Articles | Volume 15, issue 4
https://doi.org/10.5194/gmd-15-1583-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.Deep-learning spatial principles from deterministic chemical transport models for chemical reanalysis: an application in China for PM2.5
Related authors
Cited articles
Bell, M. L., Goldberg, R., Hogrefe, C., Kinney, P. L., Knowlton, K., Lynn,
B., Rosenthal, J., Rosenzweig, C., and Patz, J. A.: Climate change, ambient
ozone, and health in 50 US cities, Clim. Change, 82, 61–76, 2007.
Beloconi, A., Kamarianakis, Y., and Chrysoulakis, N.: Estimating urban
PM10 and PM2.5 concentrations, based on synergistic MERIS/AATSR
aerosol observations, land cover and morphology data, Remote Sens.
Environ., 172, 148–164, https://doi.org/10.1016/j.rse.2015.10.017, 2016.
Berrocal, V. J., Gelfand, A. E., and Holland, D. M.: Space-Time Data fusion
Under Error in Computer Model Output: An Application to Modeling Air
Quality, Biometrics, 68, 837–848, 2012.
Brokamp, C., Jandarov, R., Hossain, M., and Ryan, P.: Predicting Daily Urban
Fine Particulate Matter Concentrations Using a Random Forest Model,
Environ. Sci. Technol., 52, 4173–4179, 2018.
Byun, D. and Schere, K. L.: Review of the governing equations, computational
algorithms, and other components of the Models-3 Community Multiscale Air
Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51–77, 2006.