Articles | Volume 15, issue 3
https://doi.org/10.5194/gmd-15-1317-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1317-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Aerosol Module in the Community Radiative Transfer Model (v2.2 and v2.3): accounting for aerosol transmittance effects on the radiance observation operator
Cheng-Hsuan Lu
CORRESPONDING AUTHOR
Joint Center for Satellite Data Assimilation, Boulder, CO, USA
Atmospheric Sciences Research Center, University at Albany, Albany,
NY, USA
Quanhua Liu
Center for Satellite Applications and Research, NOAA/NESDIS, College Park, MD, USA
Shih-Wei Wei
Joint Center for Satellite Data Assimilation, Boulder, CO, USA
Atmospheric Sciences Research Center, University at Albany, Albany,
NY, USA
Benjamin T. Johnson
Joint Center for Satellite Data Assimilation, College Park, MD, USA
Cheng Dang
Joint Center for Satellite Data Assimilation, Boulder, CO, USA
Patrick G. Stegmann
Joint Center for Satellite Data Assimilation, College Park, MD, USA
Dustin Grogan
Atmospheric Sciences Research Center, University at Albany, Albany,
NY, USA
Guoqing Ge
Cooperative Institute for Research in Environmental Sciences, CU
Boulder, CO, USA
Global System Laboratory, NOAA, Boulder, CO, USA
Ming Hu
Global System Laboratory, NOAA, Boulder, CO, USA
Michael Lueken
I.M. Systems Group, Inc., Rockville, MD, USA
Environmental Modeling Center, NOAA/NWS/NCEP, College Park, MD, USA
Related authors
Shih-Wei Wei, Mariusz Pagowski, Arlindo da Silva, Cheng-Hsuan Lu, and Bo Huang
Geosci. Model Dev., 17, 795–813, https://doi.org/10.5194/gmd-17-795-2024, https://doi.org/10.5194/gmd-17-795-2024, 2024
Short summary
Short summary
This study describes the modeling system and the evaluation results for the first prototype version of a global aerosol reanalysis product at NOAA, prototype NOAA Aerosol ReAnalysis version 1.0 (pNARA v1.0). We evaluated pNARA v1.0 against independent datasets and compared it with other reanalyses. We identified deficiencies in the system (both in the forecast model and in the data assimilation system) and the uncertainties that exist in our reanalysis.
Dustin Francis Phillip Grogan, Cheng-Hsuan Lu, Shih-Wei Wei, and Sheng-Po Chen
Atmos. Chem. Phys., 22, 2385–2398, https://doi.org/10.5194/acp-22-2385-2022, https://doi.org/10.5194/acp-22-2385-2022, 2022
Short summary
Short summary
This study shows that incorporating aerosols into satellite radiance calculations affects the representation of African easterly waves (AEWs), and their environment, over North Africa and the eastern Atlantic in a numerical weather model. These changes are driven by radiative effects of Saharan dust captured by the aerosol-affected radiances, which modify the initial fields and can improve the forecasting of AEWs.
Ying-Chieh Chen, Sheng-Hsiang Wang, Qilong Min, Sarah Lu, Pay-Liam Lin, Neng-Huei Lin, Kao-Shan Chung, and Everette Joseph
Atmos. Chem. Phys., 21, 4487–4502, https://doi.org/10.5194/acp-21-4487-2021, https://doi.org/10.5194/acp-21-4487-2021, 2021
Short summary
Short summary
In this study, we integrate satellite and surface observations to statistically quantify aerosol impacts on low-level warm-cloud microphysics and drizzle over northern Taiwan. Our result provides observational evidence for aerosol indirect effects. The frequency of drizzle is reduced under polluted conditions. For light-precipitation events (≤ 1 mm h-1), however, higher aerosol concentrations drive raindrops toward smaller sizes and thus increase the appearance of the drizzle drops.
Youhua Tang, Huisheng Bian, Zhining Tao, Luke D. Oman, Daniel Tong, Pius Lee, Patrick C. Campbell, Barry Baker, Cheng-Hsuan Lu, Li Pan, Jun Wang, Jeffery McQueen, and Ivanka Stajner
Atmos. Chem. Phys., 21, 2527–2550, https://doi.org/10.5194/acp-21-2527-2021, https://doi.org/10.5194/acp-21-2527-2021, 2021
Short summary
Short summary
Chemical lateral boundary condition (CLBC) impact is essential for regional air quality prediction during intrusion events. We present a model mapping Goddard Earth Observing System (GEOS) to Community Multi-scale Air Quality (CMAQ) CB05–AERO6 (Carbon Bond 5; version 6 of the aerosol module) species. Influence depends on distance from the inflow boundary and species and their regional characteristics. We use aerosol optical thickness to derive CLBCs, achieving reasonable prediction.
Jun Wang, Partha S. Bhattacharjee, Vijay Tallapragada, Cheng-Hsuan Lu, Shobha Kondragunta, Arlindo da Silva, Xiaoyang Zhang, Sheng-Po Chen, Shih-Wei Wei, Anton S. Darmenov, Jeff McQueen, Pius Lee, Prabhat Koner, and Andy Harris
Geosci. Model Dev., 11, 2315–2332, https://doi.org/10.5194/gmd-11-2315-2018, https://doi.org/10.5194/gmd-11-2315-2018, 2018
Short summary
Short summary
The NEMS GFS Aerosol Component (NGAC) version 2.0 for global multispecies aerosol forecast was developed at NCEP. Additional sea salt, sulfate, organic carbon, and black carbon aerosol species were included. This implementation advanced the global aerosol forecast capability and made a step forward toward developing a global aerosol data assimilation system. The aerosol products from this system have been provided to meet the stakeholder's needs.
Partha Sarathi Bhattacharjee, Jun Wang, Cheng-Hsuan Lu, and Vijay Tallapragada
Geosci. Model Dev., 11, 2333–2351, https://doi.org/10.5194/gmd-11-2333-2018, https://doi.org/10.5194/gmd-11-2333-2018, 2018
Short summary
Short summary
National Center for Environmental Prediction (NCEP) at NOAA recently upgraded their operational global aerosol forecast model from dust-only in version 1 to five species (dust, sea salt, black and organic carbon) of aerosols in version 2. In this work, we have validated the newly implemented aerosol model (NGACv2) which forecast at every 3 h up to 5 days against ground and satellite observations and other available model simulations.
Cheng-Hsuan Lu, Arlindo da Silva, Jun Wang, Shrinivas Moorthi, Mian Chin, Peter Colarco, Youhua Tang, Partha S. Bhattacharjee, Shen-Po Chen, Hui-Ya Chuang, Hann-Ming Henry Juang, Jeffery McQueen, and Mark Iredell
Geosci. Model Dev., 9, 1905–1919, https://doi.org/10.5194/gmd-9-1905-2016, https://doi.org/10.5194/gmd-9-1905-2016, 2016
Short summary
Short summary
Aerosols have an important effect on the Earth's climate and implications for public health. NASA has partnered with NOAA to transfer GOCART aerosol model to NCEP, enabling the first global aerosol forecasting system at NOAA/NCEP. This collaboration reflects an effective research-to-operation transition, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders and to allow the effects of aerosols on weather and climate prediction to be considered.
Shih-Wei Wei, Mariusz Pagowski, Arlindo da Silva, Cheng-Hsuan Lu, and Bo Huang
Geosci. Model Dev., 17, 795–813, https://doi.org/10.5194/gmd-17-795-2024, https://doi.org/10.5194/gmd-17-795-2024, 2024
Short summary
Short summary
This study describes the modeling system and the evaluation results for the first prototype version of a global aerosol reanalysis product at NOAA, prototype NOAA Aerosol ReAnalysis version 1.0 (pNARA v1.0). We evaluated pNARA v1.0 against independent datasets and compared it with other reanalyses. We identified deficiencies in the system (both in the forecast model and in the data assimilation system) and the uncertainties that exist in our reanalysis.
Jonathan J. Guerrette, Zhiquan Liu, Chris Snyder, Byoung-Joo Jung, Craig S. Schwartz, Junmei Ban, Steven Vahl, Yali Wu, Ivette Hernández Baños, Yonggang G. Yu, Soyoung Ha, Yannick Trémolet, Thomas Auligné, Clementine Gas, Benjamin Ménétrier, Anna Shlyaeva, Mark Miesch, Stephen Herbener, Emily Liu, Daniel Holdaway, and Benjamin T. Johnson
Geosci. Model Dev., 16, 7123–7142, https://doi.org/10.5194/gmd-16-7123-2023, https://doi.org/10.5194/gmd-16-7123-2023, 2023
Short summary
Short summary
We demonstrate an ensemble of variational data assimilations (EDA) with the Model for Prediction Across Scales and the Joint Effort for Data assimilation Integration (JEDI) software framework. When compared to 20-member ensemble forecasts from operational initial conditions, those from 80-member EDA-generated initial conditions improve flow-dependent error covariances and subsequent 10 d forecasts. These experiments are repeatable for any atmospheric model with a JEDI interface.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Zhiquan Liu, Chris Snyder, Jonathan J. Guerrette, Byoung-Joo Jung, Junmei Ban, Steven Vahl, Yali Wu, Yannick Trémolet, Thomas Auligné, Benjamin Ménétrier, Anna Shlyaeva, Stephen Herbener, Emily Liu, Daniel Holdaway, and Benjamin T. Johnson
Geosci. Model Dev., 15, 7859–7878, https://doi.org/10.5194/gmd-15-7859-2022, https://doi.org/10.5194/gmd-15-7859-2022, 2022
Short summary
Short summary
JEDI-MPAS 1.0.0, a new data assimilation (DA) system for the MPAS model, was publicly released for community use. This article describes JEDI-MPAS's implementation of the ensemble–variational DA technique and demonstrates its robustness and credible performance by incrementally adding three types of microwave radiances (clear-sky AMSU-A, all-sky AMSU-A, clear-sky MHS) to a non-radiance DA experiment. We intend to periodically release new and improved versions of JEDI-MPAS in upcoming years.
Ivette H. Banos, Will D. Mayfield, Guoqing Ge, Luiz F. Sapucci, Jacob R. Carley, and Louisa Nance
Geosci. Model Dev., 15, 6891–6917, https://doi.org/10.5194/gmd-15-6891-2022, https://doi.org/10.5194/gmd-15-6891-2022, 2022
Short summary
Short summary
A prototype data assimilation system for NOAA’s next-generation rapidly updated, convection-allowing forecast system, or Rapid Refresh Forecast System (RRFS) v0.1, is tested and evaluated. The impact of using data assimilation with a convective storm case study is examined. Although the convection in RRFS tends to be overestimated in intensity and underestimated in extent, the use of data assimilation proves to be crucial to improve short-term forecasts of storms and precipitation.
Chloe A. Whicker, Mark G. Flanner, Cheng Dang, Charles S. Zender, Joseph M. Cook, and Alex S. Gardner
The Cryosphere, 16, 1197–1220, https://doi.org/10.5194/tc-16-1197-2022, https://doi.org/10.5194/tc-16-1197-2022, 2022
Short summary
Short summary
Snow and ice surfaces are important to the global climate. Current climate models use measurements to determine the reflectivity of ice. This model uses physical properties to determine the reflectivity of snow, ice, and darkly pigmented impurities that reside within the snow and ice. Therefore, the modeled reflectivity is more accurate for snow/ice columns under varying climate conditions. This model paves the way for improvements in the portrayal of snow and ice within global climate models.
Dustin Francis Phillip Grogan, Cheng-Hsuan Lu, Shih-Wei Wei, and Sheng-Po Chen
Atmos. Chem. Phys., 22, 2385–2398, https://doi.org/10.5194/acp-22-2385-2022, https://doi.org/10.5194/acp-22-2385-2022, 2022
Short summary
Short summary
This study shows that incorporating aerosols into satellite radiance calculations affects the representation of African easterly waves (AEWs), and their environment, over North Africa and the eastern Atlantic in a numerical weather model. These changes are driven by radiative effects of Saharan dust captured by the aerosol-affected radiances, which modify the initial fields and can improve the forecasting of AEWs.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Ying-Chieh Chen, Sheng-Hsiang Wang, Qilong Min, Sarah Lu, Pay-Liam Lin, Neng-Huei Lin, Kao-Shan Chung, and Everette Joseph
Atmos. Chem. Phys., 21, 4487–4502, https://doi.org/10.5194/acp-21-4487-2021, https://doi.org/10.5194/acp-21-4487-2021, 2021
Short summary
Short summary
In this study, we integrate satellite and surface observations to statistically quantify aerosol impacts on low-level warm-cloud microphysics and drizzle over northern Taiwan. Our result provides observational evidence for aerosol indirect effects. The frequency of drizzle is reduced under polluted conditions. For light-precipitation events (≤ 1 mm h-1), however, higher aerosol concentrations drive raindrops toward smaller sizes and thus increase the appearance of the drizzle drops.
Youhua Tang, Huisheng Bian, Zhining Tao, Luke D. Oman, Daniel Tong, Pius Lee, Patrick C. Campbell, Barry Baker, Cheng-Hsuan Lu, Li Pan, Jun Wang, Jeffery McQueen, and Ivanka Stajner
Atmos. Chem. Phys., 21, 2527–2550, https://doi.org/10.5194/acp-21-2527-2021, https://doi.org/10.5194/acp-21-2527-2021, 2021
Short summary
Short summary
Chemical lateral boundary condition (CLBC) impact is essential for regional air quality prediction during intrusion events. We present a model mapping Goddard Earth Observing System (GEOS) to Community Multi-scale Air Quality (CMAQ) CB05–AERO6 (Carbon Bond 5; version 6 of the aerosol module) species. Influence depends on distance from the inflow boundary and species and their regional characteristics. We use aerosol optical thickness to derive CLBCs, achieving reasonable prediction.
Jun Wang, Partha S. Bhattacharjee, Vijay Tallapragada, Cheng-Hsuan Lu, Shobha Kondragunta, Arlindo da Silva, Xiaoyang Zhang, Sheng-Po Chen, Shih-Wei Wei, Anton S. Darmenov, Jeff McQueen, Pius Lee, Prabhat Koner, and Andy Harris
Geosci. Model Dev., 11, 2315–2332, https://doi.org/10.5194/gmd-11-2315-2018, https://doi.org/10.5194/gmd-11-2315-2018, 2018
Short summary
Short summary
The NEMS GFS Aerosol Component (NGAC) version 2.0 for global multispecies aerosol forecast was developed at NCEP. Additional sea salt, sulfate, organic carbon, and black carbon aerosol species were included. This implementation advanced the global aerosol forecast capability and made a step forward toward developing a global aerosol data assimilation system. The aerosol products from this system have been provided to meet the stakeholder's needs.
Partha Sarathi Bhattacharjee, Jun Wang, Cheng-Hsuan Lu, and Vijay Tallapragada
Geosci. Model Dev., 11, 2333–2351, https://doi.org/10.5194/gmd-11-2333-2018, https://doi.org/10.5194/gmd-11-2333-2018, 2018
Short summary
Short summary
National Center for Environmental Prediction (NCEP) at NOAA recently upgraded their operational global aerosol forecast model from dust-only in version 1 to five species (dust, sea salt, black and organic carbon) of aerosols in version 2. In this work, we have validated the newly implemented aerosol model (NGACv2) which forecast at every 3 h up to 5 days against ground and satellite observations and other available model simulations.
Cheng-Hsuan Lu, Arlindo da Silva, Jun Wang, Shrinivas Moorthi, Mian Chin, Peter Colarco, Youhua Tang, Partha S. Bhattacharjee, Shen-Po Chen, Hui-Ya Chuang, Hann-Ming Henry Juang, Jeffery McQueen, and Mark Iredell
Geosci. Model Dev., 9, 1905–1919, https://doi.org/10.5194/gmd-9-1905-2016, https://doi.org/10.5194/gmd-9-1905-2016, 2016
Short summary
Short summary
Aerosols have an important effect on the Earth's climate and implications for public health. NASA has partnered with NOAA to transfer GOCART aerosol model to NCEP, enabling the first global aerosol forecasting system at NOAA/NCEP. This collaboration reflects an effective research-to-operation transition, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders and to allow the effects of aerosols on weather and climate prediction to be considered.
X. Xiong, F. Weng, Q. Liu, and E. Olsen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-8563-2015, https://doi.org/10.5194/amtd-8-8563-2015, 2015
Revised manuscript not accepted
M. Pagowski, Z. Liu, G. A. Grell, M. Hu, H.-C. Lin, and C. S. Schwartz
Geosci. Model Dev., 7, 1621–1627, https://doi.org/10.5194/gmd-7-1621-2014, https://doi.org/10.5194/gmd-7-1621-2014, 2014
Related subject area
Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
The CHIMERE chemistry-transport model v2023r1
tobac v1.5: introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing meteorological phenomena
Merged Observatory Data Files (MODFs): an integrated observational data product supporting process-oriented investigations and diagnostics
Simulation of marine stratocumulus using the super-droplet method: numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.1
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization
Can TROPOMI NO2 satellite data be used to track the drop in and resurgence of NOx emissions in Germany between 2019–2021 using the multi-source plume method (MSPM)?
A spatiotemporally separated framework for reconstructing the sources of atmospheric radionuclide releases
A parameterization scheme for the floating wind farm in a coupled atmosphere–wave model (COAWST v3.7)
RoadSurf 1.1: open-source road weather model library
Calibrating and validating the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) urban cooling model: case studies in France and the United States
The ddeq Python library for point source quantification from remote sensing images (version 1.0)
Incorporating Oxygen Isotopes of Oxidized Reactive Nitrogen in the Regional Atmospheric Chemistry Mechanism, version 2 (ICOIN-RACM2)
A general comprehensive evaluation method for cross-scale precipitation forecasts
Implementation of a Simple Actuator Disk for Large-Eddy Simulation in the Weather Research and Forecasting Model (WRF-SADLES v1.2) for wind turbine wake simulation
WRF-PDAF v1.0: implementation and application of an online localized ensemble data assimilation framework
Implementation and evaluation of diabatic advection in the Lagrangian transport model MPTRAC 2.6
An improved and extended parameterization of the CO2 15 µm cooling in the middle and upper atmosphere (CO2_cool_fort-1.0)
Development of a multiphase chemical mechanism to improve secondary organic aerosol formation in CAABA/MECCA (version 4.7.0)
Application of regional meteorology and air quality models based on the microprocessor without interlocked piped stages (MIPS) and LoongArch CPU platforms
Investigating ground-level ozone pollution in semi-arid and arid regions of Arizona using WRF-Chem v4.4 modeling
An objective identification technique for potential vorticity structures associated with African easterly waves
Importance of microphysical settings for climate forcing by stratospheric SO2 injections as modeled by SOCOL-AERv2
Assessment of surface ozone products from downscaled CAMS reanalysis and CAMS daily forecast using urban air quality monitoring stations in Iran
Open boundary conditions for atmospheric large-eddy simulations and their implementation in DALES4.4
Efficient and stable coupling of the SuperdropNet deep-learning-based cloud microphysics (v0.1.0) with the ICON climate and weather model (v2.6.5)
Three-dimensional variational assimilation with a multivariate background error covariance for the Model for Prediction Across Scales – Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 2.0.0-beta)
FUME 2.0 – Flexible Universal processor for Modeling Emissions
DEUCE v1.0: a neural network for probabilistic precipitation nowcasting with aleatoric and epistemic uncertainties
Evaluation of multi-season convection-permitting atmosphere – mixed-layer ocean simulations of the Maritime Continent
RASCAL v1.0.0: An Open Source Tool for Climatological Time Series Reconstruction and Extension
Selecting CMIP6 GCMs for CORDEX Dynamical Downscaling over Southeast Asia Using a Standardised Benchmarking Framework
Investigating the impact of coupling HARMONIE-WINS50 (cy43) meteorology to LOTOS-EUROS (v2.2.002) on a simulation of NO2 concentrations over the Netherlands
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
Geosci. Model Dev., 17, 5167–5189, https://doi.org/10.5194/gmd-17-5167-2024, https://doi.org/10.5194/gmd-17-5167-2024, 2024
Short summary
Short summary
We investigate numerical convergence properties of a particle-based numerical cloud microphysics model (SDM) and a double-moment bulk scheme for simulating a marine stratocumulus case, compare their results with model intercomparison project results, and present possible explanations for the different results of the SDM and the bulk scheme. Aerosol processes can be accurately simulated using SDM, and this may be an important factor affecting the behavior and morphology of marine stratocumulus.
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024, https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Nathan P. Arnold
Geosci. Model Dev., 17, 5041–5056, https://doi.org/10.5194/gmd-17-5041-2024, https://doi.org/10.5194/gmd-17-5041-2024, 2024
Short summary
Short summary
Earth system models often represent the land surface at smaller scales than the atmosphere, but surface–atmosphere coupling uses only aggregated surface properties. This study presents a method to allow heterogeneous surface properties to modify boundary layer updrafts. The method is tested in single column experiments. Updraft properties are found to reasonably covary with surface conditions, and simulated boundary layer variability is enhanced over more heterogeneous land surfaces.
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024, https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NOx) is produced by sources such as industry and traffic and is directly linked to negative impacts on health and the environment. The current construction of emission inventories to keep track of NOx emissions is slow and time-consuming. Satellite measurements provide a way to quickly and independently estimate emissions. In this study, we apply a consistent methodology to derive NOx emissions over Germany and illustrate the value of having such a method for fast projections.
Yuhan Xu, Sheng Fang, Xinwen Dong, and Shuhan Zhuang
Geosci. Model Dev., 17, 4961–4982, https://doi.org/10.5194/gmd-17-4961-2024, https://doi.org/10.5194/gmd-17-4961-2024, 2024
Short summary
Short summary
Recent atmospheric radionuclide leakages from unknown sources have posed a new challenge in nuclear emergency assessment. Reconstruction via environmental observations is the only feasible way to identify sources, but simultaneous reconstruction of the source location and release rate yields high uncertainties. We propose a spatiotemporally separated reconstruction strategy that avoids these uncertainties and outperforms state-of-the-art methods with respect to accuracy and uncertainty ranges.
Shaokun Deng, Shengmu Yang, Shengli Chen, Daoyi Chen, Xuefeng Yang, and Shanshan Cui
Geosci. Model Dev., 17, 4891–4909, https://doi.org/10.5194/gmd-17-4891-2024, https://doi.org/10.5194/gmd-17-4891-2024, 2024
Short summary
Short summary
Global offshore wind power development is moving from offshore to deeper waters, where floating offshore wind turbines have an advantage over bottom-fixed turbines. However, current wind farm parameterization schemes in mesoscale models are not applicable to floating turbines. We propose a floating wind farm parameterization scheme that accounts for the attenuation of the significant wave height by floating turbines. The results indicate that it has a significant effect on the power output.
Virve Eveliina Karsisto
Geosci. Model Dev., 17, 4837–4853, https://doi.org/10.5194/gmd-17-4837-2024, https://doi.org/10.5194/gmd-17-4837-2024, 2024
Short summary
Short summary
RoadSurf is an open-source library that contains functions from the Finnish Meteorological Institute’s road weather model. The evaluation of the library shows that it is well suited for making road surface temperature forecasts. The evaluation was done by making forecasts for about 400 road weather stations in Finland with the library. Accurate forecasts help road authorities perform salting and plowing operations at the right time and keep roads safe for drivers.
Perrine Hamel, Martí Bosch, Léa Tardieu, Aude Lemonsu, Cécile de Munck, Chris Nootenboom, Vincent Viguié, Eric Lonsdorf, James A. Douglass, and Richard P. Sharp
Geosci. Model Dev., 17, 4755–4771, https://doi.org/10.5194/gmd-17-4755-2024, https://doi.org/10.5194/gmd-17-4755-2024, 2024
Short summary
Short summary
The InVEST Urban Cooling model estimates the cooling effect of vegetation in cities. We further developed an algorithm to facilitate model calibration and evaluation. Applying the algorithm to case studies in France and in the United States, we found that nighttime air temperature estimates compare well with reference datasets. Estimated change in temperature from a land cover scenario compares well with an alternative model estimate, supporting the use of the model for urban planning decisions.
Gerrit Kuhlmann, Erik Koene, Sandro Meier, Diego Santaren, Grégoire Broquet, Frédéric Chevallier, Janne Hakkarainen, Janne Nurmela, Laia Amorós, Johanna Tamminen, and Dominik Brunner
Geosci. Model Dev., 17, 4773–4789, https://doi.org/10.5194/gmd-17-4773-2024, https://doi.org/10.5194/gmd-17-4773-2024, 2024
Short summary
Short summary
We present a Python software library for data-driven emission quantification (ddeq). It can be used to determine the emissions of hot spots (cities, power plants and industry) from remote sensing images using different methods. ddeq can be extended for new datasets and methods, providing a powerful community tool for users and developers. The application of the methods is shown using Jupyter notebooks included in the library.
Wendell W. Walters, Masayuki Takeuchi, Nga L. Ng, and Meredith G. Hastings
Geosci. Model Dev., 17, 4673–4687, https://doi.org/10.5194/gmd-17-4673-2024, https://doi.org/10.5194/gmd-17-4673-2024, 2024
Short summary
Short summary
The study introduces a novel chemical mechanism for explicitly tracking oxygen isotope transfer in oxidized reactive nitrogen and odd oxygen using the Regional Atmospheric Chemistry Mechanism, version 2. This model enhances our ability to simulate and compare oxygen isotope compositions of reactive nitrogen, revealing insights into oxidation chemistry. The approach shows promise for improving atmospheric chemistry models and tropospheric oxidation capacity predictions.
Bing Zhang, Mingjian Zeng, Anning Huang, Zhengkun Qin, Couhua Liu, Wenru Shi, Xin Li, Kefeng Zhu, Chunlei Gu, and Jialing Zhou
Geosci. Model Dev., 17, 4579–4601, https://doi.org/10.5194/gmd-17-4579-2024, https://doi.org/10.5194/gmd-17-4579-2024, 2024
Short summary
Short summary
By directly analyzing the proximity of precipitation forecasts and observations, a precipitation accuracy score (PAS) method was constructed. This method does not utilize a traditional contingency-table-based classification verification; however, it can replace the threat score (TS), equitable threat score (ETS), and other skill score methods, and it can be used to calculate the accuracy of numerical models or quantitative precipitation forecasts.
Hai Bui, Mostafa Bakhoday-Paskyabi, and Mohammadreza Mohammadpour-Penchah
Geosci. Model Dev., 17, 4447–4465, https://doi.org/10.5194/gmd-17-4447-2024, https://doi.org/10.5194/gmd-17-4447-2024, 2024
Short summary
Short summary
We developed a new wind turbine wake model, the Simple Actuator Disc for Large Eddy Simulation (SADLES), integrated with the widely used Weather Research and Forecasting (WRF) model. WRF-SADLES accurately simulates wind turbine wakes at resolutions of a few dozen meters, aligning well with idealized simulations and observational measurements. This makes WRF-SADLES a promising tool for wind energy research, offering a balance between accuracy, computational efficiency, and ease of implementation.
Changliang Shao and Lars Nerger
Geosci. Model Dev., 17, 4433–4445, https://doi.org/10.5194/gmd-17-4433-2024, https://doi.org/10.5194/gmd-17-4433-2024, 2024
Short summary
Short summary
This paper introduces and evaluates WRF-PDAF, a fully online-coupled ensemble data assimilation (DA) system. A key advantage of the WRF-PDAF configuration is its ability to concurrently integrate all ensemble states, eliminating the need for time-consuming distribution and collection of ensembles during the coupling communication. The extra time required for DA amounts to only 20.6 % per cycle. Twin experiment results underscore the effectiveness of the WRF-PDAF system.
Jan Clemens, Lars Hoffmann, Bärbel Vogel, Sabine Grießbach, and Nicole Thomas
Geosci. Model Dev., 17, 4467–4493, https://doi.org/10.5194/gmd-17-4467-2024, https://doi.org/10.5194/gmd-17-4467-2024, 2024
Short summary
Short summary
Lagrangian transport models simulate the transport of air masses in the atmosphere. For example, one model (CLaMS) is well suited to calculating transport as it uses a special coordinate system and special vertical wind. However, it only runs inefficiently on modern supercomputers. Hence, we have implemented the benefits of CLaMS into a new model (MPTRAC), which is already highly efficient on modern supercomputers. Finally, in extensive tests, we showed that CLaMS and MPTRAC agree very well.
Manuel López-Puertas, Federico Fabiano, Victor Fomichev, Bernd Funke, and Daniel R. Marsh
Geosci. Model Dev., 17, 4401–4432, https://doi.org/10.5194/gmd-17-4401-2024, https://doi.org/10.5194/gmd-17-4401-2024, 2024
Short summary
Short summary
The radiative infrared cooling of CO2 in the middle atmosphere is crucial for computing its thermal structure. It requires one however to include non-local thermodynamic equilibrium processes which are computationally very expensive, which cannot be afforded by climate models. In this work, we present an updated, efficient, accurate and very fast (~50 µs) parameterization of that cooling able to cope with CO2 abundances from half the pre-industrial values to 10 times the current abundance.
Felix Wieser, Rolf Sander, Changmin Cho, Hendrik Fuchs, Thorsten Hohaus, Anna Novelli, Ralf Tillmann, and Domenico Taraborrelli
Geosci. Model Dev., 17, 4311–4330, https://doi.org/10.5194/gmd-17-4311-2024, https://doi.org/10.5194/gmd-17-4311-2024, 2024
Short summary
Short summary
The chemistry scheme of the atmospheric box model CAABA/MECCA is expanded to achieve an improved aerosol formation from emitted organic compounds. In addition to newly added reactions, temperature-dependent partitioning of all new species between the gas and aqueous phases is estimated and included in the pre-existing scheme. Sensitivity runs show an overestimation of key compounds from isoprene, which can be explained by a lack of aqueous-phase degradation reactions and box model limitations.
Zehua Bai, Qizhong Wu, Kai Cao, Yiming Sun, and Huaqiong Cheng
Geosci. Model Dev., 17, 4383–4399, https://doi.org/10.5194/gmd-17-4383-2024, https://doi.org/10.5194/gmd-17-4383-2024, 2024
Short summary
Short summary
There is relatively limited research on the application of scientific computing on RISC CPU platforms. The MIPS architecture CPUs, a type of RISC CPUs, have distinct advantages in energy efficiency and scalability. The air quality modeling system can run stably on the MIPS and LoongArch platforms, and the experiment results verify the stability of scientific computing on the platforms. The work provides a technical foundation for the scientific application based on MIPS and LoongArch.
Yafang Guo, Chayan Roychoudhury, Mohammad Amin Mirrezaei, Rajesh Kumar, Armin Sorooshian, and Avelino F. Arellano
Geosci. Model Dev., 17, 4331–4353, https://doi.org/10.5194/gmd-17-4331-2024, https://doi.org/10.5194/gmd-17-4331-2024, 2024
Short summary
Short summary
This research focuses on surface ozone (O3) pollution in Arizona, a historically air-quality-challenged arid and semi-arid region in the US. The unique characteristics of this kind of region, e.g., intense heat, minimal moisture, and persistent desert shrubs, play a vital role in comprehending O3 exceedances. Using the WRF-Chem model, we analyzed O3 levels in the pre-monsoon month, revealing the model's skill in capturing diurnal and MDA8 O3 levels.
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev., 17, 4213–4228, https://doi.org/10.5194/gmd-17-4213-2024, https://doi.org/10.5194/gmd-17-4213-2024, 2024
Short summary
Short summary
This study presents a method for identifying and tracking 3-D potential vorticity structures within African easterly waves (AEWs). Each identified structure is characterized by descriptors, including its 3-D position and orientation, which have been validated through composite comparisons. A trough-centric perspective on the descriptors reveals the evolution and distinct characteristics of AEWs. These descriptors serve as valuable statistical inputs for the study of AEW-related phenomena.
Sandro Vattioni, Andrea Stenke, Beiping Luo, Gabriel Chiodo, Timofei Sukhodolov, Elia Wunderlin, and Thomas Peter
Geosci. Model Dev., 17, 4181–4197, https://doi.org/10.5194/gmd-17-4181-2024, https://doi.org/10.5194/gmd-17-4181-2024, 2024
Short summary
Short summary
We investigate the sensitivity of aerosol size distributions in the presence of strong SO2 injections for climate interventions or after volcanic eruptions to the call sequence and frequency of the routines for nucleation and condensation in sectional aerosol models with operator splitting. Using the aerosol–chemistry–climate model SOCOL-AERv2, we show that the radiative and chemical outputs are sensitive to these settings at high H2SO4 supersaturations and how to obtain reliable results.
Najmeh Kaffashzadeh and Abbas-Ali Aliakbari Bidokhti
Geosci. Model Dev., 17, 4155–4179, https://doi.org/10.5194/gmd-17-4155-2024, https://doi.org/10.5194/gmd-17-4155-2024, 2024
Short summary
Short summary
This paper assesses the capability of two state-of-the-art global datasets in simulating surface ozone over Iran using a new methodology. It is found that the global model data need to be downscaled for regulatory purposes or policy applications at local scales. The method can be useful not only for the evaluation but also for the prediction of other chemical species, such as aerosols.
Franciscus Liqui Lung, Christian Jakob, A. Pier Siebesma, and Fredrik Jansson
Geosci. Model Dev., 17, 4053–4076, https://doi.org/10.5194/gmd-17-4053-2024, https://doi.org/10.5194/gmd-17-4053-2024, 2024
Short summary
Short summary
Traditionally, high-resolution atmospheric models employ periodic boundary conditions, which limit simulations to domains without horizontal variations. In this research open boundary conditions are developed to replace the periodic boundary conditions. The implementation is tested in a controlled setup, and the results show minimal disturbances. Using these boundary conditions, high-resolution models can be forced by a coarser model to study atmospheric phenomena in realistic background states.
Caroline Arnold, Shivani Sharma, Tobias Weigel, and David S. Greenberg
Geosci. Model Dev., 17, 4017–4029, https://doi.org/10.5194/gmd-17-4017-2024, https://doi.org/10.5194/gmd-17-4017-2024, 2024
Short summary
Short summary
In atmospheric models, rain formation is simplified to be computationally efficient. We trained a machine learning model, SuperdropNet, to emulate warm-rain formation based on super-droplet simulations. Here, we couple SuperdropNet with an atmospheric model in a warm-bubble experiment and find that the coupled simulation runs stable and produces reasonable results, making SuperdropNet a viable ML proxy for droplet simulations. We also present a comprehensive benchmark for coupling architectures.
Byoung-Joo Jung, Benjamin Ménétrier, Chris Snyder, Zhiquan Liu, Jonathan J. Guerrette, Junmei Ban, Ivette Hernández Baños, Yonggang G. Yu, and William C. Skamarock
Geosci. Model Dev., 17, 3879–3895, https://doi.org/10.5194/gmd-17-3879-2024, https://doi.org/10.5194/gmd-17-3879-2024, 2024
Short summary
Short summary
We describe the multivariate static background error covariance (B) for the JEDI-MPAS 3D-Var data assimilation system. With tuned B parameters, the multivariate B gives physically balanced analysis increment fields in the single-observation test framework. In the month-long cycling experiment with a global 60 km mesh, 3D-Var with static B performs stably. Due to its simple workflow and minimal computational requirements, JEDI-MPAS 3D-Var can be useful for the research community.
Michal Belda, Nina Benešová, Jaroslav Resler, Peter Huszár, Ondřej Vlček, Pavel Krč, Jan Karlický, Pavel Juruš, and Kryštof Eben
Geosci. Model Dev., 17, 3867–3878, https://doi.org/10.5194/gmd-17-3867-2024, https://doi.org/10.5194/gmd-17-3867-2024, 2024
Short summary
Short summary
For modeling atmospheric chemistry, it is necessary to provide data on emissions of pollutants. These can come from various sources and in various forms, and preprocessing of the data to be ingestible by chemistry models can be quite challenging. We developed the FUME processor to use a database layer that internally transforms all input data into a rigid structure, facilitating further processing to allow for emission processing from the continental to the street scale.
Bent Harnist, Seppo Pulkkinen, and Terhi Mäkinen
Geosci. Model Dev., 17, 3839–3866, https://doi.org/10.5194/gmd-17-3839-2024, https://doi.org/10.5194/gmd-17-3839-2024, 2024
Short summary
Short summary
Probabilistic precipitation nowcasting (local forecasting for 0–6 h) is crucial for reducing damage from events like flash floods. For this goal, we propose the DEUCE neural-network-based model which uses data and model uncertainties to generate an ensemble of potential precipitation development scenarios for the next hour. Trained and evaluated with Finnish precipitation composites, DEUCE was found to produce more skillful and reliable nowcasts than established models.
Emma Howard, Steven Woolnough, Nicholas Klingaman, Daniel Shipley, Claudio Sanchez, Simon C. Peatman, Cathryn E. Birch, and Adrian J. Matthews
Geosci. Model Dev., 17, 3815–3837, https://doi.org/10.5194/gmd-17-3815-2024, https://doi.org/10.5194/gmd-17-3815-2024, 2024
Short summary
Short summary
This paper describes a coupled atmosphere–mixed-layer ocean simulation setup that will be used to study weather processes in Southeast Asia. The set-up has been used to compare high-resolution simulations, which are able to partially resolve storms, to coarser simulations, which cannot. We compare the model performance at representing variability of rainfall and sea surface temperatures across length scales between the coarse and fine models.
Álvaro González-Cervera and Luis Durán
EGUsphere, https://doi.org/10.5194/egusphere-2024-958, https://doi.org/10.5194/egusphere-2024-958, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the Analog Method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities of broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-84, https://doi.org/10.5194/gmd-2024-84, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We apply a comprehensive approach to select a subset of CMIP6 that is suitable for dynamical downscaling over Southeast Asia by considering model performance, model independence, data availability, and future climate change spread. The standardised benchmarking framework is applied to identify a subset of models through two stages of assessment: statistical-based and process-based metrics. We finalize a sub-set of two independent models for dynamical downscaling over Southeast Asia.
Andrés Yarce Botero, Michiel van Weele, Arjo Segers, Pier Siebesma, and Henk Eskes
Geosci. Model Dev., 17, 3765–3781, https://doi.org/10.5194/gmd-17-3765-2024, https://doi.org/10.5194/gmd-17-3765-2024, 2024
Short summary
Short summary
HARMONIE WINS50 reanalysis data with 0.025° × 0.025° resolution from 2019 to 2021 were coupled with the LOTOS-EUROS Chemical Transport Model. HARMONIE and ECMWF meteorology configurations against Cabauw observations (52.0° N, 4.9° W) were evaluated as simulated NO2 concentrations with ground-level sensors. Differences in crucial meteorological input parameters (boundary layer height, vertical diffusion coefficient) between the hydrostatic and non-hydrostatic models were analysed.
Cited articles
American Meteorological Society: Brightness Temperature, Glossary of
Meteorology, available at: https://glossary.ametsoc.org/wiki/Brightness_temperature (last access: 8 February 2022), 2012.
Binkowski, F. S. and Roselle, S. J.: Models-3 Community multiscale air quality
(CMAQ) model aerosol component, 1 Model description, J. Geophys. Res., 108,
4183, https://doi.org/10.1029/2001JD001409, 2003.
Buchard, V., da Silva, A. M., Colarco, P. R., Darmenov, A., Randles, C. A., Govindaraju, R., Torres, O., Campbell, J., and Spurr, R.: Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis, Atmos. Chem. Phys., 15, 5743–5760, https://doi.org/10.5194/acp-15-5743-2015, 2015.
Bullard, J. E., Baddock, M., Bradwell, T., Crusius, J., Darlington, E., Gaiero, D., Gasso, S., Gisladottir, G., Hodgkins, R., McCulloch, R., McKenna-Neuman, C., Mockford, T., Stewart, H., and Thorsteinsson, T.: High-latitude dust in the Earth system, Rev.
Geophys., 54, 447–485, https://doi.org/10.1002/2016RG000518, 2016.
Chen, Y., Weng, F., Han, Y., and Liu, Q.: Planck-Weighted Transmittance and
Correction of Solar Reflection for Broadband Infrared Satellite Channels, J.
Atmos. Sci., 29, 382–396, 2012.
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N.,
Martin, R. V., Logan, J. A., and Higurashi, A.: Tropospheric aerosol optical
thickness from the GOCART model and comparisons with satellite and Sun
photometer measurements, J. Atmos. Sci., 59, 461–483,
https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2,
2002.
Chin, M., Diehl, T., Tan, Q., Prospero, J. M., Kahn, R. A., Remer, L. A., Yu, H., Sayer, A. M., Bian, H., Geogdzhayev, I. V., Holben, B. N., Howell, S. G., Huebert, B. J., Hsu, N. C., Kim, D., Kucsera, T. L., Levy, R. C., Mishchenko, M. I., Pan, X., Quinn, P. K., Schuster, G. L., Streets, D. G., Strode, S. A., Torres, O., and Zhao, X.-P.: Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model, Atmos. Chem. Phys., 14, 3657–3690, https://doi.org/10.5194/acp-14-3657-2014, 2014.
Clough, S., Iacano, M. J., and Moncet, J.-L.: Line-by-line Calculations of
Atmospheric Fluxes and Cooling Rates: Application to Water Vapor, J.
Geophys. Res., 97, 15761–15785, 1992.
Colarco, P., da Silva, A., Chin, M., and Diehl, T.: Online simulations of
global aerosol distributions in the NASA GEOS-4 model and comparisons to
satellite and ground-based aerosol optical depth, J. Geophys. Res., 115,
D14207, https://doi.org/10.1029/2009JD012820, 2010.
d'Almeida, G. A., Koepke, P., and Shettle, E.P.: Atmospheric Aerosols:
global climatology and radiative characteristics, A. Deepak Publishing,
Hampton, VA, ISBN 978-0-937-19422-5, 1991.
Diaz, H. F., Carlson, T. N., and Prospero, J. M.: A study of the structure
and dynamics of the Saharan air layer over the northern equatorial Atlantic
during BOMEX, National Hurricane and Experimental Meteorology Laboratory
NOAA, Tech. Memo., ERL WMPO-32, 61 pp., available at: https://repository.library.noaa.gov/view/noaa/32843 (last access: 8 February 2022), 1976.
Diaz, J. P., Arbelo, M., Expósito, F. J.,
Podestá, G., Prospero, J. M., and Evans, R.: Relationship
between errors in AVHRR-derived sea surface temperature and the TOMS Aerosol
Index, Geophys. Res. Lett., 28, 1989–1992, 2001.
Divakarla, M., Barnet, C., Goldberg, M., Gu, D., Liu, X., Xiong, X., Kizer, S., Guo, G., Wilson, M., Maddy, E., Nalli, N., Gambacorta, A., King, T., Ma, X., and Blackwell, W.: Evaluation of CrIMSS operational products
using in-situ measurements, model analysis fields, and retrieval products
from heritage algorithms, IEEE International Geoscience and Remote Sensing
Symposium, Munich, Germany, 22–27 July 2012, 1046–1049, https://doi.org/10.1109/IGARSS.2012.6350818, 2012.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A, Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W, Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:
The Modern-Era Retrospective Analysis for Research and Applications, Version
2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1,
2017.
Grogan, D. F. P., Lu, C.-H., Wei, S.-W., and Chen, S.-P.: Effects of Saharan Dust on African Easterly Waves: The Impact of Aerosol-Affected Satellite Radiances on Data Assimilation, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-129, in review, 2021.
Hale, G. M. and Querry, M. R.: Optical constants of water in the 200-nm to
200-mm wavelength region, Appl. Opt., 12, 555–563, 1973.
Han, Y., van Delst, P., Liu, Q., Weng, F., Yan, B., Treadon, R., and Derber,
J.: JCSDA Community Radiative Transfer Model (CRTM) – Version 1, NOAA
NESDIS, Tech. Rep., 122, NOAA, Silver Spring, Md, 33 pp., available at: https://repository.library.noaa.gov/view/noaa/1157 (last access: 8 February 2022), 2006.
Han, Y., Weng, F., Liu, Q., and van Delst, P.: A fast radiative transfer
model for SSMIS upper atmosphere sounding channels, J. Geophys. Res., 112,
D11121, https://doi.org/10.1029/2006JD008208, 2007.
Hess, M., Koepke, P., and Schult I.: Optical properties of aerosols and clouds:
the software package OPAC, B. Am. Meteorol. Soc., 79, 831–844, 1998.
Highwood, E. J., Haywood, J. M., Silverstone, M. D., Newman, S. M., and
Taylor, J. P.: Radiative properties and direct effect of Saharan dust
measured by the C-130 aircraft during Saharan Dust Experiment (SHADE): 2.
Terrestrial spectrum, J. Geophys. Res., 108, 8578,
https://doi.org/10.1029/2002JD002552, 2003.
Johnson, B., Dang, C., Rosinski, J., Ma, Y., and Stegmann, P. G.: JCSDA/crtm: Tagged release for CRTM v2.3 for Zenodo archival and DOI (v2.3.0-Public-Zenodo), Zenodo [code], https://doi.org/10.5281/zenodo.5695707, 2021.
Karyampudi, V. M., Palm, S. P., Reagen, J. A., Fang, H., Grant, W.
B., Hoff, R. M., Moulin, C., Pierce, H. F., Torres, O., Browell, E. V.,
and Melfi, S. H.: Validation of the Saharan dust plume conceptual model
using lidar, Meteosat, and ECMWF data, B. Am. Meteorol. Soc., 80,
1045–1075, https://doi.org/10.1175/1520-0477(1999)080<1045:VOTSDP>2.0.CO;2, 1999.
Kim, J., Akella, S., da Silva, A. M., Todling, R., and McCarty, W.: Preliminary
evaluation of influence of aerosols on the simulation of brightness
temperature in the NASA's Goddard Earth Observing System Atmospheric Data
Assimilation System, Tech. Rep. Ser. Glob. Model. Data Assim., vol. 49,
TM–2018-104606, Goddard Space Flight Center, National Aeronautics and Space
Administration, Greenbelt, Maryland, US, available at: https://ntrs.nasa.gov/citations/20180001946 (last access: 8 February 2022), 2018.
Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Wu, W. S., and
Lord, S.: Introduction of the GSI into the NCEP Global Data Assimilation
System, Weather Forecast., 24, 1691–1705, https://doi.org/10.1175/2009WAF2222201.1, 2009.
Liu, Q. and Lu, C.-H.: Community Radiative Transfer Model for Air Quality
Studies, in: Light Scattering Reviews, volume 11, edited by: Kokhanovsky, A., Springer
Praxis Books, Springer, Berlin, Heidelberg, 67–115, ISBN 978-3-662-49536-0, https://doi.org/10.1007/978-3-662-49538-4_2,
2016.
Liu, Q. and Weng, F.: Advanced doubling-adding method for radiative transfer
in planetary atmosphere, J. Atmos. Sci., 63, 3459–3465,
https://doi.org/10.1175/JAS3808.1, 2006.
Liu, Q., Han, Y., van Delst, P., and Weng, F.: Modeling aerosol radiance for
NCEP data assimilation, in Fourier Transform Spectroscopy/Hyperspectral
Imaging and Sounding of the Environment, paper HThA5, OSA Technical Digest
Series, Optical Society of America, 11–15 February 2007, ISBN 1-55752-828-4, https://doi.org/10.1364/HISE.2007.HThA5, 2007.
Liu, Z., Liu, Q., Lin, H.-C., Schwartz, C. S., Lee, Y.-H., and Wang, T.:
Three-dimensional variational assimilation of MODIS aerosol optical depth:
Implementation and application to a dust storm over East Asia, J. Geophys.
Res., 116, D23206, https://doi.org/10.1029/2011JD016159, 2011.
Lu, C.-H., da Silva, A., Wang, J., Moorthi, S., Chin, M., Colarco, P., Tang, Y., Bhattacharjee, P. S., Chen, S.-P., Chuang, H.-Y., Juang, H.-M. H., McQueen, J., and Iredell, M.: The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP, Geosci. Model Dev., 9, 1905–1919, https://doi.org/10.5194/gmd-9-1905-2016, 2016.
Lu, C.-H., Liu, Q., Wei, S.-W., Johnson, B. T., Dang, C., Stegmann, P. G., Grogan, D., Ge, G., Hu, M., and Lueken, M.: Sample data and fixed files for running fv3aerorad in GSI, Zenodo [data set], https://doi.org/10.5281/zenodo.5736503, 2021.
Lueken, M., Safford, E., Treadon, R., Mahajan, R., Whitaker, J., Derber, J., Kumar, K., Wu, W., Bathmann, K., Tong, M., Li, X., Potts, M., Liu, E., Pondeca, M., Zhu, Y., Collard, A., Jones, E., Hu, M., Carley, J., Kleist, D., Jung, J., Su, X., Thomas, C., Yang, R.., Genkova, I., Ma, Z., Ge., G., Liu, H., Gayno, G., and Nebuda, S.: comgsi/GSI: comgsi.2021-11-29 (comgsi.2021-11-29), Zenodo [code], https://doi.org/10.5281/zenodo.5735601, 2021.
Matricardi, M.: The inclusion of aerosols and clouds in RTIASI, the ECMWF
fast radiative transfer model for the infrared atmospheric sounding
interferometer, ECMWF Tech. Memo., 474, https://doi.org/10.21957/1krvb28ql, 2005.
Merchant, C. J., Embury, O., Le Borgne, P., and Bellecm, B.: Saharan dust in
nighttime thermal imagery: Detection and reduction of related biases in
retrieved sea surface temperature, Remote Sens. Environ., 104, 15–30,
https://doi.org/10.1016/j.rse.2006.03.007, 2006.
Nalli, N. R. and Stowe, L. L.: Aerosol correction for remotely sensed sea
surface temperatures from the National Oceanic and Atmospheric
Administration advanced very high resolution radiometer, J. Geophys. Res.,
107, 3172, https://doi.org/10.1029/2001JC001162, 2002.
Pagowski, M., Liu, Z., Grell, G. A., Hu, M., Lin, H.-C., and Schwartz, C. S.: Implementation of aerosol assimilation in Gridpoint Statistical Interpolation (v. 3.2) and WRF-Chem (v. 3.4.1), Geosci. Model Dev., 7, 1621–1627, https://doi.org/10.5194/gmd-7-1621-2014, 2014.
Petty, G.: A First Course in Atmospheric Radiation, 2nd edn., Sundog
Publishing, Madison, WI, ISBN 978-0-972-90331-8, 2006.
Peyridieu, S., Chédin, A., Tanré, D., Capelle, V., Pierangelo, C., Lamquin, N., and Armante, R.: Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic – comparison to MODIS and CALIPSO, Atmos. Chem. Phys., 10, 1953–1967, https://doi.org/10.5194/acp-10-1953-2010, 2010.
Pierangelo, C., Chédin, A., Heilliette, S., Jacquinet-Husson, N., and Armante, R.: Dust altitude and infrared optical depth from AIRS, Atmos. Chem. Phys., 4, 1813–1822, https://doi.org/10.5194/acp-4-1813-2004, 2004.
Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A.,
Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka,
Y., and Flynn, C. J.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I:
System Description and Data Assimilation Evaluation, J. Climate,
30, 6823–6850, https://doi.org/10.1175/JCLI-D-16-0609.1, 2017.
Schwartz, C. S., Liu, Z., Lin, H.-C., and Cetola, J. D.: Assimilating
aerosol observations with a “hybrid” variational-ensemble data
assimilation system, J. Geophys. Res.-Atmos., 119, 4043–4069,
https://doi.org/10.1002/2013JD020937, 2014.
Sokolik, I. N.: The spectral radiative signature of wind-blown mineral dust:
Implications for remote sensing in the thermal IR region: The spectral
radiative signature of wind-blown mineral dust, Geophys. Res. Lett., 29,
2154, https://doi.org/10.1029/2002GL015910, 2002.
Stegmann, P. G., Tang, G., Yang, P., and Johnson, B. T.: A stochastic model
for density-dependent microwave Snow- and Graupel scattering coefficients of
the NOAA JCSDA community radiative transfer model, J. Quant. Spectrosc. Ra., 211, 9–24, https://doi.org/10.1016/j.jqsrt.2018.02.026, 2018.
Ukhov, A., Ahmadov, R., Grell, G., and Stenchikov, G.: Improving dust simulations in WRF-Chem v4.1.3 coupled with the GOCART aerosol module, Geosci. Model Dev., 14, 473–493, https://doi.org/10.5194/gmd-14-473-2021, 2021.
Wang, J., Bhattacharjee, P. S., Tallapragada, V., Lu, C.-H., Kondragunta, S., da Silva, A., Zhang, X., Chen, S.-P., Wei, S.-W., Darmenov, A. S., McQueen, J., Lee, P., Koner, P., and Harris, A.: The implementation of NEMS GFS Aerosol Component (NGAC) Version 2.0 for global multispecies forecasting at NOAA/NCEP – Part 1: Model descriptions, Geosci. Model Dev., 11, 2315–2332, https://doi.org/10.5194/gmd-11-2315-2018, 2018.
Weaver, C. J., Joiner, J., and Ginoux, P.: Mineral aerosol contamination of
TIROS Operational Vertical Sounder (TOVS) temperature and moisture
retrievals, J. Geophys. Res., 108, 4246, https://doi.org/10.1029/2002JD002571, 2003.
Wei, S.-W., Lu, C.-H., Liu, Q., Collard, A., Zhu, T., Grogan, D., Li, X.,
Wang, J., Grimbine, R., and Bhattacharjee, P.: The impact of aerosols on
satellite radiance data assimilation using NCEP global data assimilation
system, Atmosphere, 12, 432–451, https://doi.org/10.3390/atmos12040432, 2021.
Wei, S.-W., Lu, C.-H., Johnson, B. T., Dang, C., Stegmann, P., Grogan, D.,
Ge, G., and Hu, M.: The influence of aerosols on satellite infrared radiance
simulations and Jacobians: Numerical experiments of CRTM and GSI, Remote.
Sens., 14, 683–702, https://doi.org/10.3390/rs14030683, 2022.
Weng, F.: Advances in radiative transfer modeling in support of satellite
data assimilation, J. Atmos. Sci., 64, 3799–3807,
https://doi.org/10.1175/2007JAS2112.1, 2007.
Wu, M., Liu, X., Yu, H., Wang, H., Shi, Y., Yang, K., Darmenov, A., Wu, C., Wang, Z., Luo, T., Feng, Y., and Ke, Z.: Understanding processes that control dust spatial distributions with global climate models and satellite observations, Atmos. Chem. Phys., 20, 13835–13855, https://doi.org/10.5194/acp-20-13835-2020, 2020.
Wu, W.-S., Purser, R. J., and Parrish, D. F.: Three-dimensional variational
analysis with spatially inhomogeneous covariances, Mon. Weather Rev., 130,
2905–2916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2, 2002.
Zhang, L., Montuoro, R., McKeen, S. A., Baker, B., Bhattacharjee, P. S., Grell, G. A., Henderson, J., Pan, L., Frost, G. J., McQueen, J., Saylor, R., Li, H., Ahmadov, R., Wang, J., Stajner, I., Kondragunta, S., Zhang, X., and Li, F.: Development and Evaluation of the Aerosol Forecast Member in NCEP’s Global Ensemble Forecast System (GEFS-Aerosols v1), Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-378, in review, 2021.
Short summary
This article is a technical note on the aerosol absorption and scattering calculations of the Community Radiative Transfer Model (CRTM) v2.2 and v2.3. It also provides guidance for prospective users of the CRTM aerosol option and Gridpoint Statistical Interpolation (GSI) aerosol-aware radiance assimilation. Scientific aspects of aerosol-affected BT in atmospheric data assimilation are also briefly discussed.
This article is a technical note on the aerosol absorption and scattering calculations of the...