C.: Optimizing
smoke and plume rise modeling approaches at local scales, Atmosphere, 9, 166, https://doi.org/10.3390/atmos9050166, 2018.
Mallia, D. V., Kochanski, A. K., Urbanski, S. P., Mandel, J., Farguell, A., and Krueger, S. K.: Incorporating a canopy parameterization within a coupled
fire-atmosphere model to improve a smoke simulation for a prescribed burn,
Atmosphere, 11, 832, https://doi.org/10.3390/atmos11080832, 2020.
Martin, D., Webber, D. M., Jones, S. J., Underwood, B. Y., Tickle, G. A., and
Ramsdale, S. A.: Near- and intermediate-field dispersion from strongly
buoyant sources, AEA Technology Report AEAT/1388, Warrington, 277 pp., 1997.
McAllister, S. and Finney, M.: The effect of wind on burning rate of wood
cribs, Fire Technol., 52, 1035–1050, https://doi.org/10.1007/s10694-015-0536-4, 2016a.
McAllister, S. and Finney, M.: Burning rates of wood cribs with implications for wildland fires, Fire Technol., 52, 1755–1777, https://doi.org/10.1007/s10694-015-0543-5, 2016b.
McGrattan, K. B., Baum, H. R., and Hamins, A.: Thermal radiation from large
pool fires, National Institute of Standards and Technology, U.S. Department of Commerce, Report NISTIR 6546, 31 pp., 2000.
Moisseeva, N. and Stull, R.: Capturing plume rise and dispersion with a
coupled Large-Eddy Simulation: case study of a prescribed burn, Atmosphere,
10, 579, https://doi.org/10.3390/atmos10100579, 2019.
Morton, B. R.: Modeling fire plumes, Symposium (International) on Combustion,
10, 973–982, https://doi.org/10.1016/S0082-0784(65)80240-5, 1965.
Mudan, K. S.: Thermal radiation hazards from hydrocarbon pool fires, Prog.
Energ. Combust., 10, 59–80, https://doi.org/10.1016/0360-1285(84)90119-9, 1984.
National Land Survey of Finland: Paikkatietoikkuna (Finnish National
Geoportal), https://kartta.paikkatietoikkuna.fi/?lang=en, last access: 5 February 2021.
Nielsen, K. P., Gleeson, E., and Rontu, L.: Radiation sensitivity tests of the HARMONIE 37h1 NWP model, Geosci. Model Dev., 7, 1433–1449, https://doi.org/10.5194/gmd-7-1433-2014, 2014.
Nieuwstadt, F.: The computation of the friction velocity u∗ and the
temperature scale T∗ from temperature and wind velocity profiles by
least-squares methods, Bound.-Lay. Meteorol., 14, 235–246, https://doi.org/10.1007/BF00122621, 1978.
Nikmo, J., Tuovinen, J.-P., Kukkonen, J., and Valkama, I.: A hybrid plume
model for local-scale dispersion, Finnish Meteorological Institute, Helsinki, Publications on Air Quality 27, 65 pp., 1997.
Nikmo, J., Tuovinen, J.-P., Kukkonen, J., and Valkama, I.: A hybrid plume
model for local-scale atmospheric dispersion, Atmos. Environ., 33, 4389–4399, https://doi.org/10.1016/S1352-2310(99)00223-X, 1999.
Olesen, H. R.: Datasets and protocol for model validation, Int. J. Environ.
Pollut., 5, 693–701, https://doi.org/10.1504/IJEP.1995.028416, 1995.
Ottmar, R. D.: Wildland fire emissions, carbon, and climate: Modeling fuel
consumption, Forest Ecol. Manag., 317, 41–50, https://doi.org/10.1016/j.foreco.2013.06.010, 2014.
Ottmar, R. D., Hiers, J. K., Butler, B. W., Clements, C. B., Dickinson, M. B., Hudak, A. T., O'Brien, J. J., Potter, B. E., Rowell, E. M., Strand, T. M., and Zajkowski, T. J.: Measurements, datasets and preliminary results from the RxCADRE project – 2008, 2011 and 2012, Int. J. Wildland Fire, 25, 1–9, https://doi.org/10.1071/WF14161, 2016a.
Ottmar, R. D., Hudak, A. T., Prichard, S. J., Wright, C. S. Restaino, J. C.,
Kennedy, M. C., and Vihnanek, R. E.: Pre-fire and post-fire surface fuel and
cover measurements collected in the southeastern United States for model
evaluation and development – RxCADRE 2008, 2011 and 2012, Int. J. Wildland
Fire, 25, 10–24, https://doi.org/10.1071/WF15092, 2016b.
Paugam, R., Wooster, M., Freitas, S., and Val Martin, M.: A review of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models, Atmos. Chem. Phys., 16, 907–925, https://doi.org/10.5194/acp-16-907-2016, 2016.
Peterson, D. L. and Hardy, C. C.: The RxCADRE study: a new approach to
interdisciplinary fire research, Int. J. Wildland Fire, 25, i–i, https://doi.org/10.1071/WFv25n1_FO, 2016.
Prichard, S., Larkin, N. S., Ottmar, R., French, N. H. F., Baker, K., Brown,
T., Clements, C., Dickinson, M., Hudak, A., Kochanski, A., Linn, R., Liu,
Y., Potter, B., Mell, W., Tanzer, D., Urbanski, S., and Watts, A.: The Fire
and Smoke Model Evaluation Experiment – A plan for integrated, large
fire-atmosphere field campaigns, Atmosphere, 10, 66, https://doi.org/10.3390/atmos10020066, 2019.
Prichard, S. J., Ottmar, R. D., and Anderson, G. K.: Consume 3.0 user's guide, USDA Forest Service, U.S.,
http://www.fs.fed.us/pnw/fera/research/smoke/consume/consume30_users_guide.pdf (last access: 19 October 2018), 2007.
Raj, P. K.: Large hydrocarbon fuel pool fires: Physical characteristics and
thermal emission variations with height, J. Hazard. Mater., 140, 280–292, https://doi.org/10.1016/j.jhazmat.2006.08.057, 2007a.
Raj, P. K.: LNG fires: A review of experimental results, models and hazard
prediction challenges, J. Hazard. Mater., 140, 444–464, https://doi.org/10.1016/j.jhazmat.2006.10.029, 2007b.
Ramsdale, S. A., Martin, D., Nikmo, J., Kukkonen, J., Liedtke, J., and
Schatzmann, M.: Dispersion from strongly buoyant sources – overall
executive summary, Warrington, AEA Technology Report AEAT/1408, 16 pp.,
1997.
RDA (Research Data Archive): U.S. Department of Agriculture, https://www.fs.usda.gov/rds/archive/, last access 31 May 2018.
Rein, G.: Smoldering combustion, in: SFPE Handbook of Fire Protection
Engineering, edited by: Hurley, M. J., 5th edn., Springer Science+Business Media LLC New York, 581–603, https://doi.org/10.1007/978-1-4939-2565-0_19, 2016.
Reinhardt, E. D., Keane, R. E., and Brown, J. K.: First Order Fire Effects
Model: FOFEM 4.0, User's Guide, General Technical Report INT-GTR-344, U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT, 65 pp., 1997.
Rew, P. J. and Hulbert, W. G.: Development of pool fire thermal radiation
model, HSE Contract Research Report No. 96/1996, 96 pp., 1996.
Rew, P. J., Hulbert, W. G., and Deaves, D. M.: Modelling of thermal radiation
from external hydrocarbon pool fires, Process Saf. Environ., 75, 81–89, https://doi.org/10.1205/095758297528841, 1997.
Ricou, F. P. and Spalding, D. B.: Measurements of entrainment by
axisymmetrical turbulent jets, J. Fluid Mech., 11, 21–32, https://doi.org/10.1017/S0022112061000834, 1961.
Ross, J. L., Ferek, R. J., and Hobbs, P. V.: Particle and gas emissions from an in situ burn of crude oil on the ocean, J. Air Waste Manage., 46, 251–259, https://doi.org/10.1080/10473289.1996.10467459, 1996.
Saarnio, K., Aurela, M., Timonen, H., Saarikoski, S., Teinilä, K.,
Mäkelä, T., Sofiev, M., Koskinen, J., Aalto, P. P., Kulmala, M.,
Kukkonen, J., and Hillamo, R.: Chemical composition of fine particles in
fresh smoke plumes from boreal wild-land fires in Europe, Sci. Total
Environ., 408, 2527–2542, https://doi.org/10.1016/j.scitotenv.2010.03.010, 2010.
Seiler, W. and Crutzen, P. J.: Estimates of gross and net fluxes of carbon
between the biosphere and atmosphere from biomass burning, Climatic Change,
2, 207–247, https://doi.org/10.1007/BF00137988, 1980.
Seto, D. and Clements, C. B.: RxCADRE 2012: CSU-MAPS background wind,
temperature, RH, and pressure time series data, Forest Service Research Data Archive [data set], Fort Collins, CO, https://doi.org/10.2737/RDS-2015-0027, 2015a.
Seto, D. and Clements, C. B.: RxCADRE 2012: CSU-MAPS wind LiDAR velocity and
microwave temperature/relative humidity profiler data, Forest Service Research Data Archive [data set], Fort Collins, CO, https://doi.org/10.2737/RDS-2015-0026, 2015b.
Sofiev, M., Vankevich, R., Lotjonen, M., Prank, M., Petukhov, V., Ermakova, T., Koskinen, J., and Kukkonen, J.: An operational system for the assimilation of the satellite information on wild-land fires for the needs of air quality modelling and forecasting, Atmos. Chem. Phys., 9, 6833–6847, https://doi.org/10.5194/acp-9-6833-2009, 2009.
Sofiev, M., Ermakova, T., and Vankevich, R.: Evaluation of the smoke-injection height from wild-land fires using remote-sensing data, Atmos. Chem. Phys., 12, 1995–2006, https://doi.org/10.5194/acp-12-1995-2012, 2012.
Soja, A. J., Cofer, W. R., Shugart, H. H., Sukhinin, A. I., Stackhouse Jr.,
P. W., McRae, D. J., and Conard, S. G.: Estimating fire emissions and
disparities in boreal Siberia (1998–2002), J. Geophys. Res., 109, D14S06, https://doi.org/10.1029/2004JD004570, 2004.
Strand, T., Gullett, B., Urbanski, S., O'Neill, S., Potter, B., Aurell, J.,
Holder, A., Larkin, N., Moore, M., and Rorig, M.: Grassland and forest
understorey biomass emissions from prescribed fires in the southeastern
United States – RxCADRE 2012, Int. J. Wildland Fire, 25, 102–113, https://doi.org/10.1071/WF14166, 2016.
Sullivan, A. L.: Wildland surface fire spread modelling. 1990–2007, 1:
Physical and quasi-physical models, Int. J. Wildland Fire, 18, 349–368, https://doi.org/10.1071/WF06143, 2009a.
Sullivan, A. L.: Wildland surface fire spread modelling. 1990–2007, 2:
Empirical and quasi-empirical models, Int. J. Wildland Fire, 18, 369–386, https://doi.org/10.1071/WF06142, 2009b.
Sullivan, A. L.: Wildland surface fire spread modelling. 1990–2007, 3:
Simulation and mathematical analogue models, Int. J. Wildland Fire, 18,
387–403, https://doi.org/10.1071/WF06144, 2009c.
Tamanini, F.: Defining the effects of ambient conditions in large-scale fire
tests, Exp. Therm. Fluid Sci., 34, 4040–411, https://doi.org/10.1016/j.expthermflusci.2009.10.032, 2010.
Tang, T.: A physics-based approach to modeling wildland fire spread through
porous fuel beds, Theses and Dissertations–Mechanical Engineering, 84, 236 pp., https://doi.org/10.13023/ETD.2017.027, 2017.
Tewarson, A.: Heat release rate in fires, Fire Mater., 4, 85–191, https://doi.org/10.1002/fam.810040405, 1980.
Tomppo, E. and Halme, M.: Using coarse scale forest variables as ancillary
information and weighting of variables in k-NN estimation: a genetic
algorithm approach, Remote Sens. Environ., 92, 1–20, https://doi.org/10.1016/j.rse.2004.04.003, 2004.
Trentmann, J., Andreae, M. O., Graf, H.-F., Hobbs, P. V., Ottmar, R. D., and
Trautmann, T.: Simulation of a biomass-burning plume: Comparison of model
results with observations, J. Geophys. Res., 107, AAC 5.1–AAC 5.15, https://doi.org/10.1029/2001JD000410, 2002.
Trentmann, J., Luderer, G., Winterrath, T., Fromm, M. D., Servranckx, R., Textor, C., Herzog, M., Graf, H.-F., and Andreae, M. O.: Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part I): reference simulation, Atmos. Chem. Phys., 6, 5247–5260, https://doi.org/10.5194/acp-6-5247-2006, 2006.
Urbanski, S.: Wildland fire emissions, carbon, and climate: Emission
factors, Forest Ecol. Manag., 317, 51–60, https://doi.org/10.1016/j.foreco.2013.05.045, 2014a.
Urbanski, S. P.: RxCADRE 2012: Airborne measurements of smoke emission and
dispersion from prescribed fires, Forest Service Research Data Archive [data set], Fort Collins, CO, https://doi.org/10.2737/RDS-2014-0015, 2014b.
Val Martin, M., Kahn, R. A., Logan, J. A., Paugam, R., Wooster, M., and
Ichoku, C.: Space-based observational constraints for 1-D fire smoke
plume-rise models, J. Geophys. Res., 117, D22204, https://doi.org/10.1029/2012JD018370, 2012.
van der Werf, G. R., Randerson, J. T., Collatz, G. J., and Giglio, L.: Carbon
emissions from fires in tropical and subtropical ecosystems, Glob. Change
Biol., 9, 547–562, https://doi.org/10.1046/j.1365-2486.2003.00604.x, 2003.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Venäläinen, A., Laapas, M., Pirinen, P., Horttanainen, M., Hyvönen, R., Lehtonen, I., Junila, P., Hou, M., and Peltola, H. M.: Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications, Earth Syst. Dynam., 8, 529–545, https://doi.org/10.5194/esd-8-529-2017, 2017.
Virkkula, A., Levula, J., Pohja, T., Aalto, P. P., Keronen, P., Schobesberger, S., Clements, C. B., Pirjola, L., Kieloaho, A.-J., Kulmala, L., Aaltonen, H., Patokoski, J., Pumpanen, J., Rinne, J., Ruuskanen, T., Pihlatie, M., Manninen, H. E., Aaltonen, V., Junninen, H., Petäjä, T., Backman, J., Dal Maso, M., Nieminen, T., Olsson, T., Grönholm, T., Aalto, J., Virtanen, T. H., Kajos, M., Kerminen, V.-M., Schultz, D. M., Kukkonen, J., Sofiev, M., De Leeuw, G., Bäck, J., Hari, P., and Kulmala, M.: Prescribed burning of logging slash in the boreal forest of Finland: emissions and effects on meteorological quantities and soil properties, Atmos. Chem. Phys., 14, 4473–4502, https://doi.org/10.5194/acp-14-4473-2014, 2014a.
Virkkula, A., Pohja, T., Aalto, P. P., Keronen, P., Schobesberger, S.,
Clements, C. B., Petäjä, T., Nikmo, J., and Kulmala, M.: Airborne
measurements of aerosols and carbon dioxide during a prescribed fire
experiment at a boreal forest site, Boreal Environ. Res., 19, 153–181,
2014b.
Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhange, X.,
O'Neill, S., and Wynne, K. K.: Estimating emissions from fires in North
America for air quality modeling, Atmos. Environ., 40, 3419–3432, https://doi.org/10.1016/j.atmosenv.2006.02.010, 2006.
Zabetakis, M. G. and Burgess, D. S.: Research on the hazards associated with
the production and handling of liquid hydrogen, Bureau of Mines, Washington, D.C., USA, Technical report BM-RI-5707, 50 pp., https://doi.org/10.2172/5206437, 1961.
Zukoski, E. E., Cetegen, B. M., and Kubota, T.: Visible structure of buoyant
diffusion flames, Symposium (International) on Combustion, 20, 361–366, https://doi.org/10.1016/S0082-0784(85)80522-1, 1985.
Short summary
A mathematical model has been developed for the dispersion of plumes originating from major fires. We have refined the model for the early evolution of the fire plumes; such a module has not been previously presented. We have evaluated the model against experimental field-scale data. The predicted concentrations agreed well with the aircraft measurements. We have also compiled an operational version of the model, which can be used for emergency contingency planning in the case of major fires.
A mathematical model has been developed for the dispersion of plumes originating from major...