Articles | Volume 15, issue 8
https://doi.org/10.5194/gmd-15-3387-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-3387-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Precipitation over southern Africa: is there consensus among global climate models (GCMs), regional climate models (RCMs) and observational data?
Maria Chara Karypidou
CORRESPONDING AUTHOR
Department of Meteorology and Climatology, School of Geology,
Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki,
Greece
Eleni Katragkou
Department of Meteorology and Climatology, School of Geology,
Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki,
Greece
Stefan Pieter Sobolowski
NORCE Norwegian Research Centre, Bjerknes Centre for Climate
Research, Bergen, Norway
Related authors
Maria Chara Karypidou, Stefan Pieter Sobolowski, Lorenzo Sangelantoni, Grigory Nikulin, and Eleni Katragkou
Geosci. Model Dev., 16, 1887–1908, https://doi.org/10.5194/gmd-16-1887-2023, https://doi.org/10.5194/gmd-16-1887-2023, 2023
Short summary
Short summary
Southern Africa is listed among the climate change hotspots; hence, accurate climate change information is vital for the optimal preparedness of local communities. In this work we assess the degree to which regional climate models (RCMs) are influenced by the global climate models (GCMs) from which they receive their lateral boundary forcing. We find that although GCMs exert a strong impact on RCMs, RCMs are still able to display substantial improvement relative to the driving GCMs.
Ling Zhang, Lu Li, Zhongshi Zhang, Joël Arnault, Stefan Sobolowski, Xiaoling Chen, Jianzhong Lu, Anthony Musili Mwanthi, Pratik Kad, Mohammed Abdullahi Hassan, Tanja Portele, Harald Kunstmann, and Zhengkang Zuo
Hydrol. Earth Syst. Sci., 29, 4109–4132, https://doi.org/10.5194/hess-29-4109-2025, https://doi.org/10.5194/hess-29-4109-2025, 2025
Short summary
Short summary
To address challenges related to unreliable hydrological simulations, we present an enhanced hydrological simulation with a refined climate model and a more comprehensive hydrological model. The model with the two parts outperforms that without, especially in migrating bias in peak flow and dry-season flow. Our findings highlight the enhanced hydrological simulation capability, with the refined climate and lake module contributing 24 % and 76 % improvement, respectively.
Peter Yu Feng Siew, Camille Li, Stefan Pieter Sobolowski, Etienne Dunn-Sigouin, and Mingfang Ting
Weather Clim. Dynam., 5, 985–996, https://doi.org/10.5194/wcd-5-985-2024, https://doi.org/10.5194/wcd-5-985-2024, 2024
Short summary
Short summary
The atmospheric circulation response to surface heating at various latitudes was investigated within an idealized framework. We confirm previous results on the importance of temperature advection for balancing heating at lower latitudes. Further poleward, transient eddies become increasingly important, and eventually radiative cooling also contributes. This promotes amplified surface warming for high-latitude heating and has implications for links between sea ice loss and polar amplification.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data, 15, 3819–3852, https://doi.org/10.5194/essd-15-3819-2023, https://doi.org/10.5194/essd-15-3819-2023, 2023
Short summary
Short summary
This paper introduces the new high-resolution land use and land cover change dataset LUCAS LUC for Europe (version 1.1), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Maria Chara Karypidou, Stefan Pieter Sobolowski, Lorenzo Sangelantoni, Grigory Nikulin, and Eleni Katragkou
Geosci. Model Dev., 16, 1887–1908, https://doi.org/10.5194/gmd-16-1887-2023, https://doi.org/10.5194/gmd-16-1887-2023, 2023
Short summary
Short summary
Southern Africa is listed among the climate change hotspots; hence, accurate climate change information is vital for the optimal preparedness of local communities. In this work we assess the degree to which regional climate models (RCMs) are influenced by the global climate models (GCMs) from which they receive their lateral boundary forcing. We find that although GCMs exert a strong impact on RCMs, RCMs are still able to display substantial improvement relative to the driving GCMs.
Stephen Outten, Camille Li, Martin P. King, Lingling Suo, Peter Y. F. Siew, Hoffman Cheung, Richard Davy, Etienne Dunn-Sigouin, Tore Furevik, Shengping He, Erica Madonna, Stefan Sobolowski, Thomas Spengler, and Tim Woollings
Weather Clim. Dynam., 4, 95–114, https://doi.org/10.5194/wcd-4-95-2023, https://doi.org/10.5194/wcd-4-95-2023, 2023
Short summary
Short summary
Strong disagreement exists in the scientific community over the role of Arctic sea ice in shaping wintertime Eurasian cooling. The observed Eurasian cooling can arise naturally without sea-ice loss but is expected to be a rare event. We propose a framework that incorporates sea-ice retreat and natural variability as contributing factors. A helpful analogy is of a dice roll that may result in cooling, warming, or anything in between, with sea-ice loss acting to load the dice in favour of cooling.
Anne Sophie Daloz, Clemens Schwingshackl, Priscilla Mooney, Susanna Strada, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Michal Belda, Tomas Halenka, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 2403–2419, https://doi.org/10.5194/tc-16-2403-2022, https://doi.org/10.5194/tc-16-2403-2022, 2022
Short summary
Short summary
Snow plays a major role in the regulation of the Earth's surface temperature. Together with climate change, rising temperatures are already altering snow in many ways. In this context, it is crucial to better understand the ability of climate models to represent snow and snow processes. This work focuses on Europe and shows that the melting season in spring still represents a challenge for climate models and that more work is needed to accurately simulate snow–atmosphere interactions.
Priscilla A. Mooney, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Natalie de Noblet-Ducoudré, Marcus Breil, Rita M. Cardoso, Anne Sophie Daloz, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 1383–1397, https://doi.org/10.5194/tc-16-1383-2022, https://doi.org/10.5194/tc-16-1383-2022, 2022
Short summary
Short summary
We use multiple regional climate models to show that afforestation in sub-polar and alpine regions reduces the radiative impact of snow albedo on the atmosphere, reduces snow cover, and delays the start of the snowmelt season. This is important for local communities that are highly reliant on snowpack for water resources and winter tourism. However, models disagree on the amount of change particularly when snow is melting. This shows that more research is needed on snow–vegetation interactions.
Giannis Sofiadis, Eleni Katragkou, Edouard L. Davin, Diana Rechid, Nathalie de Noblet-Ducoudre, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Lisa Jach, Ronny Meier, Priscilla A. Mooney, Pedro M. M. Soares, Susanna Strada, Merja H. Tölle, and Kirsten Warrach Sagi
Geosci. Model Dev., 15, 595–616, https://doi.org/10.5194/gmd-15-595-2022, https://doi.org/10.5194/gmd-15-595-2022, 2022
Short summary
Short summary
Afforestation is currently promoted as a greenhouse gas mitigation strategy. In our study, we examine the differences in soil temperature and moisture between grounds covered either by forests or grass. The main conclusion emerged is that forest-covered grounds are cooler but drier than open lands in summer. Therefore, afforestation disrupts the seasonal cycle of soil temperature, which in turn could trigger changes in crucial chemical processes such as soil carbon sequestration.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-252, https://doi.org/10.5194/essd-2021-252, 2021
Manuscript not accepted for further review
Short summary
Short summary
This paper introduces the new high-resolution land-use land-cover change dataset LUCAS LUC historical and future land use and land cover change dataset (Version 1.0), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Martin P. King, Camille Li, and Stefan Sobolowski
Weather Clim. Dynam., 2, 759–776, https://doi.org/10.5194/wcd-2-759-2021, https://doi.org/10.5194/wcd-2-759-2021, 2021
Short summary
Short summary
We re-examine the uncertainty of ENSO teleconnection to the North Atlantic by considering the November–December and January–February months in the cold season, in addition to the conventional DJF months. This is motivated by previous studies reporting varying teleconnected atmospheric anomalies and the mechanisms concerned. Our results indicate an improved confidence in the patterns of the teleconnection. The finding may also have implications on research in predictability and climate impact.
Trude Eidhammer, Adam Booth, Sven Decker, Lu Li, Michael Barlage, David Gochis, Roy Rasmussen, Kjetil Melvold, Atle Nesje, and Stefan Sobolowski
Hydrol. Earth Syst. Sci., 25, 4275–4297, https://doi.org/10.5194/hess-25-4275-2021, https://doi.org/10.5194/hess-25-4275-2021, 2021
Short summary
Short summary
We coupled a detailed snow–ice model (Crocus) to represent glaciers in the Weather Research and Forecasting (WRF)-Hydro model and tested it on a well-studied glacier. Several observational systems were used to evaluate the system, i.e., satellites, ground-penetrating radar (used over the glacier for snow depth) and stake observations for glacier mass balance and discharge measurements in rivers from the glacier. Results showed improvements in the streamflow projections when including the model.
Dimitris Akritidis, Eleni Katragkou, Aristeidis K. Georgoulias, Prodromos Zanis, Stergios Kartsios, Johannes Flemming, Antje Inness, John Douros, and Henk Eskes
Atmos. Chem. Phys., 20, 13557–13578, https://doi.org/10.5194/acp-20-13557-2020, https://doi.org/10.5194/acp-20-13557-2020, 2020
Short summary
Short summary
We assess the Copernicus Atmosphere Monitoring Service (CAMS) global and regional forecasts performance during a complex aerosol transport event over Europe induced by the passage of Storm Ophelia in mid-October 2017. Comparison with satellite observations reveals a satisfactory performance of CAMS global forecast assisted by data assimilation, while comparison with ground-based measurements indicates that the CAMS regional system over-performs compared to the global one in terms of air quality.
Cited articles
Adler, R. F., Gu, G., and Huffman, G. J.: Estimating Climatological Bias Errors for the Global Precipitation 118 Climatology Project (GPCP), J. Appl. Meteorol. Clim., 51, 84–99 https://doi.org/10.1175/JAMC-D-11-052.1, 2012.
African Development Bank Group (AFDBG): Southern Africa Economic Outlook 2019, African Development Bank, 2019.
Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R.,
Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily
Precipitation Climate Data Record from Multisatellite Observations for
Hydrological and Climate Studies, B. Am. Meteorol. Soc., 96, 69–83,
https://doi.org/10.1175/BAMS-D-13-00068.1, 2015.
Azzarri, C. and Signorelli, S.: Climate and poverty in Africa South of the
Sahara, World Dev., 125, 104691,
https://doi.org/10.1016/j.worlddev.2019.104691, 2020.
Ban, N., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi,
M., Ahrens, B., Alias, A., Anders, I., Bastin, S., Belusic, D., Berthou, S.,
Brisson, E., Cardoso, R. M., Chan, S., Christensen, O. B., Fernandez, J.,
Fita, L., Frisius, T., Gasparac, G., Giorgi, F., Goergen, K., Haugen, J. E.,
Hodnebrog, O., Kartsios, S., Katragkou, E., Kendon, E. J., Keuler, K.,
Lavin-Gullon, A., Lenderink, G., Leutwyler, D., Lorenz, T., Maraun, D.,
Mercogliano, P., Milovac, J., Panitz, H.-J., Raffa, M., Remedio, A. R.,
Schar, C., Soares, P. M. M., Srnec, L., Steensen, B. M., Stocchi, P., Tolle,
M. H., Truhetz, H., Vergara-Temprado, J., de Vries, H., Warrach-Sagi, K.,
Wulfmeyer, V., and Zander, M.: The first multi-model ensemble of regional
climate simulations at the kilometer-scale resolution, Part I: Evaluation of
precipitation, Clim. Dynam., 57, 275–302, https://doi.org/10.1007/s00382-021-05708-w, 2021.
Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Higgins, R. W., and Janowiak, J. E.: Assessing objective techniques for gauge-based analyses of global daily precipitation, J. Geophys. Res.-Atmos., 113, D04110, https://doi.org/10.1029/2007JD009132, 2008.
Chen, M., Xie, P., Janowiak, J. E., and Arkin, P. A.: Global Land Precipitation: A 50-yr Monthly Analysis Based on 136 Gauge Observations, J. Hydrometeorol., 3, 249–266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2, 2002.
Chinowsky, P. S., Schweikert, A. E., Strzepek, N. L., and Strzepek, K.:
Infrastructure and climate change: a study of impacts and adaptations in
Malawi, Mozambique, and Zambia, Climatic Change, 130, 49–62,
https://doi.org/10.1007/s10584-014-1219-8, 2015.
Climate Data Store (CDS): https://cds.climate.copernicus.eu/#!/home, last access: 1 September 2021.
Coppola, E., Raffaele, F., Giorgi, F., Giuliani, G., Xuejie, G., Ciarlo, J.
M., Sines, T. R., Torres-Alavez, J. A., Das, S., di Sante, F., Pichelli, E.,
Glazer, R., Müller, S. K., Abba Omar, S., Ashfaq, M., Bukovsky, M., Im,
E.-S., Jacob, D., Teichmann, C., Remedio, A., Remke, T., Kriegsmann, A.,
Bülow, K., Weber, T., Buntemeyer, L., Sieck, K., and Rechid, D.: Climate
hazard indices projections based on CORDEX-CORE, CMIP5 and CMIP6 ensemble,
Clim. Dynam., 57, 1293–1383, https://doi.org/10.1007/s00382-021-05640-z,
2021.
Crétat, J., Pohl, B., Dieppois, B., Berthou, S., and Pergaud, J.: The
Angola Low: relationship with southern African rainfall and ENSO, Clim.
Dynam., 52, 1783–1803, https://doi.org/10.1007/s00382-018-4222-3, 2019.
Daron, J., Burgin, L., Janes, T., Jones, R. G., and Jack, C.: Climate
process chains: Examples from southern Africa, Int. J. Climatol., 39,
4784–4797, https://doi.org/10.1002/joc.6106, 2019.
Davis-Reddy, C. L. and Vincent, K.: Climate Risk and Vulnerability: A Handbook for Southern Africa, 2nd Edn., CSIR, Pretoria, South Africa, 2017.
Denis, B., Laprise, R., and Caya, D.: Sensitivity of a regional climate
model to the resolution of the lateral boundary conditions, Clim. Dynam., 20,
107–126, https://doi.org/10.1007/s00382-002-0264-6, 2003.
Desbiolles, F., Howard, E., Blamey, R. C., Barimalala, R., Hart, N. C. G.,
and Reason, C. J. C.: Role of ocean mesoscale structures in shaping the
Angola-Low pressure system and the southern Africa rainfall, Clim. Dynam., 54,
3685–3704, https://doi.org/10.1007/s00382-020-05199-1, 2020.
Dieppois, B., Pohl, B., Crétat, J., Eden, J., Sidibe, M., New, M.,
Rouault, M., and Lawler, D.: Southern African summer-rainfall variability,
and its teleconnections, on interannual to interdecadal timescales in CMIP5
models, Clim. Dynam., 53, 3505–3527,
https://doi.org/10.1007/s00382-019-04720-5, 2019.
Diffenbaugh, N. S. and Giorgi, F.: Climate change hotspots in the CMIP5
global climate model ensemble, Climatic Change, 114, 813–822,
https://doi.org/10.1007/s10584-012-0570-x, 2012.
Di Luca, A., de Elía, R., and Laprise, R.: Potential for added value in
temperature simulated by high-resolution nested RCMs in present climate and
in the climate change signal, Clim. Dynam., 40, 443–464,
https://doi.org/10.1007/s00382-012-1384-2, 2013.
Dosio, A. and Panitz, H.-J.: Climate change projections for CORDEX-Africa
with COSMO-CLM regional climate model and differences with the driving
global climate models, Clim. Dynam., 46, 1599–1625,
https://doi.org/10.1007/s00382-015-2664-4, 2016.
Dosio, A., Panitz, H.-J., Schubert-Frisius, M., and Lüthi, D.: Dynamical
downscaling of CMIP5 global circulation models over CORDEX-Africa with
COSMO-CLM: evaluation over the present climate and analysis of the added
value, Clim. Dynam., 44, 2637–2661,
https://doi.org/10.1007/s00382-014-2262-x, 2015.
Dosio, A., Jones, R. G., Jack, C., Lennard, C., Nikulin, G., and Hewitson,
B.: What can we know about future precipitation in Africa? Robustness,
significance and added value of projections from a large ensemble of
regional climate models, Clim. Dynam., 53, 5833–5858,
https://doi.org/10.1007/s00382-019-04900-3, 2019.
Dosio, A., Jury, M. W., Almazroui, M., Ashfaq, M., Diallo, I., Engelbrecht,
F. A., Klutse, N. A. B., Lennard, C., Pinto, I., Sylla, M. B., and Tamoffo,
A. T.: Projected future daily characteristics of African precipitation based
on global (CMIP5, CMIP6) and regional (CORDEX, CORDEX-CORE) climate models,
Clim. Dynam., 57, 3135–3158, https://doi.org/10.1007/s00382-021-05859-w,
2021.
Duan, H., Zhang, G., Wang, S., and Fan, Y.: Robust climate change research:
a review on multi-model analysis, Environ. Res. Lett., 14, 033001,
https://doi.org/10.1088/1748-9326/aaf8f9, 2019.
ESGF-DKRZ: https://esgf-data.dkrz.de/projects/esgf-dkrz/, last access: 1 September 2021.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The
climate hazards infrared precipitation with stations – a new environmental
record for monitoring extremes, Sci. Data, 2, 150066,
https://doi.org/10.1038/sdata.2015.66, 2015.
Giesen, N. van de, Hut, R., and Selker, J.: The Trans-African
Hydro-Meteorological Observatory (TAHMO), WIREs Water, 1, 341–348,
https://doi.org/10.1002/wat2.1034, 2014.
Giorgi, F.: Thirty Years of Regional Climate Modeling: Where Are We and
Where Are We Going next?, J. Geophys. Res.-Atmos., 124, 5696–5723,
https://doi.org/10.1029/2018JD030094, 2019.
Giorgi, F. and Gutowski, W. J.: Regional Dynamical Downscaling and the
CORDEX Initiative, Annu. Rev. Environ. Res., 40, 467–490,
https://doi.org/10.1146/annurev-environ-102014-021217, 2015.
Giorgi, F., Coppola, E., Raffaele, F., Diro, G. T., Fuentes-Franco, R.,
Giuliani, G., Mamgain, A., Llopart, M. P., Mariotti, L., and Torma, C.:
Changes in extremes and hydroclimatic regimes in the CREMA ensemble
projections, Climatic Change, 125, 39–51,
https://doi.org/10.1007/s10584-014-1117-0, 2014.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated high-resolution grids of monthly climatic 169 observations – the CRU TS3.10 Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Hart, N. C. G., Reason, C. J. C., and Fauchereau, N.:
Tropical–Extratropical Interactions over Southern Africa: Three Cases of
Heavy Summer Season Rainfall, Mon. Weather Rev., 138, 2608–2623,
https://doi.org/10.1175/2010MWR3070.1, 2010.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.
de, Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Houze, R. A.: Orographic effects on precipitating clouds, Rev. Geophys., 50, RG1001,
https://doi.org/10.1029/2011RG000365, 2012.
Howard, E. and Washington, R.: Characterizing the Synoptic Expression of the
Angola Low, J. Climate, 31, 7147–7165,
https://doi.org/10.1175/JCLI-D-18-0017.1, 2018.
Howard, E. and Washington, R.: Drylines in Southern Africa: Rediscovering
the Congo Air Boundary, J. Climate, 32, 8223–8242,
https://doi.org/10.1175/JCLI-D-19-0437.1, 2019.
IPCC: Annex I: Atlas of Global and Regional Climate Projections, in: Climate
Change 2013: The Physical Science Basis, Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.
M., Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA, 1311–1394, https://doi.org/10.1017/CBO9781107415324.029, 2013.
Janowiak, J. E.: An Investigation of Interannual Rainfall Variability in
Africa, J. Climate, 1, 240–255,
https://doi.org/10.1175/1520-0442(1988)001<0240:AIOIRV>,2.0.CO;2, 1988.
Kalognomou, E.-A., Lennard, C., Shongwe, M., Pinto, I., Favre, A., Kent, M.,
Hewitson, B., Dosio, A., Nikulin, G., Panitz, H.-J., and Büchner, M.: A
Diagnostic Evaluation of Precipitation in CORDEX Models over Southern
Africa, J. Climate, 26, 9477–9506, https://doi.org/10.1175/JCLI-D-12-00703.1,
2013.
Karypidou, M. C.: Precipitation over southern Africa: Is there consensus among GCMs, RCMs and observational data? (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.4725441, 2021.
Kendall, M. G.: Rank correlation methods, Griffin, Oxford, England, 1948.
Kim, J., Waliser, D. E., Mattmann, C. A., Goodale, C. E., Hart, A. F.,
Zimdars, P. A., Crichton, D. J., Jones, C., Nikulin, G., Hewitson, B., Jack,
C., Lennard, C., and Favre, A.: Evaluation of the CORDEX-Africa multi-RCM
hindcast: systematic model errors, Clim. Dynam., 42, 1189–1202,
https://doi.org/10.1007/s00382-013-1751-7, 2014.
Kim, Y.-H., Min, S.-K., Zhang, X., Sillmann, J., and Sandstad, M.:
Evaluation of the CMIP6 multi-model ensemble for climate extreme indices,
Weather Clim. Extrem., 29, 100269,
https://doi.org/10.1016/j.wace.2020.100269, 2020.
Kula, N., Haines, A., and Fryatt, R.: Reducing Vulnerability to Climate
Change in Sub-Saharan Africa: The Need for Better Evidence, PLoS Med., 10, e1001374,
https://doi.org/10.1371/journal.pmed.1001374, 2013.
Laprise, R., de Elía, R., Caya, D., Biner, S., Lucas-Picher, P.,
Diaconescu, E., Leduc, M., Alexandru, A., Separovic, L., and Canadian
Network for Regional Climate Modelling and Diagnostics: Challenging some
tenets of Regional Climate Modelling, Meteorol. Atmos. Phys., 100,
3–22, https://doi.org/10.1007/s00703-008-0292-9, 2008.
Le Coz, C. and van de Giesen, N.: Comparison of Rainfall Products over
Sub-Saharan Africa, J. Hydrometeorol., 21, 553–596,
https://doi.org/10.1175/JHM-D-18-0256.1, 2020.
L'Heureux, M. L., Lee, S., and Lyon, B.: Recent multidecadal strengthening
of the Walker circulation across the tropical Pacific, Nat. Clim. Change, 3,
571–576, https://doi.org/10.1038/nclimate1840, 2013.
Lorenz, C. and Kunstmann, H.: The Hydrological Cycle in Three
State-of-the-Art Reanalyses: Intercomparison and Performance Analysis, J.
Hydrometeorol., 13, 1397–1420, https://doi.org/10.1175/JHM-D-11-088.1,
2012.
Lyon, B. and Mason, S. J.: The 1997–98 Summer Rainfall Season in Southern
Africa. Part I: Observations, J. Climate, 20, 5134–5148,
https://doi.org/10.1175/JCLI4225.1, 2007.
Mabhaudhi, T., Mpandeli, S., Nhamo, L., Chimonyo, V. G. P., Nhemachena, C.,
Senzanje, A., Naidoo, D., and Modi, A. T.: Prospects for Improving Irrigated
Agriculture in Southern Africa: Linking Water, Energy and Food, Water, 10,
1881, https://doi.org/10.3390/w10121881, 2018.
Maidment, R. I., Grimes, D., Allan, R. P., Tarnavsky, E., Stringer, M.,
Hewison, T., Roebeling, R., and Black, E.: The 30 year TAMSAT African
Rainfall Climatology And Time series (TARCAT) data set, J. Geophys. Res.-Atmos., 119, 10619–10644, https://doi.org/10.1002/2014JD021927, 2014.
Maidment, R. I., Allan, R. P., and Black, E.: Recent observed and simulated
changes in precipitation over Africa, Geophys. Res. Lett., 42, 8155–8164,
https://doi.org/10.1002/2015GL065765, 2015.
Mann, H. B.: Nonparametric Tests Against Trend, Econometrica, 13, 245–259,
https://doi.org/10.2307/1907187, 1945.
Meque, A. and Abiodun, B. J.: Simulating the link between ENSO and summer
drought in Southern Africa using regional climate models, Clim. Dynam., 44,
1881–1900, https://doi.org/10.1007/s00382-014-2143-3, 2015.
Munday, C. and Washington, R.: Circulation controls on southern African
precipitation in coupled models: The role of the Angola Low, J. Geophys.
Res. Atmospheres, 122, 861–877, https://doi.org/10.1002/2016JD025736, 2017.
Munday, C. and Washington, R.: Systematic Climate Model Rainfall Biases over
Southern Africa: Links to Moisture Circulation and Topography, J. Climate, 31,
7533–7548, https://doi.org/10.1175/JCLI-D-18-0008.1, 2018.
Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Büchner, M., Cerezo-Mota,
R., Christensen, O. B., Déqué, M., Fernandez, J., Hänsler, A.,
Meijgaard, E. van, Samuelsson, P., Sylla, M. B., and Sushama, L.:
Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate
Simulations, J. Climate, 25, 6057–6078,
https://doi.org/10.1175/JCLI-D-11-00375.1, 2012.
Novella, N. S. and Thiaw, W. M.: African Rainfall Climatology Version 2 for Famine Early Warning Systems, J. Appl. Meteorol. Clim., 52, 588–606, https://doi.org/10.1175/JAMC-D-11-0238.1, 2013.
Onyutha, C.: Trends and variability in African long-term precipitation,
Stoch. Environ. Res. Risk Ass., 32, 2721–2739,
https://doi.org/10.1007/s00477-018-1587-0, 2018.
Peterson, T. C. and Manton, M. J.: Monitoring Changes in Climate Extremes: A
Tale of International Collaboration, B. Am. Meteorol. Soc., 89,
1266–1271, 2008.
Pichelli, E., Coppola, E., Sobolowski, S., Ban, N., Giorgi, F., Stocchi, P.,
Alias, A., Belušić, D., Berthou, S., Caillaud, C., Cardoso, R. M.,
Chan, S., Christensen, O. B., Dobler, A., de Vries, H., Goergen, K., Kendon,
E. J., Keuler, K., Lenderink, G., Lorenz, T., Mishra, A. N., Panitz, H.-J.,
Schär, C., Soares, P. M. M., Truhetz, H., and Vergara-Temprado, J.: The
first multi-model ensemble of regional climate simulations at
kilometer-scale resolution part 2: historical and future simulations of
precipitation, Clim. Dynam., 56, 3581–3602, https://doi.org/10.1007/s00382-021-05657-4, 2021.
Pierce, D. W., Barnett, T. P., Santer, B. D., and Gleckler, P. J.: Selecting
global climate models for regional climate change studies, P. Natl. Acad.
Sci. USA, 106, 8441–8446, https://doi.org/10.1073/pnas.0900094106, 2009.
Pinto, I., Lennard, C., Tadross, M., Hewitson, B., Dosio, A., Nikulin, G.,
Panitz, H.-J., and Shongwe, M. E.: Evaluation and projections of extreme
precipitation over southern Africa from two CORDEX models, Climatic Change,
135, 655–668, https://doi.org/10.1007/s10584-015-1573-1, 2016.
R Core Team: A language and environment for statistical computing, R Foundation for Statistical Computing, https://www.r-project.org/, last access: 31 October 2021.
Reason, C. J. C. and Jagadheesha, D.: A model investigation of recent ENSO
impacts over southern Africa, Meteorol. Atmos. Phys., 89, 181–205,
https://doi.org/10.1007/s00703-005-0128-9, 2005.
Rocklöv, J. and Dubrow, R.: Climate change: an enduring challenge for
vector-borne disease prevention and control, Nat. Immunol., 21, 479–483,
https://doi.org/10.1038/s41590-020-0648-y, 2020.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and Ziese, M.: GPCC Full Data Reanalysis Version 7.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data, Global Precipitation Climatology Centre [data set], https://doi.org/10.5676/DWD_GPCC/FD_M_V7_050, 2015.
Schulzweida, U.: CDO User Guide (Version 2.0.0), https://code.mpimet.mpg.de/projects/cdo/, last access: 31 October 2021.
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau,
J. Am. Stat. Assoc., 63, 1379–1389,
https://doi.org/10.1080/01621459.1968.10480934, 1968.
Serdeczny, O., Adams, S., Baarsch, F., Coumou, D., Robinson, A., Hare, W.,
Schaeffer, M., Perrette, M., and Reinhardt, J.: Climate change impacts in
Sub-Saharan Africa: from physical changes to their social repercussions,
Reg. Environ. Change, 17, 1585–1600,
https://doi.org/10.1007/s10113-015-0910-2, 2017.
Tarnavsky, E., Grimes, D., Maidment, R., Black, E., Allan, R. P., Stringer,
M., Chadwick, R., and Kayitakire, F.: Extension of the TAMSAT
Satellite-Based Rainfall Monitoring over Africa and from 1983 to Present, J.
Appl. Meteorol. Clim., 53, 2805–2822,
https://doi.org/10.1175/JAMC-D-14-0016.1, 2014.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Theil, H.: A Rank-Invariant Method of Linear and Polynomial Regression
Analysis, in: Henri Theil's Contributions to Economics and Econometrics:
Econometric Theory and Methodology, edited by: Raj, B. and Koerts, J.,
Springer Netherlands, Dordrecht, 345–381,
https://doi.org/10.1007/978-94-011-2546-8_20, 1992.
Tirado, M. C., Hunnes, D., Cohen, M. J., and Lartey, A.: Climate Change and
Nutrition in Africa, J. Hunger Environ. Nutr., 10, 22–46,
https://doi.org/10.1080/19320248.2014.908447, 2015.
Toté, C., Patricio, D., Boogaard, H., Van der Wijngaart, R., Tarnavsky,
E., and Funk, C.: Evaluation of Satellite Rainfall Estimates for Drought and
Flood Monitoring in Mozambique, Remote Sens., 7, 1758–1776,
https://doi.org/10.3390/rs70201758, 2015.
Ukkola, A. M., Kauwe, M. G. D., Roderick, M. L., Abramowitz, G., and Pitman,
A. J.: Robust Future Changes in Meteorological Drought in CMIP6 Projections
Despite Uncertainty in Precipitation, Geophys. Res. Lett., 47,
e2020GL087820, https://doi.org/10.1029/2020GL087820, 2020.
Warnatzsch, E. A. and Reay, D. S.: Temperature and precipitation change in
Malawi: Evaluation of CORDEX-Africa climate simulations for climate change
impact assessments and adaptation planning, Sci. Total Environ., 654,
378–392, https://doi.org/10.1016/j.scitotenv.2018.11.098, 2019.
Willmott, C. J. and Matsuura, K.: Smart Interpolation of Annually Averaged Air Temperature in the United States, J. Appl. Meteorol. 34, 2577–2586, https://doi.org/10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2, 1995.
Wyser, K., van Noije, T., Yang, S., von Hardenberg, J., O'Donnell, D., and Döscher, R.: On the increased climate sensitivity in the EC-Earth model from CMIP5 to CMIP6, Geosci. Model Dev., 13, 3465–3474, https://doi.org/10.5194/gmd-13-3465-2020, 2020.
Xie, P. and Arkin, P. A.: Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite 269 Estimates, and Numerical Model Outputs, B. Am. Meteorol. Soc., 78, 2539–2558, 1997.
https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
Yim, B. Y., Yeh, S.-W., and Sohn, B.-J.: ENSO-Related Precipitation and Its
Statistical Relationship with the Walker Circulation Trend in CMIP5 AMIP
Models, Atmosphere, 7, 19, https://doi.org/10.3390/atmos7020019, 2016.
Short summary
The region of southern Africa (SAF) is highly vulnerable to the impacts of climate change and is projected to experience severe precipitation shortages in the coming decades. Reliable climatic information is therefore necessary for the optimal adaptation of local communities. In this work we show that regional climate models are reliable tools for the simulation of precipitation over southern Africa. However, there is still a great need for the expansion and maintenance of observational data.
The region of southern Africa (SAF) is highly vulnerable to the impacts of climate change and is...