Articles | Volume 15, issue 3
https://doi.org/10.5194/gmd-15-1129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of ocean heat content estimated using two eddy-resolving hindcast simulations based on OFES1 and OFES2
Fanglou Liao
Department of Ocean Science and Engineering, Southern University of
Science and Technology, Shenzhen, 518055, China
The Sino-Australian Research Consortium for Coastal Management, School of
Science, The University of New South Wales, Canberra, 2610, Australia
Xiao Hua Wang
CORRESPONDING AUTHOR
The Sino-Australian Research Consortium for Coastal Management, School of
Science, The University of New South Wales, Canberra, 2610, Australia
Department of Ocean Science and Engineering, Southern University of
Science and Technology, Shenzhen, 518055, China
Southern Marine Science and Engineering Guangdong Laboratory
(Guangzhou), Guangzhou, 511458, China
Related authors
No articles found.
Qibang Tang, Zhongya Cai, and Zhiqiang Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2995, https://doi.org/10.5194/egusphere-2024-2995, 2024
Short summary
Short summary
The South China Sea is the largest semi-enclosed marginal sea in the western Pacific, features with unique layered circulation with rotating currents in its upper, middle, and deep layers. This study uses simulations to explore how stronger currents in the upper layer influence circulation across the entire basin. The vorticity analysis show that the enhanced upper currents increase the strength of middle and deep currents, driven by changes in bottom pressure and cross-slope movements.
Isabel Jalón-Rojas, Xiao-Hua Wang, and Erick Fredj
Ocean Sci., 15, 717–724, https://doi.org/10.5194/os-15-717-2019, https://doi.org/10.5194/os-15-717-2019, 2019
Short summary
Short summary
Simplified 2-D numerical models are typically used for simulating the transport of floating microplastics. This paper demonstrates the impact of vertical mixing on the horizontal transport and fate of microplastics in a bay and therefore the importance of a 3-D approach for accurate modelling of microplastics transport. These results have important implications for the assessment and prediction of pollution hot spots in coastal systems as well as for planning effective clean-up programmes.
Related subject area
Climate and Earth system modeling
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
GOSI9: UK Global Ocean and Sea Ice configurations
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Climate model downscaling in central Asia: a dynamical and a neural network approach
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Architectural insights into and training methodology optimization of Pangu-Weather
Evaluation of global fire simulations in CMIP6 Earth system models
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
Investigating Carbon and Nitrogen Conservation in Reported CMIP6 Earth System Model Data
The need for carbon-emissions-driven climate projections in CMIP7
Robust handling of extremes in quantile mapping – “Murder your darlings”
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
From Weather Data to River Runoff: Leveraging Spatiotemporal Convolutional Networks for Comprehensive Discharge Forecasting
Historical Trends and Controlling Factors of Isoprene Emissions in CMIP6 Earth System Models
Modeling Commercial-Scale CO2 Storage in the Gas Hydrate Stability Zone with PFLOTRAN v6.0
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Using feature importance as exploratory data analysis tool on earth system models
CropSuite – A comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – The ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
Coupled Carbon-Nitrogen Cycle in MAGICC v1.0.0: Model Description and Calibration
The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
A non-intrusive, multi-scale, and flexible coupling interface in WRF
T&C-CROP: Representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5): Model formulation and validation
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
The Earth Science Box Modeling Toolkit (ESBMTK)
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025, https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Short summary
The study aimed to improve the representation of wheat and rice in a land model for the Indian region. The modified model performed significantly better than the default model in simulating crop phenology, yield, and carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific crop parameters for accurately simulating vegetation processes and land surface processes.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025, https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Short summary
In this study, we improved the calculation of how aerosols in the air interact with radiation in WRF-Chem. The original model used a simplified method, but we developed a more accurate approach. We found that this method significantly changes the properties of the estimated aerosols and their effects on radiation, especially for dust aerosols. It also impacts the simulated weather conditions. Our work highlights the importance of correctly representing aerosol–radiation interactions in models.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025, https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Short summary
Observational data and modelling capabilities have expanded in recent years, but there are still barriers preventing these two data sources from being used in synergy. Proper comparison requires generating, storing, and handling a large amount of data. This work describes the first step in the development of a new set of software tools, the VISION toolkit, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025, https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Short summary
We tried to contribute to a local climate change impact study in central Asia, a region that is water-scarce and vulnerable to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in central Asia.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025, https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
Short summary
Hurricanes may worsen water quality in the lower Mississippi River basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate–nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in the LMRB during Hurricane Ida in 2021, albeit less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024, https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Short summary
We present General TAMSAT-ALERT, a computationally lightweight and versatile tool for generating ensemble forecasts from time series data. General TAMSAT-ALERT is capable of combining multiple streams of monitoring and meteorological forecasting data into probabilistic hazard assessments. In this way, it complements existing systems and enhances their utility for actionable hazard assessment.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3522, https://doi.org/10.5194/egusphere-2024-3522, 2024
Short summary
Short summary
We analyzed carbon and nitrogen mass conservation in data from CMIP6 Earth System Models. Our findings reveal significant discrepancies between flux and pool size data, particularly in nitrogen, where cumulative imbalances can reach hundreds of gigatons. These imbalances appear primarily due to missing or inconsistently reported fluxes – especially for land use and fire emissions. To enhance data quality, we recommend that future climate data protocols address this issue at the reporting stage.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2685, https://doi.org/10.5194/egusphere-2024-2685, 2024
Short summary
Short summary
Forecasting river runoff, crucial for managing water resources and understanding climate impacts, can be challenging. This study introduces a new method using Convolutional Long Short-Term Memory (ConvLSTM) networks, a machine learning model that processes spatial and temporal data. Focusing on the Baltic Sea region, our model uses weather data as input to predict daily river runoff for 97 rivers.
Thi Nhu Ngoc Do, Kengo Sudo, Akihiko Ito, Louisa Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2313, https://doi.org/10.5194/egusphere-2024-2313, 2024
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth System Models mainly due to partially incorporating CO2 effects and land cover changes rather than climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant-climate interactions.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-162, https://doi.org/10.5194/gmd-2024-162, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most dangerous effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a sub-sea CO2 injection.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Daniel Ries, Katherine Goode, Kellie McClernon, and Benjamin Hillman
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-133, https://doi.org/10.5194/gmd-2024-133, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Machine learning has advanced research in the climate science domain, but its models are difficult to understand. In order to understand the impacts and consequences of climate interventions such as stratospheric aerosol injection, complex models are often necessary. We use a case study to illustrate how we can understand the inner workings of a complex model. We present this technique as an exploratory tool that can be used to quickly discover and assess relationships in complex climate data.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
EGUsphere, https://doi.org/10.5194/egusphere-2024-2526, https://doi.org/10.5194/egusphere-2024-2526, 2024
Short summary
Short summary
CropSuite is a fuzzy-logic based high resolution open-source crop suitability model considering the impact of climate variability. We apply CropSuite for 48 important staple and cash crops at 1 km spatial resolution for Africa. We find that climate variability significantly impacts on suitable areas, but also affects optimal sowing dates, and multiple cropping potentials. The results provide information that can be used for climate impact assessments, adaptation and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-135, https://doi.org/10.5194/gmd-2024-135, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The Icosahedral Nonhydrostatic (ICON) Model Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++ and Python) and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024, https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary
Short summary
Irrigated agriculture in the North China Plain (NCP) has a significant impact on the local climate. To better understand this impact, we developed a specialized model specifically for the NCP region. This model allows us to simulate the double-cropping vegetation and the dynamic irrigation practices that are commonly employed in the NCP. This model shows improved performance in capturing the general crop growth, such as crop stages, biomass, crop yield, and vegetation greenness.
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1941, https://doi.org/10.5194/egusphere-2024-1941, 2024
Short summary
Short summary
We studied the coupled carbon-nitrogen cycle effect in Earth System Models by developing a carbon-nitrogen coupling in a reduced complexity model, MAGICC. Our model successfully emulated the global carbon-nitrogen cycle dynamics seen in CMIP6 complex models. Results indicate consistent nitrogen limitations on plant growth (net primary production) from 1850 to 2100. Our findings suggest that nitrogen deficiency could reduce future land carbon sequestration.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024, https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
Short summary
We present the latest version of the CICE model. It solves equations that describe the dynamics and the growth and melt of sea ice. To do so, the domain is divided into grid cells and variables are positioned at specific locations in the cells. A new implementation (C-grid) is presented, with the velocity located on cell edges. Compared to the previous B-grid, the C-grid allows for a natural coupling with some oceanic and atmospheric models. It also allows for ice transport in narrow channels.
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024, https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024, https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Short summary
The CICERO-SCM has existed as a Fortran model since 1999 that calculates the radiative forcing and concentrations from emissions and is an upwelling diffusion energy balance model of the ocean that calculates temperature change. In this paper, we describe an updated version ported to Python and publicly available at https://github.com/ciceroOslo/ciceroscm (https://doi.org/10.5281/zenodo.10548720). This version contains functionality for parallel runs and automatic calibration.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-140, https://doi.org/10.5194/gmd-2024-140, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This article details a new feature we implemented in the most popular regional atmospheric model (WRF). This feature allows data to be exchanged between WRF and any other model (e.g. an ocean model) using the coupling library Ocean-Atmosphere-Sea-Ice-Soil – Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
EGUsphere, https://doi.org/10.5194/egusphere-2024-2072, https://doi.org/10.5194/egusphere-2024-2072, 2024
Short summary
Short summary
We outline and validate developments to the pre-existing process-based model T&C to better represent cropland processes. Foreseen applications of T&C-CROP include hydrological and carbon storage implications of land-use transitions involving crop, forest, and pasture conversion, as well as studies on optimal irrigation and fertilization under a changing climate.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Ulrich Georg Wortmann, Tina Tsan, Mahrukh Niazi, Ruben Navasardyan, Magnus-Roland Marun, Bernardo S. Chede, Jingwen Zhong, and Morgan Wolfe
EGUsphere, https://doi.org/10.5194/egusphere-2024-1864, https://doi.org/10.5194/egusphere-2024-1864, 2024
Short summary
Short summary
The Earth Science Box Modeling Toolkit (ESBMTK) is a Python library designed to separate model description from numerical implementation. This approach results in well-documented, easily readable, and maintainable model code, allowing students and researchers to concentrate on conceptual challenges rather than mathematical intricacies.
Cited articles
Abraham, J. P., Reseghetti, F., Baringer, M., Boyer, T., Cheng, L., Church,
J., Domingues, C., Fasullo, J. T., Gilson, J., Goni, G., Good, S., Gorman,
J. M., Gouretski, V., Ishii, M., Johnson, G. C., Kizu, S., Lyman, J.,
MacDonald, A., Minkowycz, W. J., Moffitt, S. E., Palmer, M., Piola, A.,
Trenberth, K. E., Velicogna, I., Wijffels, S., and Willis, J.: A review of
global ocean temperature observations: implications for ocean heat content
estimates and climate change, Rev. Geophys., 51, 450–483,
https://doi.org/10.1002/rog.20022, 2013.
AchutaRao, K. M., Ishii, M., Santer, B. D., Gleckler, P. J., Taylor, K. E.,
Barnett, T. P., Pierce, D. W., Stouffer, R. J., and Wigley, T. M. L.:
Simulated and observed variability in ocean temperature and heat content,
Proc. Natl. Acad. Sci. USA, 104, 10768–10773, https://doi.org/10.1073/pnas.0611375104,
2007.
Allison, L. C., Roberts, C. D., Palmer, M. D., Hermanson, L., Killick, R.
E., Rayner, N. A., Smith, D. M., and Andrews, M. B.: Towards quantifying
uncertainty in ocean heat content changes using synthetic profiles, Environ.
Res. Lett., 14, 084037, https://doi.org/10.1088/1748-9326/ab2b0b, 2019.
Balmaseda, M. A., Trenberth, K. E., and Källén, E.: Distinctive
climate signals in reanalysis of global ocean heat content, Geophys. Res.
Lett., 40, 1754–1759, https://doi.org/10.1002/grl.50382, 2013.
Banks, H. T. and Gregory, J. M.: Mechanisms of ocean heat uptake in a
coupled climate model and the implications for tracer based predictions of
ocean heat uptake, Geophys. Res. Lett., 33, L07608,
https://doi.org/10.1029/2005GL025352, 2006.
Bindoff, N. L. and McDougall, T. J.: Diagnosing climate change and ocean
ventilation using hydrographic data, J. Phy. Oceanogr., 24, 1137–1152,
https://doi.org/10.1175/1520-0485(1994)024<1137:DCCAOV>2.0.CO;2, 1994.
Carton, J. A., Penny, S. G., and Kalnay, E.: Temperature and salinity
variability in the SODA3, ECCO4r3, and ORAS5 ocean reanalyses, 1993–2015,
J. Climate, 32, 2277–2293, https://doi.org/10.1175/JCLI-D-18-0605.1, 2019.
Chen, X., Yan, Y., Cheng, X., and Qi, Y.: Performances of seven datasets in
presenting the upper ocean heat content in the South China Sea, Adv. Atmos.
Sci., 30, 1331–1342, https://doi.org/10.1007/s00376-013-2132-1, 2013.
Cheng, L. and Zhu, J.: Artifacts in variations of ocean heat content
induced by the observation system changes, Geophys. Res. Lett., 41,
7276–7283, https://doi.org/10.1002/2014GL061881, 2014.
Cheng, L. and Zhu, J.: Benefits of CMIP5 Multimodel Ensemble in
Reconstructing Historical Ocean Subsurface Temperature Variations, J.
Climate, 29, 5393–5416, https://doi.org/10.1175/JCLI-D-15-0730.1, 2016.
Church, J. A., White, N. J., and Arblaster, J. M.: Significant decadal-scale
impact of volcanic eruptions on sea level and ocean heat content, Nature,
438, 74–77, https://doi.org/10.1038/nature04237, 2005.
Curry, R., Dickson, B., and Yashayaev, I.: A change in the freshwater balance
of the Atlantic Ocean over the past four decades, Nature, 426,
826–829, https://doi.org/10.1038/nature02206, 2003.
Desbruyeres, D., Purkey, S. G., Mcdonagh, E. L., Johnson, G. C., and King, B.
A.: Deep and abyssal ocean warming from 35 years of repeat hydrography,
Geophys. Res. Lett., 43, 10356–10365, https://doi.org/10.1002/2016GL070413, 2016.
Desbruyères, D., McDonagh, E. L., King, B. A., and Thierry, V.: Global
and Full-Depth Ocean Temperature Trends during the Early Twenty-First
Century from Argo and Repeat Hydrography, J. Climate, 30, 1985–1997,
https://doi.org/10.1175/JCLI-D-16-0396.1, 2017.
Domingues, C. M., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S. E., Barker, P. M., and Dunn, J. R.: Improved estimates of upper-ocean warming and multi-decadal sea-level rise, Nature, 453, 1090–1093, https://doi.org/10.1038/nature07080, 2008.
Dong, S., Garzoli, S., and Baringer, M.: The role of interocean exchanges on
decadal variations of the meridional heat transport in the South Atlantic,
J. Phys. Oceanogr., 41, 1498–1511, https://doi.org/10.1175/2011JPO4549.1, 2011.
Du, Y., Qu, T., Meyers, G., Masumoto, Y., and Sasaki, H.: Seasonal heat
budget in the mixed layer of the southeastern tropical Indian Ocean in a
high-resolution ocean general circulation model, J. Geophys. Res.-Oceans,
110, C04012, https://doi.org/10.1029/2004JC002845, 2005.
Durack, P. J., Gleckler, P. J., Landerer, F. W., and Taylor, K. E.:
Quantifying underestimates of long-term upper-ocean warming, Nat. Clim.
Change, 4, 999–1005, https://doi.org/10.1038/nclimate2389, 2014.
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015.
Fyfe, J.: Southern Ocean warming due to human influence, Geophys. Res.
Lett., 33, L19701, https://doi.org/10.1029/2006GL027247, 2006.
Gleckler, P. J., Santer, B. D., Domingues, C. M., Pierce, D. W., Barnett, T.
P., Church, J. A., Taylor, K. E., Achutarao, K., Boyer, T. P., and Ishii,
M.: Human-induced global ocean warming on multidecadal timescales, Nat.
Clim. Change, 2, 524–529, https://doi.org/10.1038/nclimate1553, 2012.
Good, S. A., Martin, M., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118, 6704–6716,
https://doi.org/10.1002/2013JC009067, 2013 (data available at: https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-1.html, last access: 13 September 2020).
Gouretski, V. and Reseghetti, F.: On depth and temperature biases in
bathythermograph data: Development of a new correction scheme based on
analysis of a global ocean database, Deep-Sea Res. Pt. I, 57,
812–833, https://doi.org/10.1016/j.dsr.2010.03.011, 2010.
Häkkinen, S., Rhines, P. B., and Worthen, D. L.: Heat content variability
in the North Atlantic Ocean in ocean reanalyses, Geophys. Res. Lett.,
42, 2901–2909, https://doi.org/10.1002/2015GL063299, 2015.
Häkkinen, S., Rhines, P. B., and Worthen, D.: Warming of the global
ocean: Spatial structure and water-mass trends, J. Climate, 29, 4949–4963,
https://doi.org/10.1175/JCLI-D-15-0607.1, 2016.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., https://doi.org/10.1017/CBO9781107415324, 2013.
Jackett, D. R. and McDougall, T. J.: A neutral density variable for the
world's oceans, J. Phys. Oceanogr., 27, 237–263,
https://doi.org/10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2, 1997.
Jayne, S. R. and St. Laurent, L. C.: Parameterizing tidal dissipation over
rough topography, Geophys. Res. Lett., 28, 811–814,
https://doi.org/10.1029/2000GL012044, 2001.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–472,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2,
1996.
Kutsuwada, K., Kakiuchi, A., Sasai, Y., Sasaki, H., Uehara, K., and Tajima,
R.: Wind-driven North Pacific Tropical Gyre using high-resolution simulation
outputs, J. Oceanogr., 75, 81–93, https://doi.org/10.1007/s10872-018-0487-8, 2019.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing:
A review and a model with a nonlocal boundary layer parameterization, Rev.
Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994.
Lee, S., Park, W., Baringer, M. O. A., Gordon, L., Huber, B. A., and Liu,
Y.: Pacific origin of the abrupt increase in Indian Ocean heat content
during the warming hiatus, Nat. Geosci., 8, 445–449,
https://doi.org/10.1038/ngeo2438, 2015.
Levitus, S., Antonov, J. I., Boyer, T. P., Locarnini, R. A., Garcia H. E., and Mishonov, A. V.: Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems, Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155, 2009.
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O., Garcia, H. E.,
Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., and Yarosh, E.
S.: World ocean heat content and thermosteric sea level change (0–2000 m),
Geophys. Res. Lett., 39, 1955–2010, https://doi.org/10.1029/2012GL051106, 2012.
Liang, X., Liu, C. R., Ponte, M., and Chambers, D. P.: A Comparison of the
Variability and Changes in Global Ocean Heat Content from Multiple Objective
Analysis Products During the Argo Period, J. Climate, 34, 7875–7895,
https://doi.org/10.1175/JCLI-D-20-0794.1, 2021.
Liao, F., Wang, X. H., and Liu, Z.: Data and scripts for the preprint gmd-2021-95 (a revised verison), Zenodo [code/data set], https://doi.org/10.5281/zenodo.5205444, 2021.
Masumoto, Y., Sasaki, H., Kagimoto, T., Komori, N., Ishida, A., Sasai, Y., Miyama, T., Motoi, T., Mitsudera, H., Takahashi, K., Sakuma, H., and Yamagata, T.: A fifty-year eddy-resolving simulation of the world ocean – Preliminary outcomes of OFES (OGCM for the Earth Simulator), J. Earth Simulator, 1, 35–56, https://doi.org/10.32131/jes.1.35, 2004 (data available at: http://apdrc.soest.hawaii.edu/dods/public_ofes/OfES/ncep_0.1_global_mmean, last access: 10 August 2020).
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, 28 pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5, http://www.teos-10.org/software.htm (last access: 5 March 2021), 2011.
Noh, Y. and Kim, H. J.: Simulations of temperature and turbulence structure
of the oceanic boundary layer with the improved near-surface process, J.
Geophys. Res.-Oceans, 104, 15621–15634, https://doi.org/10.1029/1999JC900068, 1999.
Pacanowski, R. C. and Griffies, S. M.: The MOM3 manual, GFDL Ocean Group Tech. Rep. 4, NOAA, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, https://mdl-mom5.herokuapp.com/web/docs/project/MOM3_manual.pdf (last access: 21 August 2020), 1999.
Palmer, M. D., Mcneall, D. J., and Dunstone, N. J.: Importance of the deep
ocean for estimating decadal changes in Earth's radiation balance, Geophys.
Res. Lett., 38, L13707, https://doi.org/10.1029/2011GL047835, 2011.
Pierce, D. W., Barnett, T. P., Achutarao, K., Gleckler, P. J., Gregory, J.
M., and Washington, W. M.: Anthropogenic warming of the oceans: Observations
and model results, J. Climate, 19, 1873–1900, https://doi.org/10.1175/JCLI3723.1,
2006.
Sasaki, H., Sasai, Y., Kawahara, S., Furuichi, M., Araki, F., Ishida, A.,
Yamanaka, Y., Masumoto, Y., and Sakuma, H.: A series of eddy-resolving ocean
simulations in the world ocean-OFES (OGCM for the Earth Simulator) project,
Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No. 04CH37600) 3, 1535–1541, https://doi.org/10.1109/OCEANS.2004.1406350, 2004.
Sasaki, H., Kida, S., Furue, R., Nonaka, M., and Masumoto, Y.: An Increase
of the Indonesian Throughflow by Internal Tidal Mixing in a High-Resolution
Quasi-Global Ocean Simulation, Geophys. Res. Lett., 45, 8416–8424,
https://doi.org/10.1029/2018GL078040, 2018.
Sasaki, H., Kida, S., Furue, R., Aiki, H., Komori, N., Masumoto, Y., Miyama, T., Nonaka, M., Sasai, Y., and Taguchi, B.: A global eddying hindcast ocean simulation with OFES2, Geosci. Model Dev., 13, 3319–3336, https://doi.org/10.5194/gmd-13-3319-2020, 2020.
Smith, D. M., Allan, R. P., Coward, A. C., Eade, R., Hyder, P., Liu, C., Loeb, N. G., Palmer, M. D., Roberts, C. D., and Scaife, A. A.: Earth's energy imbalance since 1960 in observations and CMIP5 models, Geophys. Res. Lett., 42, 1205–1213, https://doi.org/10.1002/2014GL062669, 2015.
St. Laurent, L. C., Simmons, H. L., and Jayne, S. R.: Estimating tidally
driven mixing in the deep ocean, Geophys. Res. Lett., 29, 21-21–21-24,
https://doi.org/10.1029/2002GL015633, 2002.
Talley, L. D.: Shallow, Intermediate, and Deep Overturning Components of the
Global Heat Budget, J. Phys. Oceanogr., 33, 530–560,
https://doi.org/10.1175/1520-0485(2003)033<0530:SIADOC>2.0.CO;2, 2003.
Trenberth, K. E., Fasullo, J. T., Von Schuckmann, K., and Cheng, L.:
Insights into Earth's energy imbalance from multiple sources, J. Climate,
29, 7495–7505, https://doi.org/10.1175/JCLI-D-16-0339.1, 2016.
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S.
G., Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C.
W., Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack,
P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C.,
Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. J.,
Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.:
JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do),
Ocean Model., 130, 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002, 2018.
Von Schuckmann, K., Palmer, M. D., Trenberth, K. E., Cazenave, A., Chambers,
D. P., Champollion, N., Hansen, J., Josey, S. A., Loeb, N. G., and Mathieu,
P. P.: An imperative to monitor Earth's energy imbalance, Nat. Clim.
Change, 6, 138–144, https://doi.org/10.1038/nclimate2876, 2016.
Wang, G., Cheng, L., Abraham, J., and Li, C.: Consensuses and discrepancies
of basin-scale ocean heat content changes in different ocean analyses, Clim.
Dynam., 50, 2471–2487, https://doi.org/10.1007/s00382-017-3751-5, 2018.
Wang, X. H., Bhatt, V., and Sun, Y.-J.: Study of seasonal variability and
heat budget of the East Australian Current using two eddy-resolving ocean
circulation models, Ocean. Dynam., 63, 549–563,
https://doi.org/10.1007/s10236-013-0605-5, 2013.
Williams, R. G., Roussenov, V., Smith, D., and Lozier, M. S.: Decadal Evolution of Ocean Thermal Anomalies in the North Atlantic: The Effects of Ekman, Overturning, and Horizontal Transport, J. Climate, 27, 698–719, https://doi.org/10.1175/JCLI-D-12-00234.1, 2014.
Wunsch, C.: The decadal mean ocean circulation and Sverdrup balance, J. Mar.
Res., 69, 417–434, https://doi.org/10.1357/002224011798765303, 2011.
Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J., and Heimbach, P.: Global
reconstruction of historical ocean heat storage and transport, Proc. Natl.
Acad. Sci. USA, 116, 1126–1131, https://doi.org/10.1073/pnas.1808838115, 2019.
Zhang, Y., Feng, M., Du,Y. H., Phillips, E., Bindoff, N. L., and McPhaden,
M. J.: Strengthened Indonesian Throughflow Drives Decadal Warming in the
Southern Indian Ocean, Geophys. Res. Lett., 45, 6167–6175,
https://doi.org/10.1029/2018GL078265, 2018.
Short summary
The ocean heat content (OHC) estimated using two eddying hindcast simulations, OFES1 and OFES2, was compared from 1960 to 2016, with observation-based results as a reference. Marked differences were found, especially in the Atlantic Ocean. These were related to the differences in the net surface heating, heat advection, and vertical heat diffusion. These documented differences may help the community better understand and use these quasi-global high-resolution datasets for their own purposes.
The ocean heat content (OHC) estimated using two eddying hindcast simulations, OFES1 and OFES2,...