Articles | Volume 15, issue 3
https://doi.org/10.5194/gmd-15-1129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of ocean heat content estimated using two eddy-resolving hindcast simulations based on OFES1 and OFES2
Fanglou Liao
Department of Ocean Science and Engineering, Southern University of
Science and Technology, Shenzhen, 518055, China
The Sino-Australian Research Consortium for Coastal Management, School of
Science, The University of New South Wales, Canberra, 2610, Australia
Xiao Hua Wang
CORRESPONDING AUTHOR
The Sino-Australian Research Consortium for Coastal Management, School of
Science, The University of New South Wales, Canberra, 2610, Australia
Department of Ocean Science and Engineering, Southern University of
Science and Technology, Shenzhen, 518055, China
Southern Marine Science and Engineering Guangdong Laboratory
(Guangzhou), Guangzhou, 511458, China
Related authors
No articles found.
Yuxin Lin, Zhiqiang Liu, Feng Zhou, Qicheng Meng, and Wenyan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-5105, https://doi.org/10.5194/egusphere-2025-5105, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Marine heatwaves, periods of unusually warm sea temperatures, are increasing worldwide. Using observed sea surface temperature data and statistical clustering, this study shows that the North Sea contains two regions with different seasonal responses to climate patterns. Winter heatwaves in the south are driven by regional circulation, while summer events in the north reflect Atlantic and Pacific influences. These insights can help improve regional forecasting.
Qibang Tang, Zhongya Cai, and Zhiqiang Liu
Ocean Sci., 21, 1291–1301, https://doi.org/10.5194/os-21-1291-2025, https://doi.org/10.5194/os-21-1291-2025, 2025
Short summary
Short summary
The South China Sea is the largest semi-enclosed marginal sea in the western Pacific, featuring unique layered circulation with rotating currents in its upper, middle, and deep layers. This study uses simulations to explore how stronger currents in the upper layer influence circulation across the entire basin. The vorticity analyses show that the enhanced upper currents increase the strength of middle and deep currents, driven by changes in bottom pressure and cross-slope movements.
Yunping Song, Yunxin Lin, Peng Zhan, Zhiqiang Liu, and Zhongya Cai
EGUsphere, https://doi.org/10.5194/egusphere-2025-2712, https://doi.org/10.5194/egusphere-2025-2712, 2025
Short summary
Short summary
Our research investigates year-to-year changes in the Northern South China Sea's shelf currents, which are influenced by climate patterns like El Niño and freshwater discharge from the Pearl River Estuary. Using long-term observations and computer models , we analyzed these dynamic shifts. Our findings reveal that El Niño generates distinct sea-level patterns, intensifying currents and altering large-scale ocean flows, while increased river runoff reduces coastal salinity.
Cited articles
Abraham, J. P., Reseghetti, F., Baringer, M., Boyer, T., Cheng, L., Church,
J., Domingues, C., Fasullo, J. T., Gilson, J., Goni, G., Good, S., Gorman,
J. M., Gouretski, V., Ishii, M., Johnson, G. C., Kizu, S., Lyman, J.,
MacDonald, A., Minkowycz, W. J., Moffitt, S. E., Palmer, M., Piola, A.,
Trenberth, K. E., Velicogna, I., Wijffels, S., and Willis, J.: A review of
global ocean temperature observations: implications for ocean heat content
estimates and climate change, Rev. Geophys., 51, 450–483,
https://doi.org/10.1002/rog.20022, 2013.
AchutaRao, K. M., Ishii, M., Santer, B. D., Gleckler, P. J., Taylor, K. E.,
Barnett, T. P., Pierce, D. W., Stouffer, R. J., and Wigley, T. M. L.:
Simulated and observed variability in ocean temperature and heat content,
Proc. Natl. Acad. Sci. USA, 104, 10768–10773, https://doi.org/10.1073/pnas.0611375104,
2007.
Allison, L. C., Roberts, C. D., Palmer, M. D., Hermanson, L., Killick, R.
E., Rayner, N. A., Smith, D. M., and Andrews, M. B.: Towards quantifying
uncertainty in ocean heat content changes using synthetic profiles, Environ.
Res. Lett., 14, 084037, https://doi.org/10.1088/1748-9326/ab2b0b, 2019.
Balmaseda, M. A., Trenberth, K. E., and Källén, E.: Distinctive
climate signals in reanalysis of global ocean heat content, Geophys. Res.
Lett., 40, 1754–1759, https://doi.org/10.1002/grl.50382, 2013.
Banks, H. T. and Gregory, J. M.: Mechanisms of ocean heat uptake in a
coupled climate model and the implications for tracer based predictions of
ocean heat uptake, Geophys. Res. Lett., 33, L07608,
https://doi.org/10.1029/2005GL025352, 2006.
Bindoff, N. L. and McDougall, T. J.: Diagnosing climate change and ocean
ventilation using hydrographic data, J. Phy. Oceanogr., 24, 1137–1152,
https://doi.org/10.1175/1520-0485(1994)024<1137:DCCAOV>2.0.CO;2, 1994.
Carton, J. A., Penny, S. G., and Kalnay, E.: Temperature and salinity
variability in the SODA3, ECCO4r3, and ORAS5 ocean reanalyses, 1993–2015,
J. Climate, 32, 2277–2293, https://doi.org/10.1175/JCLI-D-18-0605.1, 2019.
Chen, X., Yan, Y., Cheng, X., and Qi, Y.: Performances of seven datasets in
presenting the upper ocean heat content in the South China Sea, Adv. Atmos.
Sci., 30, 1331–1342, https://doi.org/10.1007/s00376-013-2132-1, 2013.
Cheng, L. and Zhu, J.: Artifacts in variations of ocean heat content
induced by the observation system changes, Geophys. Res. Lett., 41,
7276–7283, https://doi.org/10.1002/2014GL061881, 2014.
Cheng, L. and Zhu, J.: Benefits of CMIP5 Multimodel Ensemble in
Reconstructing Historical Ocean Subsurface Temperature Variations, J.
Climate, 29, 5393–5416, https://doi.org/10.1175/JCLI-D-15-0730.1, 2016.
Church, J. A., White, N. J., and Arblaster, J. M.: Significant decadal-scale
impact of volcanic eruptions on sea level and ocean heat content, Nature,
438, 74–77, https://doi.org/10.1038/nature04237, 2005.
Curry, R., Dickson, B., and Yashayaev, I.: A change in the freshwater balance
of the Atlantic Ocean over the past four decades, Nature, 426,
826–829, https://doi.org/10.1038/nature02206, 2003.
Desbruyeres, D., Purkey, S. G., Mcdonagh, E. L., Johnson, G. C., and King, B.
A.: Deep and abyssal ocean warming from 35 years of repeat hydrography,
Geophys. Res. Lett., 43, 10356–10365, https://doi.org/10.1002/2016GL070413, 2016.
Desbruyères, D., McDonagh, E. L., King, B. A., and Thierry, V.: Global
and Full-Depth Ocean Temperature Trends during the Early Twenty-First
Century from Argo and Repeat Hydrography, J. Climate, 30, 1985–1997,
https://doi.org/10.1175/JCLI-D-16-0396.1, 2017.
Domingues, C. M., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S. E., Barker, P. M., and Dunn, J. R.: Improved estimates of upper-ocean warming and multi-decadal sea-level rise, Nature, 453, 1090–1093, https://doi.org/10.1038/nature07080, 2008.
Dong, S., Garzoli, S., and Baringer, M.: The role of interocean exchanges on
decadal variations of the meridional heat transport in the South Atlantic,
J. Phys. Oceanogr., 41, 1498–1511, https://doi.org/10.1175/2011JPO4549.1, 2011.
Du, Y., Qu, T., Meyers, G., Masumoto, Y., and Sasaki, H.: Seasonal heat
budget in the mixed layer of the southeastern tropical Indian Ocean in a
high-resolution ocean general circulation model, J. Geophys. Res.-Oceans,
110, C04012, https://doi.org/10.1029/2004JC002845, 2005.
Durack, P. J., Gleckler, P. J., Landerer, F. W., and Taylor, K. E.:
Quantifying underestimates of long-term upper-ocean warming, Nat. Clim.
Change, 4, 999–1005, https://doi.org/10.1038/nclimate2389, 2014.
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015.
Fyfe, J.: Southern Ocean warming due to human influence, Geophys. Res.
Lett., 33, L19701, https://doi.org/10.1029/2006GL027247, 2006.
Gleckler, P. J., Santer, B. D., Domingues, C. M., Pierce, D. W., Barnett, T.
P., Church, J. A., Taylor, K. E., Achutarao, K., Boyer, T. P., and Ishii,
M.: Human-induced global ocean warming on multidecadal timescales, Nat.
Clim. Change, 2, 524–529, https://doi.org/10.1038/nclimate1553, 2012.
Good, S. A., Martin, M., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118, 6704–6716,
https://doi.org/10.1002/2013JC009067, 2013 (data available at: https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-1.html, last access: 13 September 2020).
Gouretski, V. and Reseghetti, F.: On depth and temperature biases in
bathythermograph data: Development of a new correction scheme based on
analysis of a global ocean database, Deep-Sea Res. Pt. I, 57,
812–833, https://doi.org/10.1016/j.dsr.2010.03.011, 2010.
Häkkinen, S., Rhines, P. B., and Worthen, D. L.: Heat content variability
in the North Atlantic Ocean in ocean reanalyses, Geophys. Res. Lett.,
42, 2901–2909, https://doi.org/10.1002/2015GL063299, 2015.
Häkkinen, S., Rhines, P. B., and Worthen, D.: Warming of the global
ocean: Spatial structure and water-mass trends, J. Climate, 29, 4949–4963,
https://doi.org/10.1175/JCLI-D-15-0607.1, 2016.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., https://doi.org/10.1017/CBO9781107415324, 2013.
Jackett, D. R. and McDougall, T. J.: A neutral density variable for the
world's oceans, J. Phys. Oceanogr., 27, 237–263,
https://doi.org/10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2, 1997.
Jayne, S. R. and St. Laurent, L. C.: Parameterizing tidal dissipation over
rough topography, Geophys. Res. Lett., 28, 811–814,
https://doi.org/10.1029/2000GL012044, 2001.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–472,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2,
1996.
Kutsuwada, K., Kakiuchi, A., Sasai, Y., Sasaki, H., Uehara, K., and Tajima,
R.: Wind-driven North Pacific Tropical Gyre using high-resolution simulation
outputs, J. Oceanogr., 75, 81–93, https://doi.org/10.1007/s10872-018-0487-8, 2019.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing:
A review and a model with a nonlocal boundary layer parameterization, Rev.
Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994.
Lee, S., Park, W., Baringer, M. O. A., Gordon, L., Huber, B. A., and Liu,
Y.: Pacific origin of the abrupt increase in Indian Ocean heat content
during the warming hiatus, Nat. Geosci., 8, 445–449,
https://doi.org/10.1038/ngeo2438, 2015.
Levitus, S., Antonov, J. I., Boyer, T. P., Locarnini, R. A., Garcia H. E., and Mishonov, A. V.: Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems, Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155, 2009.
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O., Garcia, H. E.,
Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., and Yarosh, E.
S.: World ocean heat content and thermosteric sea level change (0–2000 m),
Geophys. Res. Lett., 39, 1955–2010, https://doi.org/10.1029/2012GL051106, 2012.
Liang, X., Liu, C. R., Ponte, M., and Chambers, D. P.: A Comparison of the
Variability and Changes in Global Ocean Heat Content from Multiple Objective
Analysis Products During the Argo Period, J. Climate, 34, 7875–7895,
https://doi.org/10.1175/JCLI-D-20-0794.1, 2021.
Liao, F., Wang, X. H., and Liu, Z.: Data and scripts for the preprint gmd-2021-95 (a revised verison), Zenodo [code/data set], https://doi.org/10.5281/zenodo.5205444, 2021.
Masumoto, Y., Sasaki, H., Kagimoto, T., Komori, N., Ishida, A., Sasai, Y., Miyama, T., Motoi, T., Mitsudera, H., Takahashi, K., Sakuma, H., and Yamagata, T.: A fifty-year eddy-resolving simulation of the world ocean – Preliminary outcomes of OFES (OGCM for the Earth Simulator), J. Earth Simulator, 1, 35–56, https://doi.org/10.32131/jes.1.35, 2004 (data available at: http://apdrc.soest.hawaii.edu/dods/public_ofes/OfES/ncep_0.1_global_mmean, last access: 10 August 2020).
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, 28 pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5, http://www.teos-10.org/software.htm (last access: 5 March 2021), 2011.
Noh, Y. and Kim, H. J.: Simulations of temperature and turbulence structure
of the oceanic boundary layer with the improved near-surface process, J.
Geophys. Res.-Oceans, 104, 15621–15634, https://doi.org/10.1029/1999JC900068, 1999.
Pacanowski, R. C. and Griffies, S. M.: The MOM3 manual, GFDL Ocean Group Tech. Rep. 4, NOAA, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, https://mdl-mom5.herokuapp.com/web/docs/project/MOM3_manual.pdf (last access: 21 August 2020), 1999.
Palmer, M. D., Mcneall, D. J., and Dunstone, N. J.: Importance of the deep
ocean for estimating decadal changes in Earth's radiation balance, Geophys.
Res. Lett., 38, L13707, https://doi.org/10.1029/2011GL047835, 2011.
Pierce, D. W., Barnett, T. P., Achutarao, K., Gleckler, P. J., Gregory, J.
M., and Washington, W. M.: Anthropogenic warming of the oceans: Observations
and model results, J. Climate, 19, 1873–1900, https://doi.org/10.1175/JCLI3723.1,
2006.
Sasaki, H., Sasai, Y., Kawahara, S., Furuichi, M., Araki, F., Ishida, A.,
Yamanaka, Y., Masumoto, Y., and Sakuma, H.: A series of eddy-resolving ocean
simulations in the world ocean-OFES (OGCM for the Earth Simulator) project,
Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No. 04CH37600) 3, 1535–1541, https://doi.org/10.1109/OCEANS.2004.1406350, 2004.
Sasaki, H., Kida, S., Furue, R., Nonaka, M., and Masumoto, Y.: An Increase
of the Indonesian Throughflow by Internal Tidal Mixing in a High-Resolution
Quasi-Global Ocean Simulation, Geophys. Res. Lett., 45, 8416–8424,
https://doi.org/10.1029/2018GL078040, 2018.
Sasaki, H., Kida, S., Furue, R., Aiki, H., Komori, N., Masumoto, Y., Miyama, T., Nonaka, M., Sasai, Y., and Taguchi, B.: A global eddying hindcast ocean simulation with OFES2, Geosci. Model Dev., 13, 3319–3336, https://doi.org/10.5194/gmd-13-3319-2020, 2020.
Smith, D. M., Allan, R. P., Coward, A. C., Eade, R., Hyder, P., Liu, C., Loeb, N. G., Palmer, M. D., Roberts, C. D., and Scaife, A. A.: Earth's energy imbalance since 1960 in observations and CMIP5 models, Geophys. Res. Lett., 42, 1205–1213, https://doi.org/10.1002/2014GL062669, 2015.
St. Laurent, L. C., Simmons, H. L., and Jayne, S. R.: Estimating tidally
driven mixing in the deep ocean, Geophys. Res. Lett., 29, 21-21–21-24,
https://doi.org/10.1029/2002GL015633, 2002.
Talley, L. D.: Shallow, Intermediate, and Deep Overturning Components of the
Global Heat Budget, J. Phys. Oceanogr., 33, 530–560,
https://doi.org/10.1175/1520-0485(2003)033<0530:SIADOC>2.0.CO;2, 2003.
Trenberth, K. E., Fasullo, J. T., Von Schuckmann, K., and Cheng, L.:
Insights into Earth's energy imbalance from multiple sources, J. Climate,
29, 7495–7505, https://doi.org/10.1175/JCLI-D-16-0339.1, 2016.
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S.
G., Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C.
W., Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack,
P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C.,
Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. J.,
Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.:
JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do),
Ocean Model., 130, 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002, 2018.
Von Schuckmann, K., Palmer, M. D., Trenberth, K. E., Cazenave, A., Chambers,
D. P., Champollion, N., Hansen, J., Josey, S. A., Loeb, N. G., and Mathieu,
P. P.: An imperative to monitor Earth's energy imbalance, Nat. Clim.
Change, 6, 138–144, https://doi.org/10.1038/nclimate2876, 2016.
Wang, G., Cheng, L., Abraham, J., and Li, C.: Consensuses and discrepancies
of basin-scale ocean heat content changes in different ocean analyses, Clim.
Dynam., 50, 2471–2487, https://doi.org/10.1007/s00382-017-3751-5, 2018.
Wang, X. H., Bhatt, V., and Sun, Y.-J.: Study of seasonal variability and
heat budget of the East Australian Current using two eddy-resolving ocean
circulation models, Ocean. Dynam., 63, 549–563,
https://doi.org/10.1007/s10236-013-0605-5, 2013.
Williams, R. G., Roussenov, V., Smith, D., and Lozier, M. S.: Decadal Evolution of Ocean Thermal Anomalies in the North Atlantic: The Effects of Ekman, Overturning, and Horizontal Transport, J. Climate, 27, 698–719, https://doi.org/10.1175/JCLI-D-12-00234.1, 2014.
Wunsch, C.: The decadal mean ocean circulation and Sverdrup balance, J. Mar.
Res., 69, 417–434, https://doi.org/10.1357/002224011798765303, 2011.
Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J., and Heimbach, P.: Global
reconstruction of historical ocean heat storage and transport, Proc. Natl.
Acad. Sci. USA, 116, 1126–1131, https://doi.org/10.1073/pnas.1808838115, 2019.
Zhang, Y., Feng, M., Du,Y. H., Phillips, E., Bindoff, N. L., and McPhaden,
M. J.: Strengthened Indonesian Throughflow Drives Decadal Warming in the
Southern Indian Ocean, Geophys. Res. Lett., 45, 6167–6175,
https://doi.org/10.1029/2018GL078265, 2018.
Short summary
The ocean heat content (OHC) estimated using two eddying hindcast simulations, OFES1 and OFES2, was compared from 1960 to 2016, with observation-based results as a reference. Marked differences were found, especially in the Atlantic Ocean. These were related to the differences in the net surface heating, heat advection, and vertical heat diffusion. These documented differences may help the community better understand and use these quasi-global high-resolution datasets for their own purposes.
The ocean heat content (OHC) estimated using two eddying hindcast simulations, OFES1 and OFES2,...