Articles | Volume 15, issue 4
https://doi.org/10.5194/gmd-15-1583-2022
https://doi.org/10.5194/gmd-15-1583-2022
Development and technical paper
 | 
22 Feb 2022
Development and technical paper |  | 22 Feb 2022

Deep-learning spatial principles from deterministic chemical transport models for chemical reanalysis: an application in China for PM2.5

Baolei Lyu, Ran Huang, Xinlu Wang, Weiguo Wang, and Yongtao Hu

Related authors

Observed trends in clouds and precipitation (1983–2009): implications for their cause(s)
Xiang Zhong, Shaw Chen Liu, Run Liu, Xinlu Wang, Jiajia Mo, and Yanzi Li
Atmos. Chem. Phys., 21, 4899–4913, https://doi.org/10.5194/acp-21-4899-2021,https://doi.org/10.5194/acp-21-4899-2021, 2021
Short summary
Evaluation of Anthropogenic Emissions and Ozone Pollution in the North China Plain: Insights from the Air Chemistry Research in Asia (ARIAs) Campaign
Hao He, Xinrong Ren, Sarah E. Benish, Zhanqing Li, Fei Wang, Yuying Wang, Timothy P. Canty, Xiaobo Dong, Feng Lv, Yongtao Hu, Tong Zhu, and Russell R. Dickerson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-248,https://doi.org/10.5194/acp-2019-248, 2019
Revised manuscript not accepted
Short summary
Development of PM2.5 source impact spatial fields using a hybrid source apportionment air quality model
C. E. Ivey, H. A. Holmes, Y. T. Hu, J. A. Mulholland, and A. G. Russell
Geosci. Model Dev., 8, 2153–2165, https://doi.org/10.5194/gmd-8-2153-2015,https://doi.org/10.5194/gmd-8-2153-2015, 2015
Short summary
Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach
Y. Hu, S. Balachandran, J. E. Pachon, J. Baek, C. Ivey, H. Holmes, M. T. Odman, J. A. Mulholland, and A. G. Russell
Atmos. Chem. Phys., 14, 5415–5431, https://doi.org/10.5194/acp-14-5415-2014,https://doi.org/10.5194/acp-14-5415-2014, 2014
Downscaling a global climate model to simulate climate change over the US and the implication on regional and urban air quality
M. Trail, A. P. Tsimpidi, P. Liu, K. Tsigaridis, Y. Hu, A. Nenes, and A. G. Russell
Geosci. Model Dev., 6, 1429–1445, https://doi.org/10.5194/gmd-6-1429-2013,https://doi.org/10.5194/gmd-6-1429-2013, 2013

Related subject area

Atmospheric sciences
A dynamic ammonia emission model and the online coupling with WRF–Chem (WRF–SoilN–Chem v1.0): development and regional evaluation in China
Chuanhua Ren, Xin Huang, Tengyu Liu, Yu Song, Zhang Wen, Xuejun Liu, Aijun Ding, and Tong Zhu
Geosci. Model Dev., 16, 1641–1659, https://doi.org/10.5194/gmd-16-1641-2023,https://doi.org/10.5194/gmd-16-1641-2023, 2023
Short summary
SCIATRAN software package (V4.6): update and further development of aerosol, clouds, surface reflectance databases and models
Linlu Mei, Vladimir Rozanov, Alexei Rozanov, and John P. Burrows
Geosci. Model Dev., 16, 1511–1536, https://doi.org/10.5194/gmd-16-1511-2023,https://doi.org/10.5194/gmd-16-1511-2023, 2023
Short summary
Deep learning models for generation of precipitation maps based on numerical weather prediction
Adrian Rojas-Campos, Michael Langguth, Martin Wittenbrink, and Gordon Pipa
Geosci. Model Dev., 16, 1467–1480, https://doi.org/10.5194/gmd-16-1467-2023,https://doi.org/10.5194/gmd-16-1467-2023, 2023
Short summary
An inconsistency in aviation emissions between CMIP5 and CMIP6 and the implications for short-lived species and their radiative forcing
Robin N. Thor, Mariano Mertens, Sigrun Matthes, Mattia Righi, Johannes Hendricks, Sabine Brinkop, Phoebe Graf, Volker Grewe, Patrick Jöckel, and Steven Smith
Geosci. Model Dev., 16, 1459–1466, https://doi.org/10.5194/gmd-16-1459-2023,https://doi.org/10.5194/gmd-16-1459-2023, 2023
Short summary
On the use of Infrared Atmospheric Sounding Interferometer (IASI) spectrally resolved radiances to test the EC-Earth climate model (v3.3.3) in clear-sky conditions
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394, https://doi.org/10.5194/gmd-16-1379-2023,https://doi.org/10.5194/gmd-16-1379-2023, 2023
Short summary

Cited articles

Bell, M. L., Goldberg, R., Hogrefe, C., Kinney, P. L., Knowlton, K., Lynn, B., Rosenthal, J., Rosenzweig, C., and Patz, J. A.: Climate change, ambient ozone, and health in 50 US cities, Clim. Change, 82, 61–76, 2007. 
Beloconi, A., Kamarianakis, Y., and Chrysoulakis, N.: Estimating urban PM10 and PM2.5 concentrations, based on synergistic MERIS/AATSR aerosol observations, land cover and morphology data, Remote Sens. Environ., 172, 148–164, https://doi.org/10.1016/j.rse.2015.10.017, 2016. 
Berrocal, V. J., Gelfand, A. E., and Holland, D. M.: Space-Time Data fusion Under Error in Computer Model Output: An Application to Modeling Air Quality, Biometrics, 68, 837–848, 2012. 
Brokamp, C., Jandarov, R., Hossain, M., and Ryan, P.: Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model, Environ. Sci. Technol., 52, 4173–4179, 2018. 
Byun, D. and Schere, K. L.: Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51–77, 2006. 
Download
Short summary
Data fusion is used to estimate spatially completed and smooth reanalysis fields from multiple data sources of observations and model simulations. We developed a well-designed deep-learning model framework to embed spatial correlation principles of atmospheric physics and chemical models. The deep-learning model has very high accuracy to predict reanalysis data fields from isolated observation data points. It is also feasible for operational applications due to computational efficiency.