
Geosci. Model Dev., 15, 1583–1594, 2022
https://doi.org/10.5194/gmd-15-1583-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Deep-learning spatial principles from deterministic chemical
transport models for chemical reanalysis: an application in
China for PM2.5

Baolei Lyu1, Ran Huang2, Xinlu Wang2, Weiguo Wang3, and Yongtao Hu4

1Huayun Sounding Meteorological Technology Co. Ltd., Beijing 100081, China
2Hangzhou AiMa Technologies, Hangzhou, Zhejiang 311121, China
3I.M. System Group, Environment Modeling Center, NOAA/National Centers for Environmental Prediction,
College Park, Maryland 20740, USA
4School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Correspondence: Baolei Lyu (baoleilv@foxmail.com) and Ran Huang (ranhuang2019@163.com)

Received: 22 July 2021 – Discussion started: 10 August 2021
Revised: 3 November 2021 – Accepted: 14 January 2022 – Published: 22 February 2022

Abstract. Well-estimated air pollutant concentration fields
are critically important to compensate for observations that
are only sparsely available, especially over non-urban areas.
Previous data fusion methods generally used statistical mod-
els to relate observations of target variables to proxy data
and supporting variables at known stations. In this study,
we developed a new data fusion paradigm by designing a
deep-learning model framework and workflow to learn mul-
tivariable spatial correlations from chemical transport model
(CTM) simulations, before using it to estimate PM2.5 reanal-
ysis fields from station observations. The model was com-
posed of two modules as an explainable PointConv oper-
ation to pre-process isolated observations and a regression
grid-to-grid network to build correlations among multiple
variables. The model was trained with only CTM simula-
tions and supporting geographical covariates. The trained
model was evaluated in two aspects of (1) reproducing raw
PM2.5 CTM simulations and (2) generating reanalysis and
fused PM2.5 fields. First, the model was able to reproduce
the CTM simulations well on a full domain from sampled
CTM data items at sparse locations with an average R2

=

0.94 and RMSE= 4.85 µgm−3. Second, the fused PM2.5
fields estimated from observations achieved a good perfor-
mance with R2

= 0.77 (RMSE= 14.29 µgm−3) and R2
=

0.84 (RMSE= 12.96 µgm−3) respectively evaluated at the
stringent city level and station level. The generated reanalysis
PM2.5 fields have complete spatial coverage within the mod-
eling domain. One significant benefit of the fusion frame-

work is that the model training does not rely on observations,
which can be used to predict PM2.5 fields in newly set up
observation networks such as those using portable sensors.
Meanwhile, in the prediction procedure, only station obser-
vations are used along with supporting covariates. The fusion
model has high computing efficiency (< 1 s d−1) due to ac-
celeration using a graphical processing unit (GPU). As an al-
ternative to generate chemical reanalysis fields, the method
can be readily implemented in near-real time and be uni-
versally applied for other simulated variables with measure-
ments available.

1 Introduction

Pollutant concentration fields with high accuracies are im-
portant for evaluating health effects, climate changes, and
agricultural studies (Bell et al., 2007; Donkelaar et al., 2015;
Gao et al., 2017). A long-term and reliable air quality dataset
could also be used to assess pollutant emission control mea-
sures (Wang et al., 2010). The data fusion method has
been widely used to obtain accurate and spatially complete
datasets, such as fusing air quality model simulations and sta-
tion air pollutant observations to estimate fine-scale air pol-
lutant concentration fields (Berrocal et al., 2012; Rundel et
al., 2015).

Most previous studies similarly used a general paradigm
to develop well-estimated air pollutant concentration fields.
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In this paradigm, statistical models were trained to describe
nonlinear relationships between observations and proxy data
as well as supporting variables at the locations of observa-
tion sites (Berrocal et al., 2012; Lyu et al., 2019; Chu et al.,
2016). The widely used proxy data for PM2.5 concentrations
include aerosol optical depth (Lv et al., 2016) and chemical
transport model (CTM) simulations (Lyu et al., 2019). Pop-
ular statistical models include the linear mixed-effect model
(Hao et al., 2016), machine learning models of random for-
est (Brokamp et al., 2018; Huang et al., 2021), deep neural
networks (Qi et al., 2018), and ensemble models (Xiao et al.,
2018). The fitted models were then used to predict the con-
centration field of target variables in the whole area directly
or through spatial spreading techniques such as Bayesian es-
timation (Xu et al., 2016), partial linear regression (Wang et
al., 2016), and distance-constrained interpolations (Chang et
al., 2014; Friberg et al., 2016).

Even though many datasets have been developed through
deliberately designed statistical models, long-term observa-
tions, and extensive explanatory variables, there are scien-
tific gaps in many circumstances following this paradigm to
develop air pollutant fields. First, these models usually rely
on long-term and large-scale station observations for train-
ing, especially for complex time- and space-resolved mod-
els (Feng et al., 2020; Huang et al., 2021). For newly set
up, temporal, or mobile observation networks, there would
be limited datasets for training effective data fusion mod-
els. Second, most of the previous methods cannot fuse obser-
vations of multiple variables well from different monitoring
networks. For example, stations in air quality and meteorol-
ogy observation networks are usually not spatially aligned.
The observations in two networks could not be directly fused
in current models well. Instead, meteorology reanalysis data
were often used as important explanatory variables in previ-
ous fusion models (Geng et al., 2015; Ma et al., 2015; Wei
et al., 2021). However, in near-real-time operational data fu-
sion applications, these reanalysis data would be unavail-
able or require intensive computations. Last but not least,
most of the previous methods that fuse CTM simulations rely
on relatively accurate and stable simulation data to achieve
good fusion performance (Tong and Mauzerall, 2006). Con-
sistency in CTM parameters, configurations and inputs are
also strictly required to guarantee stable fusing performance.
Especially in near-real-time operational data fusion appli-
cations, adjoint models need to be running simultaneously
(Friberg et al., 2016), which is costly in computations.

To address these scientific gaps, this study proposes a new
data fusion paradigm by designing a deep-learning-based
model framework to estimate reanalysis from station obser-
vations by learning spatiotemporal correlations from deter-
ministic CTM models. Distinct from the existing data fusion
models, the data fusion model does not use any station obser-
vations to fit. Instead, the deep-learning network was trained
with only CTM model simulations to learn their dynamic
spatial correlations, which is backed by the CTM’s first prin-

ciples. In the prediction procedure, the fusion and reanaly-
sis data are then generated by the trained model by applying
the learned dynamic correlations to real observations. The
model framework is fundamentally an alternative of generat-
ing chemical reanalysis fields but without rerunning CTMs
with data assimilation.

2 Data and methods

2.1 CTM simulations

In this study, the data fusion model was trained to learn spa-
tial correlations of multiple variables from CTM simulations.
The simulated PM2.5 and other meteorological variables in
2016–2020 were produced using a modeling system that con-
sists of three major components: the meteorology compo-
nent (WRFv3.4.1) provides meteorological fields, the emis-
sion component provides gridded estimates of hourly emis-
sions rates of primary pollutants that match model species,
and the CTM component (CMAQ v5.0.2; Byun and Schere,
2006) solves the governing physical and chemical equations
to obtain 3-D pollutant concentrations fields at a horizontal
resolution of 12 km. The system was operated in forecast-
ing mode, which produces CTM simulations for 5 d ahead
each day. Therefore, corresponding to each day, there are
five CTM simulations with different forecasting lead time.
The CTM simulations of PM2.5 concentrations have reason-
able performance when evaluated against surface measure-
ments, with root mean square error (RMSE) being 29.28–
31.08 µgm−3 and coefficient of determination (R2) being
0.31–0.42 (Fig. S1 in the Supplement). The data covered all
of China with 372× 426 12 km by 12 km grid cells. Simula-
tion data in the 2016–2019 period were used as the training
dataset, while the 2020 simulation data were used for evalu-
ation.

We used the simulated daily mean surface-layer PM2.5
concentrations, relative humidity (RH), and wind speed (WS)
in the data fusion model. The two meteorological variables
are selected because they exhibited stronger correlations with
PM2.5 concentrations (Fig. S2). Precipitation is found not
to be well correlated with PM2.5 concentrations. Boundary
layer height (PBL) has relatively strong correlations with
PM2.5 concentrations, but PBL observation data are not com-
monly available like other meteorological variables such as
RH and WS. Therefore, precipitation and PBL were not in-
cluded in the model. The air temperature was not included in
the model either because it is highly correlated with surface
elevations.

2.2 Ground observations

PM2.5 observations in 2020 were obtained from the China
National Environmental Monitoring Center (CNEMC) (http:
//106.37.208.233:20035/, last access: 21 February 2021)
with the monitoring network as exhibited in Fig. 1. Meteo-
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Figure 1. A map of the study area with elevation in color. Dark red
dots represent the national PM2.5 monitors, and orange dots refer to
national meteorological stations.

rological variables of daily mean RH and WS for the same
period from national meteorological observing stations were
obtained from the China Meteorology Agency (CMA) net-
work (Fig. 1). Geographical variables such as the surface
height of the digital elevation model (DEM) as well as land
use and land cover (LULC) (Zhang et al., 2021) were also
used in this study for fusion. From LULC, the fraction of ur-
ban area is used to indicate emission strengths. These data
variables were resampled to the aforementioned CTM simu-
lation grid.

The raw data for PM2.5 and meteorology data were hourly,
which were averaged to a daily mean if there were more than
18 valid hourly observations in a day at the local time at
each monitor. Each of these data items at each station was
assigned to a grid that was defined the same as used in the
CTM simulations. For the sites that co-located in the same
grid cell, their averages were used. It should be noted that
grid cells with no valid observations within them were filled
with zeros. In this way, each variable of PM2.5, RH, and WS
will have one gridded observation field in each day.

2.3 Deep-learning data fusion framework

The task of obtaining a spatially complete air pollutant field
from point observations can be regarded as solving a down-
scaling problem, which means that data values in gap areas
among stations need to be optimally estimated from known
sparse measurements based on physical or statistical con-
straints. Most previous studies use statistical methods to re-
late observations to other supporting variables at stations (Di
et al., 2016; Beloconi et al., 2016). In this study, we built a
point-to-grid downscaling model by learning from CTM sim-
ulations to generate gridded data fusion fields from station
observations.

A new deep-learning model workflow (Fig. 2) was de-
signed to fulfill the task of point-to-grid data fusion and
downscaling. This deep-learning model includes novel point
convolutional (PointConv) operations and a backbone fu-
sion module of regression using Unet++ (RegrUnetPP). The
PointConv is designed for handling spatially isolated and ir-
regular station observation data to compensate for the effi-
cacy loss of ordinary convolutions in processing these data.
In traditional convolutional operations, 3× 3 filters are often
used to calculate a moving sum, which would lose effective-
ness when it comes to spatially imbalanced station observa-
tions. For example, when convolutional filters move to areas
without observations, the result will be zero. However, if the
convolutional filters work in areas with dense observations,
the results will become significantly larger. Therefore, they
will generate spatially biased and distorted results (Qi et al.,
2018). To solve the problem, we proposed a novel and inter-
pretable PointConv operation to handle isolated station ob-
servations of multiple variables. The successive PointConv
operation is defined as follows.

PointConv1 (x)=
Conv(wn1,x)

Conv(wn1,x_one)+ e−5 (1)

PointConv2 (x)=
Conv(wn2,PointConv1 (x)− x)

Conv(wn2,x_one)+ e−5 (2)

PC(x)= PointConv1 (x)+PointConv2 (x) (3)

Here, wn refers to a convolutional filter with a size n. The
Conv(wn,x) in Eq. (1) refers to the ordinary convolution on
x with filters wn, which are station observations assigned to
predefined grid cells. The x_one was binarized from x by re-
placing grid cells with valid observation data in x as 1. The
PointConv was conducted by mimicking successive analysis
procedures as in Eq. (2). The PointConv filter size in the two
steps was determined to be 21 and 11, respectively, for n1 and
n2. In summary, this PointConv operation has the following
features and advantages compared to conventional convolu-
tions.

1. The weighted average of isolated data items is calcu-
lated rather than a weighted sum by only considering
valid data.

2. Large-sized filters are used to learn and represent spatial
correlations well within a large area.

3. Successive PointConv operations are implemented to
better reflect spatial variations in local scales.

4. Multivariable observations could be handled separately
and simultaneously even if they are from different net-
works.

The PointConv filters in well-trained models are expected to
have larger values in the center area and lower values in the
outer area. With the PointConv module, a spatially complete
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Figure 2. Data fusion framework using station observations of multiple variables to obtain gridded fields of PM2.5.

gridded dataset is constructed for three observational vari-
ables, denoted as PC(PM2.5), PC(RH), and PC(WS). By
binding PointConv results of different variables of PM2.5,
RH, and WS with other static supplementary data such as
DEM and LULC, input data to the data fusion module Re-
grUnetPP are built. The whole data fusion model could be
summarized as in Eq. (4).

ŷPM2.5 = RegrUnetPP(Concencat(PC(PM2.5) ,PC(RH) ,

PC(WS) ,DEM, LULC))

(4)

loss=
1
N

N∑
i=1

∣∣yPM2.5, i − ŷPM2.5,i

∣∣ (5)

The operation Concencat refers to binding data fields of
different data variables into one multiple-channel dataset.
The ŷPM2.5 refers to the estimated PM2.5 concentrations, and
yPM2.5, i refers to the original CTM simulations with N equal
to the number of total grid cells.

The fusion module can be any grid-to-grid deep-learning
model to estimate fused PM2.5 concentrations ŷPM2.5 . Here
we used a regression Unet++ model (Zhou et al., 2018),
i.e., RegrUnetPP. The RegrUnetPP model was designed as
an encoding–decoding type of network developed from Unet
(Ronneberger et al., 2015). Many skip-connection modules
(Jin et al., 2017) were added in the RegrUnetPP (Fig. 2) to
fully explore spatial correlations on different scales while
keeping abundant details in output results. RegrUnetPP was
constructed by replacing the SoftMax activation layers with
the ReLU layers and adopting a mean absolute error (MAE)
loss function (Eq. 5) instead of the original MaxEntropy
function.

2.4 Model training

The model was trained with the 1 d lead CTM simulations
of PM2.5, RH, and WS, together with geophysical covariates
of DEM and LULC. Since 4-year data for 2016–2019 have
been used to train the model, the whole training dataset has

a data shape of R1461×372×426×5. Considering that the deep-
learning model needs to learn point-to-grid spatial correla-
tions from CTM simulations, nominal “station” data were
constructed by randomly sampling 1500–2500 data points
from gridded simulation data separately for each variable at
each time, while raw spatially complete PM2.5 simulation
data were used as the target gridded “truth” data. The sam-
pling data point number of 1500–2500 was determined ac-
cording to the actual air quality monitoring station density in
middle and eastern China. There are around 700 grid cells
with air quality monitoring stations in middle and eastern
China within an area of around 4 million km2. Considering
the total area of 9.6 million km2 in China, the sampling size
was set to be random integers in a range of 1500–2500 to en-
sure that sampling point densities are at a similar level as the
density of actual monitoring stations. The sampling size was
randomly determined for each training batch (i.e., each day);
as such, the total number of training data points did not vary
much among different years.

The spatial correlations of CTM simulations are backed
by physical and chemical principles comprehensively rep-
resented in the WRF-CMAQ model. The fusion model
was trained with the WRF-CMAQ CTM simulations within
China from 2016 to 2019 for 20000 iterations with a batch
size of 10 when the loss function became stable in about 2 h
running on a NVIDIA RTX GeForce 2080Ti GPU card. It
should be noted that the observation data were not involved
in the model training procedure at all. In the model predic-
tion procedure, actual station observations will be used as
input to generate fused PM2.5 concentration fields. We also
trained the model with the 5 d lead CTM simulations for the
purpose of evaluating impacts from meteorological uncer-
tainties. Note that each of the 1–5 d lead time CTM simu-
lations is driven by different meteorological forecasts, with
1–5 d lead time, respectively. The meteorological uncertain-
ties associated with the 5 d lead CTM simulations are usually
higher than those with the 1 d lead CTM simulations.
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2.5 Model evaluation

In general, the evaluation was conducted for 2020, which
is independent from the training data period of 2016–2019.
Specifically, the fitted fusion model was evaluated in two
aspects. Firstly, its capabilities to predict the fully gridded
model simulations from isolated sampled simulation data
items were assessed using the CTM simulation data in 2020.
In this aspect, the station-wise CTM PM2.5 simulations were
constructed by sampling data in grid cells with CNEMC sta-
tions (for PM2.5) or CMA stations (for RH and WS) from
raw gridded simulations. By feeding these station-wise sim-
ulations and supporting variables into the fusion model, spa-
tially completed gridded data are obtained. The fused simu-
lation data are then compared against the corresponding raw
CTM PM2.5 simulations. The comparison was performed
each day, since there are sufficient data items in daily simula-
tions. It should be noted that only grid cells located in main-
land China were compared. Statistical metrics of the coeffi-
cient of determinant (R2), root mean square error (RMSE),
and normalized mean absolute error (NME) were calculated
for performance evaluation.

For the second aspect, data fusion model performance
was evaluated with real station observations using two cross-
validation methods. Specifically, leave-stations-out cross-
validation methods (LSCV) and stringent 10-fold leave-
cities-out cross-validation (LCCV) were used to evaluate
model performance (Lv et al., 2016). In the LCCV method,
all cities with PM2.5 stations were randomly split into
10 groups, while in the LSCV method all stations were ran-
domly split into 10 groups. PM2.5 observations in one group
of stations were used as independent evaluation data, while
the data in remaining nine groups were used in data fusion.
This process was iteratively performed 10 times to ensure all
groups of data have been used for evaluation. Considering
that the air quality stations are mostly clustered in urban ar-
eas, the LCCV method will better reflect the model’s perfor-
mance in predicting PM2.5 concentrations in remote rural ar-
eas than the station-based LSCV method. Statistical metrics
of R2, RMSE, and NME are also used for statistical mea-
sures.

3 Results and discussion

3.1 Model parameters

According to its definition, the PointConv was interpretable
due to its dedication to implementing an interpolation-like
process from station observations to remove imbalanced,
sparse and clustering distributions of station data items. In
fact, the large filters in PointConv resemble covariance func-
tions on distances in common spatial interpolation methods.
Larger values in the central area of PointConv filters (Fig. 3)
indicate that spatial correlations are stronger in closely neigh-

boring data items (Shepard, 1968) than those at long dis-
tances. The central values of PointConv filters are respec-
tively around 1.5, 1.1, and 1.4 for PM2.5, RH, and WS in
both steps. The filters’ distribution also revealed that the in-
fluencing distance for PM2.5 is around 6 grid cells, which was
equivalent to 72 km in terms of the 12 km resolution. For RH,
the spatial correlations are weak considering that filters were
more spatially uniform as exhibited in Fig. 3. For WS, it ex-
hibited a stronger locality as indicated by the smaller hot-spot
areas with a radius around 4 grid cells (∼ 48 km).

The filters were generally isotropic with slightly larger val-
ues in the northeast–southwest direction than in other direc-
tions, which could be caused by topographic and climatic
patterns in our study area. The slightly anisotropic pattern
still existed when wind direction was considered (Fig. S3).
Compared to traditional distance-related interpolation meth-
ods such as kriging and inverse distance weighting (IDW)
(Friberg et al., 2016), the anisotropy of the filters indicated
the PointConv’s capability to characterize relatively complex
spatial correlations.

3.2 Model performance for reproducing simulation
fields

Our data fusion model has very high accuracies in predict-
ing and/or reproducing fully gridded PM2.5 CTM simula-
tions as exhibited in Fig. 4, even though only ∼ 800 PM2.5
data points in grid cells with observation stations were used
to estimate data values in the China nationwide 64 488 grid
cells. The averages of daily R2, RMSE, and NME values
were respectively 0.94, 4.85 µgm−3, and 0.22 in 2020. The
good evaluation metrics indicate the strong capability of the
trained deep-learning data fusion model to reproduce the
spatial correlations among multiple variables of the CTM
simulations. The fusion model has a stable performance in
terms of R2 and NME values. There are occasional days on
which R2 values are at low levels of ∼ 0.85. On these days,
PM2.5 pollution patterns change fast, which were generally
less trained compared to days with more stable patterns.

By comparing the raw daily average PM2.5 CTM simula-
tions and the reproduced PM2.5 fields from∼ 800 data points
(Fig. 5), it can be concluded that they exhibited high corre-
lations and similarities. The fusion model fully reproduced
the raw CTM simulations in terms of concentration levels,
spatial patterns, and fine-scale hot spots, indicting the data
fusion model’s capabilities to encode high-level and detailed
spatial correlations. By giving the fusion model only a small
portion of simulations at sparsely scattered locations, it can
reproduce the entire whole-domain simulation dataset accu-
rately.

3.3 Model performance for generating reanalysis fields

We implemented the data fusion model with the PM2.5 and
meteorological station observations in 2020 to generate the
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Figure 3. PointConv filters for PM2.5, RH, and WS.

Figure 4. Daily prediction performance evaluated against the raw
PM2.5 CTM simulations in 2020: (a) R2, (b) RMSE, and (c) NME.

PM2.5 reanalysis fields for evaluation. The evaluation results
exhibited good performance with R2

= 0.77 for the LCCV
method and R2

= 0.84 for the LSCV method (Fig. 6), with
the RMSE values being 14.29 and 12.96 µgm−3, respec-
tively. Considering that most grid cells were located within
city urban areas, actual model performance in the nationwide
domain should be generally between the metrics by LCCV
and LSCV, which is 0.77–0.84 for R2, 12.96–14.29 µgm−3

for RMSE, and 0.23–0.27 for NME. Previous studies tend to

underestimate PM2.5 concentrations in severe pollution sce-
narios (Di et al., 2016; Senthilkumar et al., 2019). Our data
fusion method predicted high-level PM2.5 concentrations
very well, with NME for the PM2.5 concentration higher than
150 µgm−3 being small at 0.19 and 0.14, respectively, for
LCCV and LSCV. It worth noting that there are increased er-
rors from reproducing CTM simulations (R2

= 0.94) to gen-
erating reanalysis fields (R2

= 0.77–0.84). The difference of
0.1–0.17 should be mainly attributed to CTM simulation un-
certainties of PM2.5 spatial correlations compared to actual
correlations in observations.

Our model has good performance compared to previ-
ous studies that used the spatial cross-validation method.
For example, Lyu et al. (2019) used an ensemble deep-
learning model to build relations between CTM simulations
and observations of PM2.5 in China with a performance of
R2
= 0.64 and RMSE= 24.8 µgm−3 using a station-level

evaluation method. Xue et al. (2019) fused aerosol opti-
cal depth (AOD), CTM simulations, and ground observa-
tions with a complex multi-stage model and achieved a
good performance of R2

= 0.81 with the LSCV method.
Xiao et al. (2018) built up an ensemble machine learn-
ing model to predict PM2.5 at 0.1◦ resolution with an ac-
curacy of R2

= 0.76. Huang et al. (2021) used a multi-
stage random-forecast-based model to predict a very high-
resolution dataset and achieved R2

= 0.86 with the LSCV
method.

Daily PM2.5 reanalysis fields for 2020 were obtained with
the model framework and station observations. Considering
that the fused and reanalysis fields are complete in space, the
high pollution levels in winter are clearly revealed in detail
in the North China Plain (NCP) and in the long, narrow basin
areas of Shanxi and Shaanxi provinces (Fig. 7). Also, unlike
most previous studies (Huang et al., 2021), PM2.5 concen-
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Figure 5. The seasonal average PM2.5 concentrations of the raw CTM simulations (a–d, first row) and the reproduced simulations using the
data fusion model (e–h, second row).

Figure 6. Scatter plots of predictions versus observations respectively evaluated using the (a) LCCV and (b) LSCV methods.

trations in the high-altitude clean Tibetan Plateau region are
predicted as low values, the same as observed. High pollution
levels in the middle-western Inner Mongolia area of Hohhot,
Baotou, and Yinchuan were also well captured in all four sea-
sons.

To further evaluate the spatial distributions of the fused
PM2.5 fields, we compared them with the MODIS AOD
distributions on the days with large AOD spatial coverage
(Figs. 8 and S4). Spatial distributions of the fused PM2.5 and
AOD show high similarities with each other. For example, on
26 October, high PM2.5 concentrations coincide with high
AOD values in the NCP, especially in the areas along the
eastern edge of the Taihang Mountains. In detail, PM2.5 con-
centrations and AOD values are both relatively low in the
Yimeng Mountains located in the middle-south of Shandong
province. The high PM2.5 concentrations in the basin area of

Shanxi province are also higher than the surrounding area,
consistent with those of AOD. For 13 November, PM2.5 con-
centrations are extremely high in the NCP and high in the
central China areas of Hubei and Hunan provinces, like the
AOD values. Also, in the northeastern regions of Yunnan
province, both PM2.5 and AOD values are relatively high.
The spatial coincidence of PM2.5 concentrations and AOD
values at all levels further validates the accuracy of the fused
data.

4 Discussion

In this study, PM2.5 fields are fused using multiple obser-
vational variables from different networks by developing a
novel deep-learning data fusion model framework. The core
of our fusion model is to learn and encode spatial correlations
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Figure 7. Reanalysis PM2.5 concentration fields in four seasons in 2020. Circles with filled colors represent monitoring sites and correspond-
ing observations.

from CTM simulations to build connections between isolated
data points with gridded data fields and among multiple vari-
ables. In other words, our method is to “interpolate” the iso-
lated observations to achieve full spatial coverage by using
the spatial correlations learned from the CTM simulations.
The training is done only with the simulated data. Observa-
tional data are not used in the training procedure but only
used in the prediction step. Then the trained fusion model
is applied to predict reanalysis and fused data fields from
isolated station observations by decoding the learned spa-
tial correlations. As we have demonstrated, the method can
accurately reproduce the whole-domain PM2.5 concentration
fields from only a small number of data points.

In previous studies, all variables needed to be spatially
paired at stations first to train regression models (Lyu et al.,
2019; Xue et al., 2019). To use data from different networks,
interpolation and analysis or reanalysis needed to be car-
ried out first, the procedure of which is disconnected from
the data fusion model. Here, with the successive PointConv
modules, it can fuse station data variables from different ob-
servation networks, even if they are not spatially aligned at
co-locations. The PointConv modules were trainable as part

of the whole deep-learning data fusion model. Without a data
pairing procedure, the model training and prediction proce-
dure became straightforward and only required the same spa-
tial grid setting for all input variables.

As we stressed, this model was fitted with model simu-
lation data by learning daily spatial patterns from long-term
CTM simulations. It has two benefits. First, the trained deep-
learning data fusion model can represent and reflect spatial
correlations between PM2.5 (and any other model species
and/or variables as well) and its supporting variables by re-
taining physical and chemical principles in the WRF-CMAQ
model. Hence, the method can be readily applied for other
CTM-simulated species with measurements available. Sec-
ond, it does not need any observation datasets to train the
model. This is quite beneficial for data fusion applications,
especially when station networks are newly set up or obser-
vations are from mobile or portable sensors. The data fusion
models used in previous studies often require long-term ob-
servations (Wei et al., 2021; Huang et al., 2021; Xue et al.,
2019), which makes it difficult to be reproducibly used in
new applications. Conversely, our method is straightforward
to use and can be easily examined by intercomparison with
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Figure 8. Comparison between MODIS AOD and PM2.5 fusion data on 26 October and 13 November 2020.

other methods. It provides a pre-trained deep-learning model
for its application in other studies. To run this model, users
only need air quality observations, meteorological observa-
tions, and static variables.

It worth noting that high fusion accuracy has been
achieved even though the CTM simulations themselves have
relatively low accuracies (Fig. S1). CTM simulation errors
usually come from three major sources, which include mete-
orology uncertainties, emission inventory uncertainties, and
imperfect atmospheric physical and chemical parameteriza-
tions. However, as we have stated above, the training here is
purely to learn the spatial correlations among simulated vari-
ables from CTM simulations; the biases and errors in CTM
simulation do not impact the training results. The nearly per-
fect reproduction of the 2020 simulations has demonstrated
this.

To evaluate and/or separate fusion errors caused by mete-
orological uncertainties, we trained two data fusion models
respectively using the 1 d lead CTM forecasting simulations
and the 5 d lead CTM forecasting simulations. The 1 d lead
forecasts have different but usually smaller errors than the 5 d
lead forecasts (Fig. S1). As shown in Fig. S5 (see the Sup-
plement), both trained models have similar performance in

producing reanalysis fields. Considering that errors of simu-
lations at different lead times are mainly caused by meteoro-
logical inputs, it revealed that CTM errors from meteorology
do not have much influence on reanalysis performance.

As for the errors raised by emission uncertainties, we com-
pared the performance of the reanalysis fields in February,
March, and April 2020 against that in other months of 2020.
In the 3 select months, air pollutant emissions in China dra-
matically decreased to a very low level due to a large-scale
national lockdown to prevent the spreading of Covid-19.
Compared to the other months without national lockdowns,
emissions inventories used in CTM simulations should have
significantly increased uncertainties during these 3 months.
However, the reanalysis performance in the lockdown period
does not decrease compared to that in other months as shown
in Fig. S6 (see the Supplement). In fact, input changes in pol-
lutant emissions and meteorological fields within the CTM
simulations are allowed and should be encouraged to cover
a wider range of emissions and meteorological scenarios to
help improve the robustness of the trained model.

However, the uncertainties of physical and chemical pa-
rameterizations in the CTM could influence the reanalysis
performance, as they determine the inherent spatiotempo-
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ral correlations among multiple variables. But their impacts
on reanalysis performance here are expected to be small as
well, provided the configurations in CTM simulations are
not changed dramatically, because the nonuniformity of the
biases and errors these parametrization uncertainties alone
can cause in CTM simulations are expected to be even lower
in magnitude. We do not recommend using totally different
configurations in CTM simulations. Comparatively, in other
observation–simulation regression methods, both model con-
figurations as well as meteorology and emission inputs are
required to be unchanged and relatively accurate in training
datasets (Xue et al., 2017; Hao et al., 2016).

It also worth noting that the model framework in this study
has the significant benefit of very high computational effi-
ciency, with computing time for one-time fusion far less than
1 s running on the consumer GPU card of a NVIDIA 2080Ti.

Code and data availability. The CTM simulation data and fused
datasets can be accessed by contacting the corresponding au-
thors Baolei Lyu (baoleilv@foxmail.com) and Ran Huang (ran-
huang2019@163.com). The land use and land cover data are
available at the Data Sharing and Service Portal of the Chinese
Academy of Science (https://doi.org/10.5281/zenodo.3986872; Liu
and Zhang, 2019). The source code and a pre-trained model
file of the exact version used to produce the results used in
this paper are available at https://doi.org/10.5281/zenodo.5152567
on Zenodo (Lyu, 2021). The configuration files for running the
models WRF v3.4.1 and CAMQ v5.0.2 are also available at
https://doi.org/10.5281/zenodo.5152621 (Hu, 2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-1583-2022-supplement.
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