Articles | Volume 15, issue 4
https://doi.org/10.5194/gmd-15-1689-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1689-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SSolar-GOA v1.0: a simple, fast, and accurate Spectral SOLAR radiative transfer model for clear skies
Victoria Eugenia Cachorro
CORRESPONDING AUTHOR
Group of Atmospheric Optics, Universidad de Valladolid (GOA-UVa),
Valladolid, 47011, Spain
Juan Carlos Antuña-Sanchez
Group of Atmospheric Optics, Universidad de Valladolid (GOA-UVa),
Valladolid, 47011, Spain
Ángel Máximo de Frutos
Group of Atmospheric Optics, Universidad de Valladolid (GOA-UVa),
Valladolid, 47011, Spain
Related authors
David Mateos, Carlos Toledano, Abel Calle, Roberto Román, Marcos Herreras-Giralda, Ramiro González, Sara Herrero-Anta, Daniel González-Fernández, Celia Herrero-del Barrio, Argyro Nisantzi, Silke Gross, Victoria E. Cachorro, Ángel M. de Frutos, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2025-3577, https://doi.org/10.5194/egusphere-2025-3577, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The A-LIFE experiment deployed in Cyprus included two sun photometers of AERONET network in two different sites. Mineral dust was predominant during the experiment, with Saharan and Arabian dust showing distinct optical properties, in particular, the Angstrom Exponent in the near-infrarred range and Volume Efficiency factor. Both magnitudes can served as a reliable proxy for mineral dust typing. No significant black carbon presence was detected.
Roberto Román, Daniel González-Fernández, Juan Carlos Antuña-Sánchez, Celia Herrero del Barrio, Sara Herrero-Anta, África Barreto, Victoria E. Cachorro, Lionel Doppler, Ramiro González, Christoph Ritter, David Mateos, Natalia Kouremeti, Gustavo Copes, Abel Calle, María José Granados-Muñoz, Carlos Toledano, and Ángel M. de Frutos
Atmos. Meas. Tech., 18, 2847–2875, https://doi.org/10.5194/amt-18-2847-2025, https://doi.org/10.5194/amt-18-2847-2025, 2025
Short summary
Short summary
This paper presents a novel technique to extract starlight signals from all-sky images and retrieve aerosol optical depth (AOD). It is validated against lunar photometry, showing a strong correlation between data series. This innovative approach will expand nocturnal AOD measurements to more locations, as all-sky cameras are a simpler and more cost-effective alternative to stellar and lunar photometers.
Celia Herrero del Barrio, Roberto Román, Ramiro González, Alberto Cazorla, Marcos Herreras-Giralda, Juan Carlos Antuña-Sánchez, Francisco Molero, Francisco Navas-Guzmán, Antonio Serrano, María Ángeles Obregón, Yolanda Sola, Marco Pandolfi, Sara Herrero-Anta, Daniel González-Fernández, Jorge Muñiz-Rosado, David Mateos, Abel Calle, Carlos Toledano, Victoria Eugenia Cachorro, and Ángel Máximo de Frutos
EGUsphere, https://doi.org/10.5194/egusphere-2024-581, https://doi.org/10.5194/egusphere-2024-581, 2024
Preprint withdrawn
Short summary
Short summary
Introducing CAECENET, a novel system that combines sun-sky photometer and ceilometer data, enabling the continuous monitoring and automatic retrieval of both vertical and columnar aerosol properties in near real-time. A case study on a Saharan dust outbreak illustrates it's efficacy in tracking aerosol events. Additionally, the analysis of Canadian wildfires' long-range transport is presented, showing it's utility in monitoring event propagation, aerosol concentration, and optical properties.
Antonio Fernando Almansa, África Barreto, Natalia Kouremeti, Ramiro González, Akriti Masoom, Carlos Toledano, Julian Gröbner, Rosa Delia García, Yenny González, Stelios Kazadzis, Stéphane Victori, Óscar Álvarez, Fabrice Maupin, Virgilio Carreño, Victoria Eugenia Cachorro, and Emilio Cuevas
Atmos. Meas. Tech., 17, 659–675, https://doi.org/10.5194/amt-17-659-2024, https://doi.org/10.5194/amt-17-659-2024, 2024
Short summary
Short summary
This paper applies sun photometer synergies to improve calibration transference between different sun photometers and also enhance their quality assurance and quality control. We have validated this technique using different instrumentation, the WMO-GAW and NASA-AERONET references, under different aerosol regimes using the standard Langley calibration method as a reference.
Sara Herrero-Anta, Roberto Román, David Mateos, Ramiro González, Juan Carlos Antuña-Sánchez, Marcos Herreras-Giralda, Antonio Fernando Almansa, Daniel González-Fernández, Celia Herrero del Barrio, Carlos Toledano, Victoria E. Cachorro, and Ángel M. de Frutos
Atmos. Meas. Tech., 16, 4423–4443, https://doi.org/10.5194/amt-16-4423-2023, https://doi.org/10.5194/amt-16-4423-2023, 2023
Short summary
Short summary
This paper shows the potential of a simple radiometer like the ZEN-R52 as a possible alternative for aerosol property retrieval in remote areas. A calibration method based on radiative transfer simulations together with an inversion methodology using the GRASP code is proposed here. The results demonstrate that this methodology is useful for the retrieval of aerosol extensive properties like aerosol optical depth (AOD) and aerosol volume concentration for total, fine and coarse modes.
Juan-Carlos Antuña-Marrero, Graham W. Mann, John Barnes, Abel Calle, Sandip S. Dhomse, Victoria E. Cachorro-Revilla, Terry Deshler, Li Zhengyao, Nimmi Sharma, and Louis Elterman
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-272, https://doi.org/10.5194/essd-2022-272, 2022
Revised manuscript not accepted
Short summary
Short summary
Tropospheric and stratospheric aerosol extinction profiles observations from a searchlight at New Mexico, US, were rescued and re-calibrated. Spanning between December 1963 and 1964, they measured the volcanic aerosols from the 1963 Agung eruption. Contemporary and state of the art information were used in the re-calibration. A unique and until the present forgotten/ignored dataset, it contributes current observational and modelling research on the impact of major volcanic eruptions on climate.
Roberto Román, Juan C. Antuña-Sánchez, Victoria E. Cachorro, Carlos Toledano, Benjamín Torres, David Mateos, David Fuertes, César López, Ramiro González, Tatyana Lapionok, Marcos Herreras-Giralda, Oleg Dubovik, and Ángel M. de Frutos
Atmos. Meas. Tech., 15, 407–433, https://doi.org/10.5194/amt-15-407-2022, https://doi.org/10.5194/amt-15-407-2022, 2022
Short summary
Short summary
An all-sky camera is used to obtain the relative sky radiance, and this radiance is used as input in an inversion code to obtain aerosol properties. This paper is really interesting because it pushes forward the use and capability of sky cameras for more advanced science purposes. Enhanced aerosol properties can be retrieved with accuracy using only an all-sky camera, but synergy with other instruments providing aerosol optical depth could even increase the power of these low-cost instruments.
Juan C. Antuña-Sánchez, Roberto Román, Victoria E. Cachorro, Carlos Toledano, César López, Ramiro González, David Mateos, Abel Calle, and Ángel M. de Frutos
Atmos. Meas. Tech., 14, 2201–2217, https://doi.org/10.5194/amt-14-2201-2021, https://doi.org/10.5194/amt-14-2201-2021, 2021
Short summary
Short summary
This paper presents a new technique to exploit the potential of all-sky cameras. The sky radiance at three effective wavelengths is calculated and compared with alternative measurements and simulated data. The proposed method will be useful for the retrieval of aerosol and cloud properties.
Roberto Román, Ramiro González, Carlos Toledano, África Barreto, Daniel Pérez-Ramírez, Jose A. Benavent-Oltra, Francisco J. Olmo, Victoria E. Cachorro, Lucas Alados-Arboledas, and Ángel M. de Frutos
Atmos. Meas. Tech., 13, 6293–6310, https://doi.org/10.5194/amt-13-6293-2020, https://doi.org/10.5194/amt-13-6293-2020, 2020
Short summary
Short summary
Atmospheric-aerosol and gaseous properties can be derived at night-time if the lunar irradiance at the ground is measured. To this end, the knowledge of lunar irradiance at the top of the atmosphere is necessary. This extraterrestrial lunar irradiance is usually calculated by models since it varies with several geometric factors mainly depending on time and location. This paper proposes a correction to the most used lunar-irradiance model to be applied for atmospheric-aerosol characterization.
Ramiro González, Carlos Toledano, Roberto Román, David Fuertes, Alberto Berjón, David Mateos, Carmen Guirado-Fuentes, Cristian Velasco-Merino, Juan Carlos Antuña-Sánchez, Abel Calle, Victoria E. Cachorro, and Ángel M. de Frutos
Geosci. Instrum. Method. Data Syst., 9, 417–433, https://doi.org/10.5194/gi-9-417-2020, https://doi.org/10.5194/gi-9-417-2020, 2020
Short summary
Short summary
Aerosol optical depth (AOD) is a parameter widely used in remote sensing for the characterization of atmospheric aerosol particles. AERONET was created by NASA for aerosol monitoring as well as satellite and model validation. The University of Valladolid (UVa) has managed an AERONET calibration center since 2006. The CÆLIS software tool, developed by UVa, was created to manage the data generated by AERONET photometers. The AOD algorithm in CÆLIS is developed and validated in this work.
David Mateos, Carlos Toledano, Abel Calle, Roberto Román, Marcos Herreras-Giralda, Ramiro González, Sara Herrero-Anta, Daniel González-Fernández, Celia Herrero-del Barrio, Argyro Nisantzi, Silke Gross, Victoria E. Cachorro, Ángel M. de Frutos, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2025-3577, https://doi.org/10.5194/egusphere-2025-3577, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The A-LIFE experiment deployed in Cyprus included two sun photometers of AERONET network in two different sites. Mineral dust was predominant during the experiment, with Saharan and Arabian dust showing distinct optical properties, in particular, the Angstrom Exponent in the near-infrarred range and Volume Efficiency factor. Both magnitudes can served as a reliable proxy for mineral dust typing. No significant black carbon presence was detected.
Roberto Román, Daniel González-Fernández, Juan Carlos Antuña-Sánchez, Celia Herrero del Barrio, Sara Herrero-Anta, África Barreto, Victoria E. Cachorro, Lionel Doppler, Ramiro González, Christoph Ritter, David Mateos, Natalia Kouremeti, Gustavo Copes, Abel Calle, María José Granados-Muñoz, Carlos Toledano, and Ángel M. de Frutos
Atmos. Meas. Tech., 18, 2847–2875, https://doi.org/10.5194/amt-18-2847-2025, https://doi.org/10.5194/amt-18-2847-2025, 2025
Short summary
Short summary
This paper presents a novel technique to extract starlight signals from all-sky images and retrieve aerosol optical depth (AOD). It is validated against lunar photometry, showing a strong correlation between data series. This innovative approach will expand nocturnal AOD measurements to more locations, as all-sky cameras are a simpler and more cost-effective alternative to stellar and lunar photometers.
Celia Herrero del Barrio, Roberto Román, Ramiro González, Alberto Cazorla, Marcos Herreras-Giralda, Juan Carlos Antuña-Sánchez, Francisco Molero, Francisco Navas-Guzmán, Antonio Serrano, María Ángeles Obregón, Yolanda Sola, Marco Pandolfi, Sara Herrero-Anta, Daniel González-Fernández, Jorge Muñiz-Rosado, David Mateos, Abel Calle, Carlos Toledano, Victoria Eugenia Cachorro, and Ángel Máximo de Frutos
EGUsphere, https://doi.org/10.5194/egusphere-2024-581, https://doi.org/10.5194/egusphere-2024-581, 2024
Preprint withdrawn
Short summary
Short summary
Introducing CAECENET, a novel system that combines sun-sky photometer and ceilometer data, enabling the continuous monitoring and automatic retrieval of both vertical and columnar aerosol properties in near real-time. A case study on a Saharan dust outbreak illustrates it's efficacy in tracking aerosol events. Additionally, the analysis of Canadian wildfires' long-range transport is presented, showing it's utility in monitoring event propagation, aerosol concentration, and optical properties.
Antonio Fernando Almansa, África Barreto, Natalia Kouremeti, Ramiro González, Akriti Masoom, Carlos Toledano, Julian Gröbner, Rosa Delia García, Yenny González, Stelios Kazadzis, Stéphane Victori, Óscar Álvarez, Fabrice Maupin, Virgilio Carreño, Victoria Eugenia Cachorro, and Emilio Cuevas
Atmos. Meas. Tech., 17, 659–675, https://doi.org/10.5194/amt-17-659-2024, https://doi.org/10.5194/amt-17-659-2024, 2024
Short summary
Short summary
This paper applies sun photometer synergies to improve calibration transference between different sun photometers and also enhance their quality assurance and quality control. We have validated this technique using different instrumentation, the WMO-GAW and NASA-AERONET references, under different aerosol regimes using the standard Langley calibration method as a reference.
Sara Herrero-Anta, Roberto Román, David Mateos, Ramiro González, Juan Carlos Antuña-Sánchez, Marcos Herreras-Giralda, Antonio Fernando Almansa, Daniel González-Fernández, Celia Herrero del Barrio, Carlos Toledano, Victoria E. Cachorro, and Ángel M. de Frutos
Atmos. Meas. Tech., 16, 4423–4443, https://doi.org/10.5194/amt-16-4423-2023, https://doi.org/10.5194/amt-16-4423-2023, 2023
Short summary
Short summary
This paper shows the potential of a simple radiometer like the ZEN-R52 as a possible alternative for aerosol property retrieval in remote areas. A calibration method based on radiative transfer simulations together with an inversion methodology using the GRASP code is proposed here. The results demonstrate that this methodology is useful for the retrieval of aerosol extensive properties like aerosol optical depth (AOD) and aerosol volume concentration for total, fine and coarse modes.
Juan-Carlos Antuña-Marrero, Graham W. Mann, John Barnes, Abel Calle, Sandip S. Dhomse, Victoria E. Cachorro-Revilla, Terry Deshler, Li Zhengyao, Nimmi Sharma, and Louis Elterman
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-272, https://doi.org/10.5194/essd-2022-272, 2022
Revised manuscript not accepted
Short summary
Short summary
Tropospheric and stratospheric aerosol extinction profiles observations from a searchlight at New Mexico, US, were rescued and re-calibrated. Spanning between December 1963 and 1964, they measured the volcanic aerosols from the 1963 Agung eruption. Contemporary and state of the art information were used in the re-calibration. A unique and until the present forgotten/ignored dataset, it contributes current observational and modelling research on the impact of major volcanic eruptions on climate.
Roberto Román, Juan C. Antuña-Sánchez, Victoria E. Cachorro, Carlos Toledano, Benjamín Torres, David Mateos, David Fuertes, César López, Ramiro González, Tatyana Lapionok, Marcos Herreras-Giralda, Oleg Dubovik, and Ángel M. de Frutos
Atmos. Meas. Tech., 15, 407–433, https://doi.org/10.5194/amt-15-407-2022, https://doi.org/10.5194/amt-15-407-2022, 2022
Short summary
Short summary
An all-sky camera is used to obtain the relative sky radiance, and this radiance is used as input in an inversion code to obtain aerosol properties. This paper is really interesting because it pushes forward the use and capability of sky cameras for more advanced science purposes. Enhanced aerosol properties can be retrieved with accuracy using only an all-sky camera, but synergy with other instruments providing aerosol optical depth could even increase the power of these low-cost instruments.
Juan C. Antuña-Sánchez, Roberto Román, Victoria E. Cachorro, Carlos Toledano, César López, Ramiro González, David Mateos, Abel Calle, and Ángel M. de Frutos
Atmos. Meas. Tech., 14, 2201–2217, https://doi.org/10.5194/amt-14-2201-2021, https://doi.org/10.5194/amt-14-2201-2021, 2021
Short summary
Short summary
This paper presents a new technique to exploit the potential of all-sky cameras. The sky radiance at three effective wavelengths is calculated and compared with alternative measurements and simulated data. The proposed method will be useful for the retrieval of aerosol and cloud properties.
Roberto Román, Ramiro González, Carlos Toledano, África Barreto, Daniel Pérez-Ramírez, Jose A. Benavent-Oltra, Francisco J. Olmo, Victoria E. Cachorro, Lucas Alados-Arboledas, and Ángel M. de Frutos
Atmos. Meas. Tech., 13, 6293–6310, https://doi.org/10.5194/amt-13-6293-2020, https://doi.org/10.5194/amt-13-6293-2020, 2020
Short summary
Short summary
Atmospheric-aerosol and gaseous properties can be derived at night-time if the lunar irradiance at the ground is measured. To this end, the knowledge of lunar irradiance at the top of the atmosphere is necessary. This extraterrestrial lunar irradiance is usually calculated by models since it varies with several geometric factors mainly depending on time and location. This paper proposes a correction to the most used lunar-irradiance model to be applied for atmospheric-aerosol characterization.
Ramiro González, Carlos Toledano, Roberto Román, David Fuertes, Alberto Berjón, David Mateos, Carmen Guirado-Fuentes, Cristian Velasco-Merino, Juan Carlos Antuña-Sánchez, Abel Calle, Victoria E. Cachorro, and Ángel M. de Frutos
Geosci. Instrum. Method. Data Syst., 9, 417–433, https://doi.org/10.5194/gi-9-417-2020, https://doi.org/10.5194/gi-9-417-2020, 2020
Short summary
Short summary
Aerosol optical depth (AOD) is a parameter widely used in remote sensing for the characterization of atmospheric aerosol particles. AERONET was created by NASA for aerosol monitoring as well as satellite and model validation. The University of Valladolid (UVa) has managed an AERONET calibration center since 2006. The CÆLIS software tool, developed by UVa, was created to manage the data generated by AERONET photometers. The AOD algorithm in CÆLIS is developed and validated in this work.
Cited articles
Alados-Arboledas, L., Alcántara, A., Olmo, F. J., Martínez-Lozano,
J. A., Estellés, V., Cachorro, V., Silva, A. M., Horvath, H., Gangl, M.,
Díaz, A., Pujadas, M., Lorente, J., Labajo, A., Sorribas, M., and
Pavese, G.: Aerosol columnar properties retrieved from CIMEL radiometers
during VELETA 2002, Atmos. Environ., 42, 2654–2667,
https://doi.org/10.1016/j.atmosenv.2007.10.006, 2008.
Amillo, A., Huld, T., Vourlioti, P., Müller, R., and Norton, M.:
Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to
PV Performance Studies, Energies, 8, 3455–3488,
https://doi.org/10.3390/en8053455, 2015.
Amoruso, A., Cacciani, M., Sarra, A. D., and Fiocco, G.: Absorption cross
sections of ozone in the 590- to 610-nm region at T = 230 K and T = 299
K, J. Geophys. Res.-Atmos., 95, 20565–20568,
https://doi.org/10.1029/JD095iD12p20565, 1990.
Anderson, S. M. and Mauersberger, K.: Laser measurements of ozone absorption
cross sections in the Chappuis Band, Geophys. Res. Lett., 19, 933–936,
https://doi.org/10.1029/92GL00780, 1992.
Ångström, A.: On the Atmospheric Transmission of Sun Radiation and
on Dust in the Air, Geogr. Ann., 11, 156–166,
https://doi.org/10.1080/20014422.1929.11880498, 1929.
Ångström, A.: On the Atmospheric Transmission of Sun Radiation. II,
Geogr. Ann., 12, 130–159, https://doi.org/10.1080/20014422.1930.11880522,
1930.
Ångström, A.: Techniques of determine the turbidity of the
atmosphere, Tellus, 13, 214–223, https://doi.org/10.3402/tellusa.v13i2.9493,
1961.
Ångström, A.: The parameters of atmospheric turbidity, Tellus, 16,
64–75, https://doi.org/10.1111/j.2153-3490.1964.tb00144.x, 1964.
ASD Full Range, Portable Spectrometers & Spectroradiometers |
Malvern Panalytical:
https://www.malvernpanalytical.com/en/products/product-range/asd-range, last
access: 30 March 2021.
Bais, A., Blumthaler, M., Webb, A., Seckmeyer, G., Thiel, S., Kazadzis, S.,
Redondas, A., Kift, R., Kouremeti, N., Schallhart, B., Schmitt, R., Pisulla,
D., Diaz, J. P., Garcia, O., Diaz Rodriguez, A. M., and Smedley, A.:
Intercomparison of solar UV direct irradiance spectral measurements at Izana
in June 2005, Optics & Photonics 2005, San Diego, California, USA,
588609, https://doi.org/10.1117/12.619925, 2005.
Bass, A. M. and Paur, R. J.: The Ultraviolet Cross-Sections of Ozone: I. The
Measurements, in: Atmospheric Ozone, edited by: Zerefos, C. S. and Ghazi, A., Springer,
Dordrecht, https://doi.org/10.1007/978-94-009-5313-0_120,
1985.
Berjón, A. J., Cachorro, V. E., Zarco-Tejada, P. J., and de Frutos, A.:
Retrieval of biophysical vegetation parameters using simultaneous inversion
of high resolution remote sensing imagery constrained by a vegetation index,
Precis. Agric., 14, 541–557, https://doi.org/10.1007/s11119-013-9315-8,
2013.
Bird, R. E.: A simple, solar spectral model for direct-normal and diffuse
horizontal irradiance, Sol. Energy, 32, 461–471,
https://doi.org/10.1016/0038-092X(84)90260-3, 1984.
Bird, R. E. and Riordan, C.: Simple Solar Spectral Model for Direct and
Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface
for Cloudless Atmospheres, J. Appl. Meteorol. Climatol., 25, 87–97,
https://doi.org/10.1175/1520-0450(1986)025<0087:SSSMFD>2.0.CO;2, 1986.
Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh
Optical Depth Calculations, J. Atmos. Ocean. Tech., 16, 1854–1861,
https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2, 1999.
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by
Small Particles, WILEY-VCH Verlag GmbH & Co. KGaA,
https://doi.org/10.1002/9783527618156, 1998.
Braghiere, R. K., Wang, Y., Doughty, R., Sousa, D., Magney, T., Widlowski, J.
L., Longo, M., Bloom, A. A., Worden, J., Gentine, P., and Frankenberg,
C.: Accounting for canopy structure improves hyperspectral radiative
transfer and sun-induced chlorophyll fluorescence representations in a new
generation Earth System model, Remote Sens. Environ., 261, 112497,
https://doi.org/10.1016/j.rse.2021.112497, 2021.
Brion, J., Chakir, A., Charbonnier, J., Daumont, D., Parisse, C., and
Malicet, J.: Absorption Spectra Measurements for the Ozone Molecule in the
350–830 nm Region, J. Atmos. Chem., 30, 291–299,
https://doi.org/10.1023/A:1006036924364, 1998.
BSRN: Baseline Surface Radiation Network: https://bsrn.awi.de/, last access:
30 March 2021.
Cachorro, V. E. and Salcedo, L. L.: New Improvements for Mie Scattering
Calculations, J. Electromagn. Waves Appl., 5, 913–926,
https://doi.org/10.1163/156939391X00950, 1991.
Cachorro, V. E., de Frutos, A. M., and Casanova, J. L.: Comparison between
various models of solar spectral irradiance and experimental data, Appl.
Optics, 24, 3249–3253, https://doi.org/10.1364/AO.24.003249, 1985.
Cachorro, V. E., de Frutos, A. M., and Casanova, J. L.: Determination of
total vertical water vapor in the atmosphere, Atmos. Res., 20, 67–74,
https://doi.org/10.1016/0169-8095(86)90008-6, 1986.
Cachorro, V. E., de Frutos, A. M., and Casanova, J. L.: Absorption by oxygen
and water vapor in the real atmosphere, Appl. Optics, 26, 501–505,
https://doi.org/10.1364/AO.26.000501, 1987a.
Cachorro, V. E., de Frutos, A. M., and Casanova, J. L.: Determination of the
Ångström turbidity parameters, Appl. Optics, 26, 3069–3076,
https://doi.org/10.1364/AO.26.003069, 1987b.
Cachorro, V. E., Casanova, J. L., and de Frutos, A. M.: The influence of
Ångström parameters on calculated direct solar spectral irradiances
at high turbidity, Sol. Energy, 39, 399–407,
https://doi.org/10.1016/S0038-092X(87)80058-0, 1987c.
Cachorro, V. E., González, M. J., de Frutos, A. M., and Casanova, J. L.:
Fitting Ångström's formula to spectrally resolved aerosol optical
thickness, Atmos. Environ., 1967, 265–270,
https://doi.org/10.1016/0004-6981(89)90118-2, 1989.
Cachorro, V. E., Durán, P., and de Frutos, A. M.: Retrieval of vertical
ozone content using the Chappuis Band with high spectral resolution solar
radiation measurements, Geophys. Res. Lett., 23, 3325–3328,
https://doi.org/10.1029/96GL03239, 1996.
Cachorro, V. E., Utrillas, M. P., Martinez-Lozano, J. A., and de Frutos, A.
M.: A preliminary assessment of a detailed two stream short-wave narrow-band
model using spectral radiation measurements, Sol. Energy, 61, 265–273,
https://doi.org/10.1016/S0038-092X(97)00056-X, 1997.
Cachorro, V. E., Utrillas, P., Vergaz, R., Durán, P., de Frutos, A. M.,
and Martinez-Lozano, J. A.: Determination of the atmospheric-water-vapor
content in the 940-nm absorption band by use of moderate spectral-resolution
measurements of direct solar irradiance, Appl. Optics, 37, 4678–4689,
https://doi.org/10.1364/AO.37.004678, 1998.
Cachorro, V. E., Durán, P., Vergaz, R., and de Frutos, A. M.: Columnar
physical and radiative properties of atmospheric aerosols in north central
Spain, J. Geophys. Res.-Atmos., 105, 7161–7175,
https://doi.org/10.1029/1999JD901165, 2000a.
Cachorro, V. E., Durán, P., Vergaz, R., and de Frutos, A. M.:
Measurements of the atmospheric turbidity of the North-centre continental
area in Spain: spectral aerosol optical depth and Ångström turbidity
parameters, J. Aerosol Sci., 31, 687–702,
https://doi.org/10.1016/S0021-8502(99)00552-2, 2000b.
Cachorro, V. E., Antuña-Sánchez, J. C., and Molina, V.: SSolar_GOA (Source code) (1.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.5796545, 2021.
Carlund, T., Landelius, T., and Josefsson, W.: Comparison and Uncertainty of
Aerosol Optical Depth Estimates Derived from Spectral and Broadband
Measurements, J. Appl. Meteorol. Clim., 42, 1598–1610,
https://doi.org/10.1175/1520-0450(2003)042<1598:CAUOAO>2.0.CO;2, 2003.
Chandrasekhar, S.: Radiative Transfer, Dover Publication, Inc, New
York 10014, ISBN 0-486-60590-6, 1960.
Chiron de la Casinière, A. and Cachorro Revilla, V. E.: La radiación
solar en el sistema tierra-atmósfera [translation of French edition “Le Rayonnement solaire dans l'environnement terrestre”,
Editions Publibook, Paris, France, 2003], Ediciones Universidad de
Valladolid, 309 pp., available at
repository of University of Valladolid: https://uvadoc.uva.es/ (last access: 18 December 2021.), 2008 (in Spanish).
Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J., King,
M. D., Tanré, D., and Slutsker, I.: Variability of absorption and
optical properties of key aerosol types observed in worldwide locations, J.
Atmos. Sci., 59, 590–608,
https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2, 2002.
Durán, P.: “Medidas Espectroradiométricas para la Determinación
de Componentes Atmosféricos Ozono, Vapor de Agua y Aerosoles y
Modelización del Intercambio Radiativo en la Atmósfera”, PhD thesis,
University of Valladolid, Valladolid, Spain, 1997.
Egli, L., Gröbner, J., Hülsen, G., Bachmann, L., Blumthaler, M., Dubard, J., Khazova, M., Kift, R., Hoogendijk, K., Serrano, A., Smedley, A., and Vilaplana, J.-M.: Quality assessment of solar UV irradiance measured with array spectroradiometers, Atmos. Meas. Tech., 9, 1553–1567, https://doi.org/10.5194/amt-9-1553-2016, 2016.
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, 2016.
Estellés, V., Utrillas, M. P., Martínez-Lozano, J. A.,
Alcántara, A., Alados-Arboledas, L., Olmo, F. J., Lorente, J., de Cabo,
X., Cachorro, V., Horvath, H., Labajo, A., Sorribas, M., Díaz, J. P.,
Díaz, A. M., Silva, A. M., Elías, T., Pujadas, M., Rodrigues, J.
A., Cañada, J., and García, Y.: Intercomparison of
spectroradiometers and Sun photometers for the determination of the aerosol
optical depth during the VELETA-2002 field campaign, J. Geophys.
Res.-Atmos., 111, D17207, https://doi.org/10.1029/2005JD006047, 2006.
Fouquart, Y. and Bonnel, B.: Computations of solar heating of the Earth's
atmosphere: A new parameterization, Beitr. Phys. Atmos., 53, 35–62, 1980.
García, R. D., Cachorro, V. E., Cuevas, E., Toledano, C., Redondas, A.,
Blumthaler, M., and Benounna, Y.: Comparison of measured and modelled
spectral UV irradiance at Izaña high mountain station: estimation of the
underlying effective albedo, Int. J. Climatol., 36, 377–388,
https://doi.org/10.1002/joc.4355, 2016.
GOA-UVA Solar Radiation:
http://goa.uva.es/solar-radiation/, last access: 30 March 2021.
Goetz, A. F.: Making accurate field spectral reflectance measurements, ASD
Inc., Boulder CO USA, 685, 16 pp., 2012.
Goody, R.: Atmospheric Radiation: Theoretical Basis, Oxford Univ, First
Edition, Claredon Press, Oxford, London, UK, 436 pp., 1964.
GRAD – Global Radiation and Aerosols: ESRL Global Monitoring Laboratory,
https://www.esrl.noaa.gov/gmd/grad/, last access: 19 December 2021.
Gueymard, C.: SMARTS2: a simple model of the atmospheric radiative transfer
of sunshine: algorithms and performance assessment, Florida Solar Energy
Center, Cocoa, FL, USA, 84 pp., 1995.
Gueymard, C. A.: Parameterized transmittance model for direct beam and
circumsolar spectral irradiance, Sol. Energy, 71, 325–346,
https://doi.org/10.1016/S0038-092X(01)00054-8, 2001.
Gueymard, C. A.: The sun's total and spectral irradiance for solar energy
applications and solar radiation models, Sol. Energy, 76, 423–453,
https://doi.org/10.1016/j.solener.2003.08.039, 2004.
Gueymard, C. A.: SMARTS Code, Version 2.9. 5 User's Manual for Windows,
Solar Consulting Services, 50 pp., 2005.
Gueymard, C. A.: REST2: High-performance solar radiation model for
cloudless-sky irradiance, illuminance, and photosynthetically active
radiation – Validation with a benchmark dataset, Sol. Energy, 82, 272–285,
https://doi.org/10.1016/j.solener.2007.04.008, 2008.
Gueymard, C. A.: The SMARTS spectral irradiance model after 25 years: New
developments and validation of reference spectra, Sol. Energy, 187,
233–253, https://doi.org/10.1016/j.solener.2019.05.048, 2019.
Gueymard, C. A. and Myers, D. R.: Validation and Ranking Methodologies for
Solar Radiation Models, in: Modeling Solar Radiation at the Earth's Surface:
Recent Advances, edited by: Badescu, V., Springer, Berlin, Heidelberg,
479–510, https://doi.org/10.1007/978-3-540-77455-6_20,
2008.
Gueymard, C. A. and Ruiz-Arias, J. A.: Extensive worldwide validation and
climate sensitivity analysis of direct irradiance predictions from 1-min
global irradiance, Sol. Energy, 128, 1–30,
https://doi.org/10.1016/j.solener.2015.10.010, 2016.
Habte, A., Andreas, A., Ottoson, L., Gueymard, C., Fedor, G., Fowler, S.,
Peterson, J., Naranen, R., Kobashi, T., Akiyama, A., and Takagi, S.: Indoor
and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance
Measurement, National Renewable Energy Lab. (NREL), Golden, Colorado, USA,
https://doi.org/10.2172/1134121, 2014.
Hamill, P., Giordano, M., Ward, C., Giles, D., and Holben, B.: An
AERONET-based aerosol classification using Mahalanobis distance, Atmos.
Environ., 140, 213–233,
https://doi.org/10.1016/j.atmosenv.2016.06.002, 2016.
Hannula, H.-R., Heinilä, K., Böttcher, K., Mattila, O.-P., Salminen, M., and Pulliainen, J.: Laboratory, field, mast-borne and airborne spectral reflectance measurements of boreal landscape during spring, Earth Syst. Sci. Data, 12, 719–740, https://doi.org/10.5194/essd-12-719-2020, 2020.
Hodges, G.: ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR):
irradiances, United State, https://doi.org/10.5439/1081481, 1993.
Houghton, J.: The Physics of Atmospheres, Cambridge University Press, 340
pp., 2002.
Jacquemoud, S., Wout Verhoef, W., Baret, F., Bacour, C., and Zarco-Tejada,
P. J., Asner, G. P., François, C., and Ustin, S. L.: PROSPECT+SAIL
models: A review of use for vegetation characterization, Remote Sens.
Environ., 113, S56–S66, https://doi:/10.1016/j.rse.2008.01.026, 2009.
Joseph, J. H., Wiscombe, W. J., and Weinman, J. A.: The Delta-Eddington
Approximation for Radiative Flux Transfer, J. Atmos. Sci., 33, 2452–2459,
https://doi.org/10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2, 1976.
Kasten, F. and Young, A. T.: Revised optical air mass tables and
approximation formula, Appl. Optics, 28, 4735,
https://doi.org/10.1364/AO.28.004735, 1989.
Kiedron, P. W., Michalsky, J. J., Berndt, J. L., and Harrison, L. C.:
Comparison of spectral irradiance standards used to calibrate shortwave
radiometers and spectroradiometers, Appl. Optics, 38, 2432–2439,
https://doi.org/10.1364/AO.38.002432, 1999.
King, M. D. and Harshvardhan: Comparative Accuracy of Selected Multiple
Scattering Approximations, J. Atmos. Sci., 43, 784–801,
https://doi.org/10.1175/1520-0469(1986)043<0784:CAOSMS>2.0.CO;2, 1986.
Kneizys, F. X.: Users Guide to Lowtran 7, Air Force Geophysics Laboratory,
United States Air Force, 148 pp., 1988.
Koepke, P. and Quenzel, H.: Water vapor: spectral transmission at
wavelengths between 0.7 µm and 1 µm, Appl. Optics, 17, 2114–2118,
https://doi.org/10.1364/AO.17.002114, 1978.
Kokhanovsky, A. A.: Aerosol Optics: Light Absorption and Scattering by
Particles in the Atmosphere, Springer Science & Business Media, 154 pp.,
https://doi.org/10.1007/978-3-540-49909-1, 2008.
Komhyr, W. D.: Operations Handbook - Ozone Observations with a Dobson
Spectrophotometer, WMO, 91 pp., 1980.
Kondratyev, K. Y. A.: Radiation in the atmosphere, edited by: Van Mieghem, J.,
International Geophysics Series, vol. 12, Academic Press, New York and
London, 1969.
Kurucz, R.: Synthetic infrared spectra, Proceeding of the 154th Symposium of the International Astronomical Union (IAU), 523 pp., Tucson,
Arizona (USA), March 2-6, 1992. Infrared Solar Physics, edited by:
Rabin, D. M., Jefferies, J. T. and Linsey, C., Kluwer Academic Publishers, ISBN
978-0-7923-2523-9, https://doi.org/10.1007/978-94-011-1926-9, 1992.
Leckner, B.: The spectral distribution of solar radiation at the earth's
surface – elements of a model, Sol. Energy, 20, 143–150,
https://doi.org/10.1016/0038-092X(78)90187-1, 1978.
Lenoble, J.: Radiative Transfer in Scattering and Absorbing Atmospheres:
Standard Computational Procedures, A. Deepak Pub., Hampton, Va, USA, 300
pp., 1985.
Lenoble, J.: Atmospheric Radiative Transfer, A. Deepak Pub., Hampton, Va.,
USA, 532 pp., 1993.
Lenoble, J.: Modeling of the influence of snow reflectance on ultraviolet
irradiance for cloudless sky, Appl. Optics, 37, 2441–2447, https://doi.org/10.1364/AO.37.002441, 1998.
libRadtran user's guide 2015 – Mayer, B., Killing A., Emde,
C., Buras R., Hamann U., Gasteiger J., and Richter B.: Edition for
libRadtran version 2, http://www.libradtran.org/doc/libRadtran.pdf (last access: 19 September
2021), 24 August 2015.
libRadtran user's guide 2020 – Mayer, B., Killing A., Emde,
C., Buras R., Hamann U., Gasteiger J., and Richter B.: Edition for
libRadtran version 2.04, http://www.libradtran.org/doc/libRadtran.pdf (last access: 19 September
2021), 24 December 2020.
LI-COR: LI-1800 Portable spectroradiomer Instruction Manual, Lincoln,
Nebraska, USA, 149 pp., https://www.licor.com/env/support/LI-1800/home.html (last access: 12 April
2021), 1989.
Lin, H., Zhang, F., Wu, K., and Xu, J.: Comparisons of δ-Two-Stream
and δ-Four-Stream Radiative Transfer Schemes in RRTMG for Solar
Spectra, SOLA, 15, 87–93, https://doi.org/10.2151/sola.2019-017, 2019.
Liou, K.-N.: Radiation and Cloud Processes in the Atmosphere: Theory,
Observation and Modeling, 1st Edn, Oxford University Press, New York,
NY, USA, 504 pp., 1992.
Liou, K. N.: An Introduction to Atmospheric Radiation, Elsevier, 598 pp.,
2002.
Martínez-Lozano, J. A., Utrillas, M. P., Tena, F., and Cachorro, V.
E.: The parameterisation of the atmospheric aerosol optical depth using the
Ångström power law, Sol. Energy, 63, 303–311,
https://doi.org/10.1016/S0038-092X(98)00077-2, 1998.
Martínez-Lozano, J. A., Utrillas, M. P., Pedrós, R., Tena, F.,
Díaz, J. P., Expósito, F. J., Lorente, J., Cabo, X. de, Cachorro,
V., Vergaz, R., and Carreño, V.: Intercomparison of Spectroradiometers
for Global and Direct Solar Irradiance in the Visible Range, J. Atmos.
Ocean. Tech., 20, 997–1010, https://doi.org/10.1175/1457.1, 2003.
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005.
Meador, W. E. and Weaver, W. R.: Two-Stream Approximations to Radiative
Transfer in Planetary Atmospheres: A Unified Description of Existing Methods
and a New Improvement, J. Atmos. Sci., 37, 630–643,
https://doi.org/10.1175/1520-0469(1980)037<0630:TSATRT>2.0.CO;2, 1980.
Michalsky, J. J., Anderson, G. P., Barnard, J., Delamere, J., Gueymard, C.,
Kato, S., Kiedron, P., McComiskey, A., and Ricchiazzi, P.: Shortwave
radiative closure studies for clear skies during the Atmospheric Radiation
Measurement 2003 Aerosol Intensive Observation Period, J. Geophys.
Res.-Atmos., 111, D14S90, https://doi.org/10.1029/2005JD006341, 2006.
Milton, E. J., Schaepman, M. E., Anderson, K., Kneubühler, M., and Fox,
N.: Progress in field spectroscopy, Remote Sens. Environ., 113, S92–S109,
https://doi.org/10.1016/j.rse.2007.08.001, 2009.
Mlawer, E. J. and Turner, D. D.: Spectral Radiation Measurements and
Analysis in the ARM Program, Meteorol. Monogr., 57, 14.1–14.17,
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0027.1, 2016.
Mlawer, E. J., Brown, P. D., Clough, S. A., Harrison, L. C., Michalsky, J.
J., Kiedron, P. W., and Shippert, T.: Comparison of spectral direct and
diffuse solar irradiance measurements and calculations for cloud-free
conditions, Geophys. Res. Lett., 27, 2653–2656,
https://doi.org/10.1029/2000GL011498, 2000.
Nikoghossian, A. G.: Ambartsumian's invariance principle and some nonlinear
relations in radiative transfer theory, Astrophysics, 52, 431–439,
https://doi.org/10.1007/s10511-009-9079-z, 2009.
Norton, M., Amillo, A. M. G., and Galleano, R.: Comparison of solar spectral
irradiance measurements using the average photon energy parameter, Sol.
Energy, 120, 337–344, https://doi.org/10.1016/j.solener.2015.06.023, 2015.
NREL Spectral Solar Radiation Data Base:
https://www.nrel.gov/grid/solar-resource/spectral-solar.html, last access:
30 March 2021.
NSRDB NREL: https://nsrdb.nrel.gov/, last access: 30 March 2021.
Orphal, J., Staehelin, J., Tamminen, J., Braathen, G., De Backer, M.-R.,
Bais, A., Balis, D., Barbe, A., Bhartia, P. K., Birk, M., Burkholder, J. B.,
Chance, K., von Clarmann, T., Cox, A., Degenstein, D., Evans, R., Flaud,
J.-M., Flittner, D., Godin-Beekmann, S., Gorshelev, V., Gratien, A., Hare,
E., Janssen, C., Kyrölä, E., McElroy, T., McPeters, R., Pastel, M.,
Petersen, M., Petropavlovskikh, I., Picquet-Varrault, B., Pitts, M., Labow,
G., Rotger-Languereau, M., Leblanc, T., Lerot, C., Liu, X., Moussay, P.,
Redondas, A., Van Roozendael, M., Sander, S. P., Schneider, M.,
Serdyuchenko, A., Veefkind, P., Viallon, J., Viatte, C., Wagner, G., Weber,
M., Wielgosz, R. I., and Zehner, C.: Absorption cross-sections of ozone in
the ultraviolet and visible spectral regions: Status report 2015, J. Mol.
Spectrosc., 327, 105–121, https://doi.org/10.1016/j.jms.2016.07.007, 2016.
Pierluissi, J. H. and Maragoudakis, C. E.: Molecular transmittance band
model for oxygen in the infrared, Appl. Optics, 25, 1538,
https://doi.org/10.1364/AO.25.001538, 1986.
Pierluissi, J. H. and Tsai, C.-M.: New LOWTRAN models for the uniformly
mixed gases, Appl. Optics, 26, 616, https://doi.org/10.1364/AO.26.000616,
1987.
Pierluissi, J. H., Maragoudakis, C. E., and Tehrani-Movahed, R.: New LOWTRAN
band model for water vapor, Appl. Optics, 28, 3792–3795,
https://doi.org/10.1364/AO.28.003792, 1989.
Räisänen, P.: Two-stream approximations revisited: A new improvement
and tests with GCM data, Q. J. Roy. Meteor. Soc., 128, 2397–2416,
https://doi.org/10.1256/qj.01.161, 2002.
Rapp-Arrarás, Í. and Domingo-Santos, J. M.: Extinction, refraction,
and delay in the atmosphere, J. Geophys. Res.-Atmos., 113, D20116,
https://doi.org/10.1029/2008JD010176, 2008.
Redondas, A., Evans, R., Stuebi, R., Köhler, U., and Weber, M.:
Evaluation of the use of five laboratory-determined ozone absorption cross
sections in Brewer and Dobson retrieval algorithms, Atmos. Chem. Phys., 14,
1635–1648, https://doi.org/10.5194/acp-14-1635-2014, 2014.
Riordan, C., Myers, D., Rymes, M., Hulstrom, R., Marion, W., Jennings, C.,
and Whitaker, C.: Spectral solar radiation data base at SERI, Sol. Energy,
42, 67–79, https://doi.org/10.1016/0038-092X(89)90131-X, 1989.
Ruiz-Arias, J. A. and Gueymard, C. A.: Worldwide inter-comparison of
clear-sky solar radiation models: Consensus-based review of direct and
global irradiance components simulated at the earth surface, Sol. Energy,
168, 10–29, https://doi.org/10.1016/j.solener.2018.02.008, 2018.
Sengupta, M., Xie, Y., Lopez, A., Habte, A., Maclaurin, G., and Shelby, J.:
The National Solar Radiation Data Base (NSRDB), Renew. Sust. Energ. Rev.,
89, 51–60, https://doi.org/10.1016/j.rser.2018.03.003, 2018.
Sobolev, V. V.: A Treatise on Radiative Transfer, edited by: Van Nostrand, D.,
Princeton, NJ, USA, 1963.
Sukhodolov, T., Rozanov, E., Shapiro, A. I., Anet, J., Cagnazzo, C., Peter, T., and Schmutz, W.: Evaluation of the ECHAM family radiation codes performance in the representation of the solar signal, Geosci. Model Dev., 7, 2859–2866, https://doi.org/10.5194/gmd-7-2859-2014, 2014.
Tanré, D., Deroo, C., Duhaut, P., Herman, M., Morcrette, J. J., Perbos,
J., and Deshamps, P. Y.: Simulation of the Satellite Signal in the Solar
Spectrum (5S), Laboratoire d'Optique Atmosphérique, Université des
Sciences et Techniques de Lille, Villeneuve d'Asq, France,
1986.
Teillet, P. M.: Rayleigh optical depth comparisons from various sources,
Appl. Optics, 29, 1897–1900, https://doi.org/10.1364/AO.29.001897, 1990.
Toledano, C., Cachorro, V., Berjön, A., Sorribas, M., Vergaz, R.,
Frutos, Á. D., Antón, M., and Gausa, M.: Aerosol optical depth at
ALOMAR Observatory (Andøya, Norway) in summer 2002 and 2003, Tellus B, 58, 218–228,
https://doi.org/10.1111/j.1600-0889.2006.00184.x, 2006.
Tomasi, C., Vitake, V., and De Santis, L. V.: Relative optical mass
functions for air, water vapour, ozone and nitrogen dioxide in atmospheric
models presenting different latitudinal and seasonal conditions, Meteorol.
Atmos. Phys., 65, 11–30, https://doi.org/10.1007/BF01030266, 1998.
Tomasi, C., Vitale, V., Petkov, B., Lupi, A., and Cacciari, A.: Improved
algorithm for calculations of Rayleigh-scattering optical depth in standard
atmospheres, Appl. Optics, 44, 3320–3341,
https://doi.org/10.1364/AO.44.003320, 2005.
Utrillas, M. P., Boscá, J. V., Martıìnez-Lozano, J. A.,
Cañada, J., Tena, F., and Pinazo, J. M.: A comparative study of SPCTRAL2
and SMARTS2 parameterised models based on spectral irradiance measurements
at Valencia, Spain, Sol. Energy, 63, 161–171,
https://doi.org/10.1016/S0038-092X(98)00058-9, 1998.
Utrillas, M. P., Martínez-Lozano, J. A., Cachorro, V. E., Tena, F.,
and Hernandez, S.: Comparison of aerosol optical thickness retrieval from
spectroradiometer measurements and from two radiative transfer models, Sol.
Energy, 68, 197–205, https://doi.org/10.1016/S0038-092X(99)00060-2, 2000.
Vergaz, R.: “Propiedades ópticas de los aerosoles atmosféricos.
Caracterización del área del Golfo de Cádiz”, PhD thesis, University
of Valladolid, Valladolid, Spain, 2001.
Vergaz, R., Cachorro, V. E., de Frutos, A. M., Vilaplana, J. M., and Morena,
B. A.: Columnar characteristics of aerosols by spectroradiometer
measurements in the maritime area of the Cadiz Gulf (Spain), Int. J.
Climatol., 25, 1781–1804, https://doi.org/10.1002/joc.1208, 2005.
Vermote, E. and Tanré, D.: Analytical expressions for radiative
properties of planar Rayleigh scattering media, including polarization
contributions. J. Quant. Spectrosc. Radiat. Tranfer, 41, 305–314,
https://doi.org/10.1016/0022-4073(92)90149-X, 1992.
Wehrli, C.: Extraterrestrial solar spectrum, Publication number 615.
Physikalisch-Meteorologisches Observatorium and World Radiation Center
(PMO/WRC), Davos, Switzerland, 1985.
Wild, M.: Global dimming and brightening: A review, J. Geophys.
Res.-Atmos., 114, D00D16,
https://doi.org/10.1029/2008JD011470, 2009.
Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E. G., and
König-Langlo, G.: The global energy balance from a surface perspective,
Clim. Dynam., 40, 3107–3134, https://doi.org/10.1007/s00382-012-1569-8, 2013.
WOUDC, World Ozone and Ultraviolet Radiation Data Center:
https://woudc.org/archive/Summaries/Spectral_UV/, last
access: 30 March 2021.
Xie, Y. and Sengupta, M.: A Fast All-sky Radiation Model for Solar
applications with Narrowband Irradiances on Tilted surfaces (FARMS-NIT):
Part I. The clear-sky model, Sol. Energy, 174, 691–701,
https://doi.org/10.1016/j.solener.2018.09.056, 2018.
Yang, D. and Boland, J.: Satellite-augmented diffuse solar radiation
separation models, J. Renew. Sustain. Ener., 11, 023705,
https://doi.org/10.1063/1.5087463, 2019.
Yang, P., Prikaziuk, E., Verhoef, W., and van der Tol, C.: SCOPE 2.0: a model to simulate vegetated land surface fluxes and satellite signals, Geosci. Model Dev., 14, 4697–4712, https://doi.org/10.5194/gmd-14-4697-2021, 2021.
Zdunkowski, W., Welch, R. M., and Kork, G.: An investigation of the
structure of typical two-stream methods for the calculation of solar fluxes
and heating rates in clouds, Beitr. Phys. Atmos., 53, 147–166, 1980.
Zdunkowski, W., Trautmann, T., and Bott, A.: Radiation in the Atmosphere: A
Course in Theoretical Meteorology, Cambridge University Press, 497 pp.,
2007.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(2970 KB) - Full-text XML
Short summary
This work describes the features of a simple, fast, accurate, and physically based spectral radiative transfer model (SSolar-GOA) in the solar wavelength range under clear skies. The model is intended for a wide community of users for many different applications, was designed to be easily replicated, and has sufficient accuracy. The validation of the model was carried out through extensive comparison with simulated spectra from the LibRadtran and with direct and global spectral measurements.
This work describes the features of a simple, fast, accurate, and physically based spectral...