Articles | Volume 15, issue 7
https://doi.org/10.5194/gmd-15-3041-2022
https://doi.org/10.5194/gmd-15-3041-2022
Development and technical paper
 | 
08 Apr 2022
Development and technical paper |  | 08 Apr 2022

Surface Urban Energy and Water Balance Scheme (v2020a) in vegetated areas: parameter derivation and performance evaluation using FLUXNET2015 dataset

Hamidreza Omidvar, Ting Sun, Sue Grimmond, Dave Bilesbach, Andrew Black, Jiquan Chen, Zexia Duan, Zhiqiu Gao, Hiroki Iwata, and Joseph P. McFadden

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Ting Sun on behalf of the Authors (04 Nov 2021)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (19 Nov 2021) by Jeffrey Neal
RR by Anonymous Referee #2 (26 Nov 2021)
ED: Publish subject to minor revisions (review by editor) (25 Feb 2022) by Jeffrey Neal
AR by Ting Sun on behalf of the Authors (01 Mar 2022)  Author's response    Manuscript
ED: Publish as is (03 Mar 2022) by Jeffrey Neal
Download
Short summary
This paper extends the applicability of the SUEWS to extensive pervious areas outside cities. We derived various parameters such as leaf area index, albedo, roughness parameters and surface conductance for non-urban areas. The relation between LAI and albedo is also explored. The methods and parameters discussed can be used for both online and offline simulations. Using appropriate parameters related to non-urban areas is essential for assessing urban–rural differences.