Model evaluation paper 18 Feb 2021
Model evaluation paper | 18 Feb 2021
ICON in Climate Limited-area Mode (ICON release version 2.6.1): a new regional climate model
Trang Van Pham et al.
Related authors
No articles found.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Silje Lund Sørland, Roman Brogli, Praveen Kumar Pothapakula, Emmanuele Russo, Jonas Van de Walle, Bodo Ahrens, Ivonne Anders, Edoardo Bucchignani, Edouard L. Davin, Marie-Estelle Demory, Alessandro Dosio, Hendrik Feldmann, Barbara Früh, Beate Geyer, Klaus Keuler, Donghyun Lee, Delei Li, Nicole P. M. van Lipzig, Seung-Ki Min, Hans-Jürgen Paniz, Burkhardt Rockel, Christoph Schär, Christian Steger, and Wim Thiery
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-443, https://doi.org/10.5194/gmd-2020-443, 2021
Preprint under review for GMD
Short summary
Short summary
We review the contribution from the CLM-Community to regional climate projections following the CORDEX framework over Europe, South Asia, East Asia, Australasia and Africa. How the model configuration, horizontal and vertical resolution and choice of driving data is influencing the model performance for the five domains is assessed, with the purpose to aid the planning and design of regional climate simulations in the future.
Vinod Kumar, Julia Remmers, Steffen Beirle, Joachim Fallmann, Astrid Kerkweg, Jos Lelieveld, Mariano Mertens, Andrea Pozzer, Benedikt Steil, and Thomas Wagner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-23, https://doi.org/10.5194/amt-2021-23, 2021
Preprint under review for AMT
Short summary
Short summary
We present high resolution regional atmospheric chemistry model simulations focused around Germany. We highlight the importance of spatial resolution of the model itself as well as the input emissions inventory and short scale temporal variability of emissions for simulations. We propose a consistent approach for evaluating the simulated vertical distribution of NO2 using MAX-DOAS measurements while also considering its spatial sensitivity volume and change in sensitivity within this volume.
Torben Schmith, Peter Thejll, Peter Berg, Fredrik Boberg, Ole Bøssing Christensen, Bo Christiansen, Jens Hesselbjerg Christensen, Marianne Sloth Madsen, and Christian Steger
Hydrol. Earth Syst. Sci., 25, 273–290, https://doi.org/10.5194/hess-25-273-2021, https://doi.org/10.5194/hess-25-273-2021, 2021
Short summary
Short summary
European extreme precipitation is expected to change in the future; this is based on climate model projections. But, since climate models have errors, projections are uncertain. We study this uncertainty in the projections by comparing results from an ensemble of 19 climate models. Results can be used to give improved estimates of future extreme precipitation for Europe.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Mariano Mertens, Astrid Kerkweg, Volker Grewe, Patrick Jöckel, and Robert Sausen
Atmos. Chem. Phys., 20, 7843–7873, https://doi.org/10.5194/acp-20-7843-2020, https://doi.org/10.5194/acp-20-7843-2020, 2020
Short summary
Short summary
We investigate the contribution of land transport emissions to ozone and ozone precursors in Europe and Germany. Our results show that land transport emissions are one of the most important contributors to reactive nitrogen in Europe. The contribution to ozone is in the range of 8 % to 16 % and varies strongly for different seasons. The hots-pots with the largest ozone concentrations are the Po Valley, while the largest concentration to reactive nitrogen is located mainly in western Europe.
Anna-Leah Nickl, Mariano Mertens, Anke Roiger, Andreas Fix, Axel Amediek, Alina Fiehn, Christoph Gerbig, Michal Galkowski, Astrid Kerkweg, Theresa Klausner, Maximilian Eckl, and Patrick Jöckel
Geosci. Model Dev., 13, 1925–1943, https://doi.org/10.5194/gmd-13-1925-2020, https://doi.org/10.5194/gmd-13-1925-2020, 2020
Short summary
Short summary
Based on the global and regional chemistry–climate model system MECO(n), we implemented a forecast system to support the planning of measurement campaign research flights with chemical weather forecasts. We applied this system for the first time to provide 6 d forecasts in support of the CoMet 1.0
campaign targeting methane emitted from coal mining ventilation shafts in the Upper Silesian Coal Basin in Poland. We describe the new forecast system and evaluate its forecast skill.
Mariano Mertens, Astrid Kerkweg, Volker Grewe, Patrick Jöckel, and Robert Sausen
Geosci. Model Dev., 13, 363–383, https://doi.org/10.5194/gmd-13-363-2020, https://doi.org/10.5194/gmd-13-363-2020, 2020
Short summary
Short summary
This study investigates if ozone source apportionment results using a tagged tracer approach depend on the resolutions of the applied model and/or emission inventory. For this we apply a global to regional atmospheric chemistry model, which allows us to compare the results on global and regional scales. Our results show that differences on the continental scale (e.g. Europe) are rather small (10 %); on the regional scale, however, differences of up to 30 % were found.
Emmanuele Russo, Ingo Kirchner, Stephan Pfahl, Martijn Schaap, and Ulrich Cubasch
Geosci. Model Dev., 12, 5229–5249, https://doi.org/10.5194/gmd-12-5229-2019, https://doi.org/10.5194/gmd-12-5229-2019, 2019
Short summary
Short summary
This is an investigation of COSMO-CLM 5.0 sensitivity for the CORDEX Central Asia domain, with the main goal of evaluating general model performances for the area, proposing a model optimal configuration to be used in projection studies.
Results show that the model seems to be particularly sensitive to those parameterizations that deal with soil and surface features and that could positively affect the repartition of incoming radiation.
Katharina Bülow, Heike Huebener, Klaus Keuler, Christoph Menz, Susanne Pfeifer, Hans Ramthun, Arne Spekat, Christian Steger, Claas Teichmann, and Kirsten Warrach-Sagi
Adv. Sci. Res., 16, 241–249, https://doi.org/10.5194/asr-16-241-2019, https://doi.org/10.5194/asr-16-241-2019, 2019
Short summary
Short summary
In the German regional climate modeling project ReKliEs-De changes in temperature and precipitation indices are calculated from a multi model ensemble for the end of the 21st century. The results for the mitigation scenario RCP2.6 are compared to the results of the “business as usual” scenario RCP8.5. The increase of mean annual temperature and of the number of summer days will be around 3 times higher and in summer, the increase of dry days could be twice as high in RCP8.5 compared to RCP2.6.
Sebastian Borchert, Guidi Zhou, Michael Baldauf, Hauke Schmidt, Günther Zängl, and Daniel Reinert
Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019, https://doi.org/10.5194/gmd-12-3541-2019, 2019
Short summary
Short summary
We present an upper-atmosphere extension of the ICOsahedral Non-hydrostatic (ICON) model.
This includes an extension of the model dynamics from a shallow to a deep atmosphere
and the implementation of upper-atmosphere physics parameterizations.
Idealized test cases and climate simulations are performed in order to evaluate this new configuration, named UA-ICON.
Inne Vanderkelen, Jakob Zschleischler, Lukas Gudmundsson, Klaus Keuler, Francois Rineau, Natalie Beenaerts, Jaco Vangronsveld, and Wim Thiery
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-267, https://doi.org/10.5194/bg-2019-267, 2019
Manuscript not accepted for further review
Mark Reyers, Hendrik Feldmann, Sebastian Mieruch, Joaquim G. Pinto, Marianne Uhlig, Bodo Ahrens, Barbara Früh, Kameswarrao Modali, Natalie Laube, Julia Moemken, Wolfgang Müller, Gerd Schädler, and Christoph Kottmeier
Earth Syst. Dynam., 10, 171–187, https://doi.org/10.5194/esd-10-171-2019, https://doi.org/10.5194/esd-10-171-2019, 2019
Short summary
Short summary
In this study, the regional MiKlip decadal prediction system is evaluated. This system has been established to deliver highly resolved forecasts for the timescale of 1 to 10 years for Europe. Evidence of the general potential for regional decadal predictability for the variables temperature, precipitation, and wind speed is provided, but the performance of the prediction system depends on region, variable, and system generation.
Johannes Eckstein, Roland Ruhnke, Stephan Pfahl, Emanuel Christner, Christopher Diekmann, Christoph Dyroff, Daniel Reinert, Daniel Rieger, Matthias Schneider, Jennifer Schröter, Andreas Zahn, and Peter Braesicke
Geosci. Model Dev., 11, 5113–5133, https://doi.org/10.5194/gmd-11-5113-2018, https://doi.org/10.5194/gmd-11-5113-2018, 2018
Short summary
Short summary
We present ICON-ART-Iso, an extension to the global circulation model ICON, which allows for the simulation of the stable isotopologues of water. The main advantage over other isotope-enabled models is its flexible design with respect to the number of tracers simulated. We compare the results of several simulations to measurements of different scale. ICON-ART-Iso is able to reasonably reproduce the measurements. It is a promising tool to aid in the investigation of the atmospheric water cycle.
Jennifer Schröter, Daniel Rieger, Christian Stassen, Heike Vogel, Michael Weimer, Sven Werchner, Jochen Förstner, Florian Prill, Daniel Reinert, Günther Zängl, Marco Giorgetta, Roland Ruhnke, Bernhard Vogel, and Peter Braesicke
Geosci. Model Dev., 11, 4043–4068, https://doi.org/10.5194/gmd-11-4043-2018, https://doi.org/10.5194/gmd-11-4043-2018, 2018
Short summary
Short summary
In this paper, we introduce the most up-to-date version of the flexible tracer framework for the ICOsahedral Nonhydrostatic model with
Aerosols and Reactive Trace gases (ICON-ART).
We performed multiple simulations using different ICON physics configurations for weather and climate with ART.
The flexible tracer framework within ICON-ART 2.1 suits the demands of a large variety of different applications ranging from numerical weather prediction to climate integrations.
Vanessa S. Rieger, Mariano Mertens, and Volker Grewe
Geosci. Model Dev., 11, 2049–2066, https://doi.org/10.5194/gmd-11-2049-2018, https://doi.org/10.5194/gmd-11-2049-2018, 2018
Short summary
Short summary
To reduce the climate impact of human activities, it is crucial to attribute changes in atmospheric gases to anthropogenic emissions. We present an advanced method to determine the contribution of emissions to OH and HO2 concentrations. Compared to the former version, it contains the main reactions of the OH and HO2 chemistry in the troposphere and stratosphere, introduces the tagging of the H radical and closes the budget of the sum of all contributions and the total concentration.
Erik Kjellström, Grigory Nikulin, Gustav Strandberg, Ole Bøssing Christensen, Daniela Jacob, Klaus Keuler, Geert Lenderink, Erik van Meijgaard, Christoph Schär, Samuel Somot, Silje Lund Sørland, Claas Teichmann, and Robert Vautard
Earth Syst. Dynam., 9, 459–478, https://doi.org/10.5194/esd-9-459-2018, https://doi.org/10.5194/esd-9-459-2018, 2018
Short summary
Short summary
Based on high-resolution regional climate models we investigate European climate change at 1.5 and 2 °C of global warming compared to pre-industrial levels. Considerable near-surface warming exceeding that of the global mean is found for most of Europe, already at the lower 1.5 °C of warming level. Changes in precipitation and near-surface wind speed are identified. The 1.5 °C of warming level shows significantly less change compared to the 2 °C level, indicating the importance of mitigation.
Mariano Mertens, Volker Grewe, Vanessa S. Rieger, and Patrick Jöckel
Atmos. Chem. Phys., 18, 5567–5588, https://doi.org/10.5194/acp-18-5567-2018, https://doi.org/10.5194/acp-18-5567-2018, 2018
Short summary
Short summary
We quantified the contribution of land transport and shipping emissions to tropospheric ozone using a global chemistry–climate model. Our results indicate a contribution to ground-level ozone from land transport emissions of up to 18 % in North America and Southern Europe as well as a contribution from shipping emissions of up to 30 % in the Pacific. Our estimates of the radiative ozone forcing due to land transport and shipping emissions are 92 mW m−2 and 62 mW m−2, respectively.
Astrid Kerkweg, Christiane Hofmann, Patrick Jöckel, Mariano Mertens, and Gregor Pante
Geosci. Model Dev., 11, 1059–1076, https://doi.org/10.5194/gmd-11-1059-2018, https://doi.org/10.5194/gmd-11-1059-2018, 2018
Short summary
Short summary
As part of the model documentation of the MECO(n) system, this article documents the basics of the Multi-Model-Driver expansion (MMD v2.0) to two-way coupling and the newly developed generic MESSy submodel GRID (v1.0), which is used by MMD v2.0 for the generalised definition of arbitrary grids and for the
transformation of data between them.
Philipp Gasch, Daniel Rieger, Carolin Walter, Pavel Khain, Yoav Levi, Peter Knippertz, and Bernhard Vogel
Atmos. Chem. Phys., 17, 13573–13604, https://doi.org/10.5194/acp-17-13573-2017, https://doi.org/10.5194/acp-17-13573-2017, 2017
Short summary
Short summary
This paper presents simulations of a severe dust event in the Eastern Mediterranean with a weather prediction model using very high spatial resolution. Due to the high resolution, the small-scale features of the event are captured in great detail. Consequently, the previously erroneous forecast of the event is improved drastically. In addition, the interaction of mineral dust with radiation inside the model has been included as a part of this work and is presented here.
Daniel Rieger, Andrea Steiner, Vanessa Bachmann, Philipp Gasch, Jochen Förstner, Konrad Deetz, Bernhard Vogel, and Heike Vogel
Atmos. Chem. Phys., 17, 13391–13415, https://doi.org/10.5194/acp-17-13391-2017, https://doi.org/10.5194/acp-17-13391-2017, 2017
Short summary
Short summary
The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. We investigate the impact of mineral dust on the PV power generation during a Saharan dust outbreak over Germany on 4 April 2014. We find an overall improvement of the PV power forecast for 65 % of the pyranometer stations in Germany.
Heiko Paeth, Christian Steger, Jingmin Li, Sebastian G. Mutz, and Todd A. Ehlers
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-111, https://doi.org/10.5194/cp-2017-111, 2017
Manuscript not accepted for further review
Short summary
Short summary
We use a high-resolution regional climate model to investigate various episodes of distinct climate states over the Tibetan Plateau region during the Cenozoic rise of the Plateau and Quaternary glacial/interglacial cycles. The simulated changes are in good agreement with available paleo-climatic reconstructions from proxy data. It is shown that in some regions of the Tibetan Plateau the climate anomalies during the Quaternary have been as strong as the changes occurring during the uplift period.
Heike Huebener, Peter Hoffmann, Klaus Keuler, Susanne Pfeifer, Hans Ramthun, Arne Spekat, Christian Steger, and Kirsten Warrach-Sagi
Adv. Sci. Res., 14, 261–269, https://doi.org/10.5194/asr-14-261-2017, https://doi.org/10.5194/asr-14-261-2017, 2017
Short summary
Short summary
There is still a large gap between climate research results and their use in climate impact research and policy advisory. One of the many approaches taken to reduce this gap was a midterm user workshop of the German project ReKliEs-De. The users were asked to guide the further project work towards their needs. Conclusions from the workshop included the need for more
plain textguidance on climate model strengths and weaknesses as well as more research on climate impact system functioning.
Volker Grewe, Eleni Tsati, Mariano Mertens, Christine Frömming, and Patrick Jöckel
Geosci. Model Dev., 10, 2615–2633, https://doi.org/10.5194/gmd-10-2615-2017, https://doi.org/10.5194/gmd-10-2615-2017, 2017
Short summary
Short summary
We present a diagnostics, implemented in an Earth system model, which keeps track of the contribution of source categories (mainly emission sectors) to various concentrations (O3 and HOx). For the first time, it takes into account chemically competing effects, e.g., the competition between ozone precursors in the production of ozone. We show that the results are in-line with results from other tagging schemes and provide plausibility checks for OH and HO2, which have not previously been tagged.
Michael Weimer, Jennifer Schröter, Johannes Eckstein, Konrad Deetz, Marco Neumaier, Garlich Fischbeck, Lu Hu, Dylan B. Millet, Daniel Rieger, Heike Vogel, Bernhard Vogel, Thomas Reddmann, Oliver Kirner, Roland Ruhnke, and Peter Braesicke
Geosci. Model Dev., 10, 2471–2494, https://doi.org/10.5194/gmd-10-2471-2017, https://doi.org/10.5194/gmd-10-2471-2017, 2017
Short summary
Short summary
In this paper, the recently developed module for trace gas emissions in the online coupled modelling framework ICON-ART for atmospheric chemistry is presented. Algorithms for offline and online calculation of the emissions are described. The module is validated with ground-based as well as airborne measurements of acetone. It is shown that the module performs well and allows the simulation of annual cycles of emission-driven trace gases.
Leo J. Donner, Travis A. O'Brien, Daniel Rieger, Bernhard Vogel, and William F. Cooke
Atmos. Chem. Phys., 16, 12983–12992, https://doi.org/10.5194/acp-16-12983-2016, https://doi.org/10.5194/acp-16-12983-2016, 2016
Short summary
Short summary
Uncertainties in both climate forcing and sensitivity limit the extent to which climate projections can meet society's needs for actionable climate science. Advances in observing and modeling atmospheric vertical velocities provide a potential breakthrough in understanding climate forcing and sensitivity, with concurrent reductions in uncertainty.
Mariano Mertens, Astrid Kerkweg, Patrick Jöckel, Holger Tost, and Christiane Hofmann
Geosci. Model Dev., 9, 3545–3567, https://doi.org/10.5194/gmd-9-3545-2016, https://doi.org/10.5194/gmd-9-3545-2016, 2016
Short summary
Short summary
This fourth part in a series of publications describing the newly developed regional chemistry–climate system MECO(n) is dedicated to the evaluation of MECO(n) with respect to tropospheric gas-phase chemistry. For this, a simulation incorporating two regional instances, one over Europe with 50 km resolution and one over Germany with 12 km resolution, is conducted. The model results are compared with satellite, ground-based and aircraft in situ observations.
Carolin Walter, Saulo R. Freitas, Christoph Kottmeier, Isabel Kraut, Daniel Rieger, Heike Vogel, and Bernhard Vogel
Atmos. Chem. Phys., 16, 9201–9219, https://doi.org/10.5194/acp-16-9201-2016, https://doi.org/10.5194/acp-16-9201-2016, 2016
Short summary
Short summary
Buoyancy produced by vegetation fires can lead to substantial plume rise with consequences for the dispersion of aerosol emitted by the fires. To study this effect a 1-D plume rise model was included into the regional online integrated model system COSMO-ART. Comparing model results and satellite data for a case study of 2010 Canadian wildfires shows, that the plume rise model outperforms prescribed emission height. The radiative impact of the aerosol leads to a pronounced temperature change.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
D. Rieger, M. Bangert, I. Bischoff-Gauss, J. Förstner, K. Lundgren, D. Reinert, J. Schröter, H. Vogel, G. Zängl, R. Ruhnke, and B. Vogel
Geosci. Model Dev., 8, 1659–1676, https://doi.org/10.5194/gmd-8-1659-2015, https://doi.org/10.5194/gmd-8-1659-2015, 2015
S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer
Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, https://doi.org/10.5194/gmd-7-1297-2014, 2014
K. Klehmet, B. Geyer, and B. Rockel
The Cryosphere, 7, 1017–1034, https://doi.org/10.5194/tc-7-1017-2013, https://doi.org/10.5194/tc-7-1017-2013, 2013
H. Wan, M. A. Giorgetta, G. Zängl, M. Restelli, D. Majewski, L. Bonaventura, K. Fröhlich, D. Reinert, P. Rípodas, L. Kornblueh, and J. Förstner
Geosci. Model Dev., 6, 735–763, https://doi.org/10.5194/gmd-6-735-2013, https://doi.org/10.5194/gmd-6-735-2013, 2013
Related subject area
Climate and Earth system modeling
A process-based evaluation of the Intermediate Complexity Atmospheric Research Model (ICAR) 1.0.1
Effects of coupling a stochastic convective parameterization with the Zhang–McFarlane scheme on precipitation simulation in the DOE E3SMv1.0 atmosphere model
Sensitivity of surface solar radiation to aerosol–radiation and aerosol–cloud interactions over Europe in WRFv3.6.1 climatic runs with fully interactive aerosols
Evaluation of regional climate models ALARO-0 and REMO2015 at 0.22° resolution over the CORDEX Central Asia domain
Using the anomaly forcing Community Land Model (CLM 4.5) for crop yield projections
PMIP4 experiments using MIROC-ES2L Earth system model
Simulating the mid-Holocene, last interglacial and mid-Pliocene climate with EC-Earth3-LR
Understanding the development of systematic errors in the Asian summer monsoon
Evaluation of polar stratospheric clouds in the global chemistry–climate model SOCOLv3.1 by comparison with CALIPSO spaceborne lidar measurements
Lossy compression of Earth system model data based on a hierarchical tensor with Adaptive-HGFDR (v1.0)
Methane chemistry in a nutshell – the new submodels CH4 (v1.0) and TRSYNC (v1.0) in MESSy (v2.54.0)
Coordinating an operational data distribution network for CMIP6 data
Implementation of sequential cropping into JULESvn5.2 land-surface model
Development of four-dimensional variational assimilation system based on the GRAPES–CUACE adjoint model (GRAPES–CUACE-4D-Var V1.0) and its application in emission inversion
HIRM v1.0: a hybrid impulse response model for climate modeling and uncertainty analyses
CLIMADA v1.4.1: towards a globally consistent adaptation options appraisal tool
FORTE 2.0: a fast, parallel and flexible coupled climate model
Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem
Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)
Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system
GTS v1.0: a macrophysics scheme for climate models based on a probability density function
Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model
Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations
SimCloud version 1.0: a simple diagnostic cloud scheme for idealized climate models
DiRong1.0: a distributed implementation for improving routing network generation in model coupling
Unstructured global to coastal wave modeling for the Energy Exascale Earth System Model using WAVEWATCHIII version 6.07
Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations
Geospatial input data for the PALM model system 6.0: model requirements, data sources and processing
Exploring the parameter space of the COSMO-CLM v5.0 regional climate model for the Central Asia CORDEX domain
The benefits of increasing resolution in global and regional climate simulations for European climate extremes
Ensemble prediction using a new dataset of ECMWF initial states – OpenEnsemble 1.0
Sensitivity of precipitation and temperature over Mount Kenya area to physics parameterization options in a high-resolution model simulation performed with WRFV3.8.1
European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP)
Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6
A computationally efficient method for probabilistic local warming projections constrained by history matching and pattern scaling, demonstrated by WASP–LGRTC-1.0
R2D2 v2.0: accounting for temporal dependences in multivariate bias correction via analogue rank resampling
Extending the Modular Earth Submodel System (MESSy v2.54) model hierarchy: the ECHAM/MESSy IdeaLized (EMIL) model setup
Boreal summer intraseasonal oscillation in a superparameterized general circulation model: effects of air–sea coupling and ocean mean state
Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response
Modeling land surface processes over a mountainous rainforest in Costa Rica using CLM4.5 and CLM5
A new bias-correction method for precipitation over complex terrain suitable for different climate states: a case study using WRF (version 3.8.1)
Quantifying and attributing time step sensitivities in present-day climate simulations conducted with EAMv1
ISSM-SLPS: geodetically compliant Sea-Level Projection System for the Ice-sheet and Sea-level System Model v4.17
Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0
Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment
TransEBM v. 1.0: Description, tuning, and validation of a transient model of the Earth’s energy balance in two dimensions
Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform
MIROC-INTEG-LAND version 1: a global biogeochemical land surface model with human water management, crop growth, and land-use change
Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 2: Sensitivity analysis and model calibration
Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour
Johannes Horak, Marlis Hofer, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Geosci. Model Dev., 14, 1657–1680, https://doi.org/10.5194/gmd-14-1657-2021, https://doi.org/10.5194/gmd-14-1657-2021, 2021
Short summary
Short summary
This process-based evaluation of the atmospheric model ICAR is conducted to derive recommendations to increase the likelihood of its results being correct for the right reasons. We conclude that a different diagnosis of the atmospheric background state is necessary, as well as a model top at an elevation of at least 10 km. Alternative boundary conditions at the top were not found to be effective in reducing this model top elevation. The results have wide implications for future ICAR studies.
Yong Wang, Guang J. Zhang, Shaocheng Xie, Wuyin Lin, George C. Craig, Qi Tang, and Hsi-Yen Ma
Geosci. Model Dev., 14, 1575–1593, https://doi.org/10.5194/gmd-14-1575-2021, https://doi.org/10.5194/gmd-14-1575-2021, 2021
Short summary
Short summary
A stochastic deep convection parameterization is implemented into the US Department of Energy Energy Exascale Earth System Model Atmosphere Model version 1 (EAMv1). Compared to the default model, the well-known problem of
too much light rain and too little heavy rainis largely alleviated over the tropics with the stochastic scheme. Results from this study provide important insights into the model performance of EAMv1 when stochasticity is included in the deep convective parameterization.
Sonia Jerez, Laura Palacios-Peña, Claudia Gutiérrez, Pedro Jiménez-Guerrero, Jose María López-Romero, Enrique Pravia-Sarabia, and Juan Pedro Montávez
Geosci. Model Dev., 14, 1533–1551, https://doi.org/10.5194/gmd-14-1533-2021, https://doi.org/10.5194/gmd-14-1533-2021, 2021
Short summary
Short summary
This research explores the role of aerosols when modeling surface solar radiation at regional scales (over Europe). A set of model experiments was performed with and without dynamical modeling of atmospheric aerosols and their direct and indirect effects on radiation. Results showed significant differences in the simulated solar radiation, mainly driven by the aerosol impact on cloudiness, which calls for caution when interpreting model experiments that do not include aerosols.
Sara Top, Lola Kotova, Lesley De Cruz, Svetlana Aniskevich, Leonid Bobylev, Rozemien De Troch, Natalia Gnatiuk, Anne Gobin, Rafiq Hamdi, Arne Kriegsmann, Armelle Reca Remedio, Abdulla Sakalli, Hans Van De Vyver, Bert Van Schaeybroeck, Viesturs Zandersons, Philippe De Maeyer, Piet Termonia, and Steven Caluwaerts
Geosci. Model Dev., 14, 1267–1293, https://doi.org/10.5194/gmd-14-1267-2021, https://doi.org/10.5194/gmd-14-1267-2021, 2021
Short summary
Short summary
Detailed climate data are needed to assess the impact of climate change on human and natural systems. The performance of two high-resolution regional climate models, ALARO-0 and REMO2015, was investigated over central Asia, a vulnerable region where detailed climate information is scarce. In certain subregions the produced climate data are suitable for impact studies, but bias adjustment is required for subregions where significant biases have been identified.
Yaqiong Lu and Xianyu Yang
Geosci. Model Dev., 14, 1253–1265, https://doi.org/10.5194/gmd-14-1253-2021, https://doi.org/10.5194/gmd-14-1253-2021, 2021
Short summary
Short summary
Crop growth in land surface models normally requires high-temporal-resolution climate data, but such high-temporal-resolution climate data are not provided by many climate model simulations due to expensive storage, which limits modeling choices if there is an interest in a particular climate simulation that only saved monthly outputs. Our work provides an alternative way to use the monthly climate for crop yield projections. Such an approach could be easily adopted by other crop models.
Rumi Ohgaito, Akitomo Yamamoto, Tomohiro Hajima, Ryouta O'ishi, Manabu Abe, Hiroaki Tatebe, Ayako Abe-Ouchi, and Michio Kawamiya
Geosci. Model Dev., 14, 1195–1217, https://doi.org/10.5194/gmd-14-1195-2021, https://doi.org/10.5194/gmd-14-1195-2021, 2021
Short summary
Short summary
Using the MIROC-ES2L Earth system model, selected time periods of the past were simulated. The ability to simulate the past is also an evaluation of the performance of the model in projecting global warming. Simulations for 21 000, 6000, and 127 000 years ago, and a simulation for 1000 years starting in 850 CE were simulated. The results showed that the model can generally describe past climate change.
Qiong Zhang, Ellen Berntell, Josefine Axelsson, Jie Chen, Zixuan Han, Wesley de Nooijer, Zhengyao Lu, Qiang Li, Qiang Zhang, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 1147–1169, https://doi.org/10.5194/gmd-14-1147-2021, https://doi.org/10.5194/gmd-14-1147-2021, 2021
Short summary
Short summary
Paleoclimate modelling has long been regarded as a strong out-of-sample test bed of the climate models that are used for the projection of future climate changes. Here, we document the model experimental setups for the three past warm periods with EC-Earth3-LR and present the results on the large-scale features. The simulations demonstrate good performance of the model in capturing the climate response under different climate forcings.
Gill M. Martin, Richard C. Levine, José M. Rodriguez, and Michael Vellinga
Geosci. Model Dev., 14, 1007–1035, https://doi.org/10.5194/gmd-14-1007-2021, https://doi.org/10.5194/gmd-14-1007-2021, 2021
Short summary
Short summary
Our study highlights a number of different techniques that can be employed to investigate the sources of model error. We demonstrate how this methodology can be used to identify the regions and model components responsible for the development of long-standing errors in the Asian summer monsoon. Once these are known, further work can be done to explore the local processes contributing to this behaviour and their sensitivity to changes in physical parameterisations and/or model resolution.
Michael Steiner, Beiping Luo, Thomas Peter, Michael C. Pitts, and Andrea Stenke
Geosci. Model Dev., 14, 935–959, https://doi.org/10.5194/gmd-14-935-2021, https://doi.org/10.5194/gmd-14-935-2021, 2021
Short summary
Short summary
We evaluate polar stratospheric clouds (PSCs) as simulated by the chemistry–climate model (CCM) SOCOLv3.1 in comparison with measurements by the CALIPSO satellite. A cold bias results in an overestimated PSC area and mountain-wave ice is underestimated, but we find overall good temporal and spatial agreement of PSC occurrence and composition. This work confirms previous studies indicating that simplified PSC schemes may also achieve good approximations of the fundamental properties of PSCs.
Zhaoyuan Yu, Dongshuang Li, Zhengfang Zhang, Wen Luo, Yuan Liu, Zengjie Wang, and Linwang Yuan
Geosci. Model Dev., 14, 875–887, https://doi.org/10.5194/gmd-14-875-2021, https://doi.org/10.5194/gmd-14-875-2021, 2021
Short summary
Short summary
Few lossy compression methods consider both the global and local multidimensional coupling correlations, which could lead to information loss in data compression. Here we develop an adaptive lossy compression method, Adaptive-HGFDR, to capture both the global and local variation of multidimensional coupling correlations and improve approximation accuracy. The method can achieve good compression performances for most flux variables with significant spatiotemporal heterogeneity.
Franziska Winterstein and Patrick Jöckel
Geosci. Model Dev., 14, 661–674, https://doi.org/10.5194/gmd-14-661-2021, https://doi.org/10.5194/gmd-14-661-2021, 2021
Short summary
Short summary
Atmospheric methane is currently a hot topic in climate research. This is partly due to its chemically active nature. We introduce a simplified approach to simulate methane in climate models to enable large sensitivity studies by reducing computational cost but including the crucial feedback of methane on stratospheric water vapour. We further provide options to simulate the isotopic content of methane and to generate output for an inverse optimization technique for emission estimation.
Ruth Petrie, Sébastien Denvil, Sasha Ames, Guillaume Levavasseur, Sandro Fiore, Chris Allen, Fabrizio Antonio, Katharina Berger, Pierre-Antoine Bretonnière, Luca Cinquini, Eli Dart, Prashanth Dwarakanath, Kelsey Druken, Ben Evans, Laurent Franchistéguy, Sébastien Gardoll, Eric Gerbier, Mark Greenslade, David Hassell, Alan Iwi, Martin Juckes, Stephan Kindermann, Lukasz Lacinski, Maria Mirto, Atef Ben Nasser, Paola Nassisi, Eric Nienhouse, Sergey Nikonov, Alessandra Nuzzo, Clare Richards, Syazwan Ridzwan, Michel Rixen, Kim Serradell, Kate Snow, Ag Stephens, Martina Stockhause, Hans Vahlenkamp, and Rick Wagner
Geosci. Model Dev., 14, 629–644, https://doi.org/10.5194/gmd-14-629-2021, https://doi.org/10.5194/gmd-14-629-2021, 2021
Short summary
Short summary
This paper describes the infrastructure that is used to distribute Coupled Model Intercomparison Project Phase 6 (CMIP6) data around the world for analysis by the climate research community. It is expected that there will be ~20 PB (petabytes) of data available for analysis. The operations team performed a series of preparation "data challenges" to ensure all components of the infrastructure were operational for when the data became available for timely data distribution and subsequent analysis.
Camilla Mathison, Andrew J. Challinor, Chetan Deva, Pete Falloon, Sébastien Garrigues, Sophie Moulin, Karina Williams, and Andy Wiltshire
Geosci. Model Dev., 14, 437–471, https://doi.org/10.5194/gmd-14-437-2021, https://doi.org/10.5194/gmd-14-437-2021, 2021
Short summary
Short summary
Sequential cropping (also known as multiple or double cropping) is a common cropping system, particularly in tropical regions. Typically, land surface models only simulate a single crop per year. To understand how sequential crops influence surface fluxes, we implement sequential cropping in JULES to simulate all the crops grown within a year at a given location in a seamless way. We demonstrate the method using a site in Avignon, four locations in India and a regional run for two Indian states.
Chao Wang, Xingqin An, Qing Hou, Zhaobin Sun, Yanjun Li, and Jiangtao Li
Geosci. Model Dev., 14, 337–350, https://doi.org/10.5194/gmd-14-337-2021, https://doi.org/10.5194/gmd-14-337-2021, 2021
Kalyn Dorheim, Steven J. Smith, and Ben Bond-Lamberty
Geosci. Model Dev., 14, 365–375, https://doi.org/10.5194/gmd-14-365-2021, https://doi.org/10.5194/gmd-14-365-2021, 2021
Short summary
Short summary
Simple climate models are frequently used in research and decision-making communities because of their tractability and low computational cost. Simple climate models are diverse, including highly idealized and process-based models. Here we present a hybrid approach that combines the strength of two types of simple climate models in a flexible framework. This hybrid approach has provided insights into the climate system and opens an avenue for investigating radiative forcing uncertainties.
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
Short summary
Climate change is a fact and adaptation a necessity. The Economics of Climate Adaptation methodology provides a framework to integrate risk and reward perspectives of different stakeholders, underpinned by the CLIMADA impact modelling platform. This extended version of CLIMADA enables risk assessment and options appraisal in a modular form and occasionally bespoke fashion yet with high reusability of functionalities to foster usage in interdisciplinary studies and international collaboration.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Ah-Hyun Kim, Seong Soo Yum, Dong Yeong Chang, and Minsu Park
Geosci. Model Dev., 14, 259–273, https://doi.org/10.5194/gmd-14-259-2021, https://doi.org/10.5194/gmd-14-259-2021, 2021
Short summary
Short summary
A new method to estimate the sulfate aerosol hygroscopicity parameter (κSO4) is suggested that can consider κSO4 for two different sulfate species instead of prescribing a single κSO4 value, as in most previous studies. The new method simulates more realistic cloud droplet concentrations and, thus, a more realistic cloud albedo effect than the original method. The new method is simple and readily applicable to modeling studies investigating sulfate aerosols’ effect in aerosol–cloud interactions.
Brigitta Szabó, Melanie Weynants, and Tobias K. D. Weber
Geosci. Model Dev., 14, 151–175, https://doi.org/10.5194/gmd-14-151-2021, https://doi.org/10.5194/gmd-14-151-2021, 2021
Short summary
Short summary
This paper presents updated European prediction algorithms (euptf2) to compute soil hydraulic parameters from easily available soil properties. The new algorithms lead to significantly better predictions and provide a built-in prediction uncertainty computation. The influence of predictor variables on predicted soil hydraulic properties is explored and practical guidance on how to use the derived PTFs is provided. A website and an R package facilitate easy application of the updated predictions.
Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang
Geosci. Model Dev., 14, 205–221, https://doi.org/10.5194/gmd-14-205-2021, https://doi.org/10.5194/gmd-14-205-2021, 2021
Short summary
Short summary
The spin-up in GRAPES_GFS, under different initial fields, goes through a dramatic adjustment in the first half-hour of integration and slow dynamic and thermal adjustments afterwards. It lasts for at least 6 h, with model adjustment gradually completed from lower to upper layers in the model. Thus, the forecast results, at least in the first 6 h, should be avoided when used. In addition, the spin-up process should repeat when the model simulation is interrupted.
Chein-Jung Shiu, Yi-Chi Wang, Huang-Hsiung Hsu, Wei-Ting Chen, Hua-Lu Pan, Ruiyu Sun, Yi-Hsuan Chen, and Cheng-An Chen
Geosci. Model Dev., 14, 177–204, https://doi.org/10.5194/gmd-14-177-2021, https://doi.org/10.5194/gmd-14-177-2021, 2021
Short summary
Short summary
A cloud macrophysics scheme utilizing grid-mean hydrometeor information is developed and evaluated for climate models. The GFS–TaiESM–Sundqvist (GTS) scheme can simulate variations of cloud fraction associated with relative humidity (RH) in a more consistent way than the default scheme of CAM5.3. Through better cloud–RH distributions, the GTS scheme helps to better represent cloud fraction, cloud radiative forcing, and thermodynamic-related climatic fields in climate simulations.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Qun Liu, Matthew Collins, Penelope Maher, Stephen I. Thomson, and Geoffrey K. Vallis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-402, https://doi.org/10.5194/gmd-2020-402, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Clouds play an vital role in Earth's energy budget and even a small change in cloud fields can have a large impact on climate system. They also bring lots of uncertainties to climate models. Here we implement a simple diagnostic cloud scheme in order to reproduce the general radiative properties of clouds. The scheme can capture some key features of the cloud fraction and cloud radiative properties, thus providing a useful tool to explore the unsolved problems about clouds.
Hao Yu, Li Liu, Chao Sun, Ruizhe Li, Xinzhu Yu, Cheng Zhang, Zhiyuan Zhang, and Bin Wang
Geosci. Model Dev., 13, 6253–6263, https://doi.org/10.5194/gmd-13-6253-2020, https://doi.org/10.5194/gmd-13-6253-2020, 2020
Short summary
Short summary
Routing network generation is a major step for initializing the data transfer functionality for model coupling. The distributed implementation for routing network generation (DiRong1.0) proposed in this paper can significantly improve the global implementation of routing network generation used in some existing coupling software, because it does not introduce any gather–broadcast communications and achieves much lower complexity in terms of time, memory, and communication.
Steven R. Brus, Phillip J. Wolfram, Luke P. Van Roekel, and Jessica D. Meixner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-351, https://doi.org/10.5194/gmd-2020-351, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Wind generated waves are an important process in the global climate system. They mediate many interactions between the ocean, atmosphere, and sea ice. Models which describe these waves are computationally expensive and have often been excluded from coupled Earth system models. To address this, we have developed a capability for the WAVEWATCHIII model which allows model resolution to be varied globally across the coastal the open ocean. This allows for improved accuracy at reduced computing time.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Wieke Heldens, Cornelia Burmeister, Farah Kanani-Sühring, Björn Maronga, Dirk Pavlik, Matthias Sühring, Julian Zeidler, and Thomas Esch
Geosci. Model Dev., 13, 5833–5873, https://doi.org/10.5194/gmd-13-5833-2020, https://doi.org/10.5194/gmd-13-5833-2020, 2020
Short summary
Short summary
For realistic microclimate simulations in urban areas with PALM 6.0, detailed description of surface types, buildings and vegetation is required. This paper shows how such input data sets can be derived with the example of three German cities. Various data sources are used, including remote sensing, municipal data collections and open data such as OpenStreetMap. The collection and preparation of input data sets is tedious. Future research aims therefore at semi-automated tools to support users.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
Carley E. Iles, Robert Vautard, Jane Strachan, Sylvie Joussaume, Bernd R. Eggen, and Chris D. Hewitt
Geosci. Model Dev., 13, 5583–5607, https://doi.org/10.5194/gmd-13-5583-2020, https://doi.org/10.5194/gmd-13-5583-2020, 2020
Short summary
Short summary
We investigate how increased resolution affects the simulation of European climate extremes for global and regional climate models to inform modelling strategies. Precipitation extremes become heavier with higher resolution, especially over mountains, wind extremes become somewhat stronger, and for temperature extremes warm biases are reduced over mountains. Differences with resolution for the global model appear to come from downscaling effects rather than improved large-scale circulation.
Pirkka Ollinaho, Glenn D. Carver, Simon T. K. Lang, Lauri Tuppi, Madeleine Ekblom, and Heikki Järvinen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-292, https://doi.org/10.5194/gmd-2020-292, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
OpenEnsemble 1.0 is a novel dataset that aims to open up ensemble or probabilistic weather forecasting research for the academic community. The dataset contains atmospheric states that are required for running model forecasts of the atmospheric evolution. Our capacity to observe the atmosphere is limited, thus a single reconstruction of the atmospheric state contains some errors. Our dataset provides sets of 50 slightly different atmospheric states so that these errors can be taken into account.
Martina Messmer, Santos J. González-Rojí, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-347, https://doi.org/10.5194/gmd-2020-347, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Sensitivity experiments with the WRF model are run to find an optimal parameterization setup for precipitation around Mount Kenya at a scale that resolves convection (1 km). Precipitation is compared against many weather stations and gridded observational data sets. Both the temporal correlation of monthly precipitation sums and pattern correlations show that fewer nests lead to a more constrained simulation with higher correlation. The Grell-Freitas cumulus scheme obtains most accurate results.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Philip Goodwin, Martin Leduc, Antti-Ilari Partanen, H. Damon Matthews, and Alex Rogers
Geosci. Model Dev., 13, 5389–5399, https://doi.org/10.5194/gmd-13-5389-2020, https://doi.org/10.5194/gmd-13-5389-2020, 2020
Short summary
Short summary
Numerical climate models are used to make projections of future surface warming for different pathways of future greenhouse gas emissions, where future surface warming will vary from place to place. However, it is so expensive to run complex models using supercomputers that future projections can only be produced for a small number of possible future emissions pathways. This study presents an efficient climate model to make projections of local surface warming using a desktop computer.
Mathieu Vrac and Soulivanh Thao
Geosci. Model Dev., 13, 5367–5387, https://doi.org/10.5194/gmd-13-5367-2020, https://doi.org/10.5194/gmd-13-5367-2020, 2020
Short summary
Short summary
We propose a multivariate bias correction (MBC) method to adjust the spatial and/or inter-variable properties of climate simulations, while also accounting for their temporal dependences (e.g., autocorrelations).
It consists on a method reordering the ranks of the time series according to their multivariate distance to a reference time series.
Results show that temporal correlations are improved while spatial and inter-variable correlations are still satisfactorily corrected.
Hella Garny, Roland Walz, Matthias Nützel, and Thomas Birner
Geosci. Model Dev., 13, 5229–5257, https://doi.org/10.5194/gmd-13-5229-2020, https://doi.org/10.5194/gmd-13-5229-2020, 2020
Short summary
Short summary
Numerical models of Earth's climate system have been gaining more and more complexity over the last decades. Therefore, it is important to establish simplified models to improve process understanding. In our study, we present and document the development of a new simplified model setup within the framework of a complex climate model system that uses the same routines to calculate atmospheric dynamics as the complex model but is simplified in the representation of clouds and radiation.
Yingxia Gao, Nicholas P. Klingaman, Charlotte A. DeMott, and Pang-Chi Hsu
Geosci. Model Dev., 13, 5191–5209, https://doi.org/10.5194/gmd-13-5191-2020, https://doi.org/10.5194/gmd-13-5191-2020, 2020
Short summary
Short summary
Both the air–sea coupling and ocean mean state affect the fidelity of simulated boreal summer intraseasonal oscillation (BSISO). To elucidate their relative effects on the simulated BSISO, a set of experiments was conducted using a superparameterized AGCM and its coupled version. Both air–sea coupling and cold ocean mean state improve the BSISO amplitude due to the suppression of the overestimated variance, while the former (latter) could further upgrade (degrade) the BSISO propagation.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Jaeyoung Song, Gretchen R. Miller, Anthony T. Cahill, Luiza Maria T. Aparecido, and Georgianne W. Moore
Geosci. Model Dev., 13, 5147–5173, https://doi.org/10.5194/gmd-13-5147-2020, https://doi.org/10.5194/gmd-13-5147-2020, 2020
Short summary
Short summary
The performance of a land surface model (CLM4.5 and 5.0) was examined against a suite of measurements from a tropical montane rainforest in Costa Rica. Both versions failed to capture the effects of frequent rainfall events and mountainous terrain on temperature, leaf wetness, photosynthesis, and transpiration. While the new model version eliminated some errors, it still cannot precisely simulate a number of processes. This suggests that two key components of the model need modification.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Geosci. Model Dev., 13, 5007–5027, https://doi.org/10.5194/gmd-13-5007-2020, https://doi.org/10.5194/gmd-13-5007-2020, 2020
Short summary
Short summary
This work presents a new bias-correction method for precipitation that considers orographic characteristics, which can be used in studies where the latter strongly changes. The three-step correction method consists of a separation into orographic features, correction of low-intensity precipitation, and application of empirical quantile mapping. Seasonal bias induced by the global climate model is fully corrected. Rigorous cross-validations illustrate the method's applicability and robustness.
Hui Wan, Shixuan Zhang, Philip J. Rasch, Vincent E. Larson, Xubin Zeng, and Huiping Yan
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-330, https://doi.org/10.5194/gmd-2020-330, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Numerical models used in weather and climate research and prediction unavoidably contain numerical errors resulting from temporal discretization, and the impact of such errors can be substantial. Complex process interactions often make it difficult to pinpoint the exact sources of such errors. This study uses a series of sensitivity experiments to identify components in a global atmosphere model that are responsible for time step sensitivities in various cloud regimes.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Hiroshi Yamashita, Feijia Yin, Volker Grewe, Patrick Jöckel, Sigrun Matthes, Bastian Kern, Katrin Dahlmann, and Christine Frömming
Geosci. Model Dev., 13, 4869–4890, https://doi.org/10.5194/gmd-13-4869-2020, https://doi.org/10.5194/gmd-13-4869-2020, 2020
Short summary
Short summary
This paper describes the updated submodel AirTraf 2.0 which simulates global air traffic in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. Nine aircraft routing options have been integrated, including contrail avoidance, minimum economic costs, and minimum climate impact. Example simulations reveal characteristics of different routing options on air traffic performances. The consistency of the AirTraf simulations is verified with literature data.
Landon A. Rieger, Jason N. S. Cole, John C. Fyfe, Stephen Po-Chedley, Philip J. Cameron-Smith, Paul J. Durack, Nathan P. Gillett, and Qi Tang
Geosci. Model Dev., 13, 4831–4843, https://doi.org/10.5194/gmd-13-4831-2020, https://doi.org/10.5194/gmd-13-4831-2020, 2020
Short summary
Short summary
Recently, the stratospheric aerosol forcing dataset used as an input to the Coupled Model Intercomparison Project phase 6 was updated. This work explores the impact of those changes on the modelled historical climates in the CanESM5 and EAMv1 models. Temperature differences in the stratosphere shortly after the Pinatubo eruption are found to be significant, but surface temperatures and precipitation do not show a significant change.
Elisa Ziegler and Kira Rehfeld
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-237, https://doi.org/10.5194/gmd-2020-237, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Past climate changes are the only record of how the climate responds to changes in conditions on Earth, but simulations with complex climate models are challenging. We extended a simple climate model such that it simulates the development of temperatures over time. In the model, changes in carbon dioxide and ice distribution affect the simulated temperatures the most. The model is very efficient and can therefore be used to examine past climate changes happening over long periods of time.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020, https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
Chia-Te Chien, Markus Pahlow, Markus Schartau, and Andreas Oschlies
Geosci. Model Dev., 13, 4691–4712, https://doi.org/10.5194/gmd-13-4691-2020, https://doi.org/10.5194/gmd-13-4691-2020, 2020
Short summary
Short summary
We demonstrate sensitivities of tracers to parameters of a new optimality-based plankton–ecosystem model (OPEM) in the UVic-ESCM. We find that changes in phytoplankton subsistence nitrogen quota strongly impact the nitrogen inventory, nitrogen fixation, and elemental stoichiometry of ordinary phytoplankton and diazotrophs. We introduce a new likelihood-based metric for model calibration, and it shows the capability of constraining globally averaged oxygen, nitrate, and DIC concentrations.
Markus Pahlow, Chia-Te Chien, Lionel A. Arteaga, and Andreas Oschlies
Geosci. Model Dev., 13, 4663–4690, https://doi.org/10.5194/gmd-13-4663-2020, https://doi.org/10.5194/gmd-13-4663-2020, 2020
Short summary
Short summary
The stoichiometry of marine biotic processes is important for the regulation of atmospheric CO2 and hence the global climate. We replace a simplistic, fixed-stoichiometry plankton module in an Earth system model with an optimal-regulation model with variable stoichiometry. Our model compares better to the observed carbon transfer from the surface to depth and surface nutrient distributions. This work could aid our ability to describe and project the role of marine ecosystems in the Earth system.
Cited articles
Anders, I. and Rockel, B.: The influence of prescribed soil type distribution
on the representation of present climate in a regional climate model, Clim.
Dynam., 33, 177–186, 2009. a
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M.,
and Reinhardt, T.: Operational convective-scale numerical weather prediction
with the COSMO model: description and sensitivities, Mon. Weather Rev.,
139, 3887–3905, 2011. a
Barker, H. W., Stephens, G., Partain, P., Bergman, J., Bonnel, B., Campana, K., Clothiaux, E., Clough, S., Cusack, S., Delamere, J., Edwards, J., Evans, K. F., Fouquart, Y., Freidenreich, S., Galin, V., Hou, Y., Kato, S., Li, J., Mlawer, E., Morcrette, J.-J., O'Hirok, W., Räisänen, P., Ramaswamy, V., Ritter, B., Rozanov, E., Schlesinger, M., Shibata, K., Sporyshev, P., Sun, Z., Wendisch, M., Wood, N., and Yang, F.: Assessing 1D
atmospheric solar radiative transfer models: Interpretation and handling of
unresolved clouds, J. Climate, 16, 2676–2699, 2003. a, b
Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model
projections of changes in European climate by the end of this century,
Climatic Change, 81, 7–30, 2007. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge‐Sanz, B. M., Morcrette, J.‐J., Park, B.‐K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.‐N., and Vitart, F.
: The
ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a, b
Doms, G. and Schättler, U.: The nonhydrostatic limited-area model LM
(Lokal-Modell) of DWD, Part I: Scientific documentation, Deutscher
Wetterdienst (DWD), Offenbach, Germany, 10, 1999. a
Doms, G., Förstner, J., Heise, E., Herzog, H.,Mironov, D., Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P., and Vogel, G.: A
description of the nonhydrostatic regional COSMO model, Part II: Physical
parameterization, Deutscher Wetterdienst, Offenbach, Germany, 2011. a, b, c
Gal-Chen, T. and Somerville, R. C.: On the use of a coordinate transformation
for the solution of the Navier-Stokes equations, J. Comput.
Phys., 17, 209–228, 1975. a
Gampe, D. and Ludwig, R.: Evaluation of gridded precipitation data products for
hydrological applications in complex topography, Hydrology, 4, https://doi.org/10.3390/hydrology4040053, 2017. a
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen,T., Mikolajewicz, U., Müller,W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., D. Six, K., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K-H., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for
the Coupled Model Intercomparison Project phase 5, J. Adv.
Model. Earth Sy., 5, 572–597, 2013. a
Giorgetta, M. A., Brokopf, R., Crueger, T., Esch, M., Fiedler, S., Helmert, J., Hohenegger, C., Kornblueh, L., Köhler, M., Manzini, E., Mauritsen, T., Nam, C., Raddatz, T., Rast, S., Reinert, D., Sakradzija, M., Schmidt, H.,
Schneck, R., Schnur, R., Silvers, L., Wan, H., Zängl, G., Stevens, B.: ICON-A,
the atmosphere component of the ICON Earth System Model. Part I: Model
Description, J. Adv. Model. Earth Sy., 10, 1613–1637,
https://doi.org/10.1029/2017MS001242, 2018. a, b
Giorgi, F., Jones, C., and Asrar, G. R.: Addressing climate information
needs at the regional level: the CORDEX framework, World Meteorological
Organization (WMO) Bulletin, 58, 175 pp., 2009. a
Haylock, M., Hofstra, N., Klein Tank, A., Klok, E., Jones, P., and New, M.: A
European daily high-resolution gridded data set of surface temperature and
precipitation for 1950–2006, J. Geophys. Res.-Atmos., 113, D20119,
https://doi.org/10.1029/2008JD010201, 2008. a, b
Hofstra, N., Haylock, M., New, M., and Jones, P. D.: Testing E-OBS European
high-resolution gridded data set of daily precipitation and surface
temperature, J. Geophys. Res.-Atmos., 114, D21101, https://doi.org/10.1029/2009JD011799,
2009. a
Korn, P.: Formulation of an unstructured grid model for global ocean dynamics,
J. Comput. Phys., 339, 525–552, 2017. a
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014. a, b, c, d, e
Majewski, D. and Ritter, B.: Das Global-Modell GME, Promet, 27, 111–122, 2002. a
Orr, A., Bechtold, P., Scinocca, J., Ern, M., and Janiskova, M.: Improved
middle atmosphere climate and forecasts in the ECMWF model through a
nonorographic gravity wave drag parameterization, J. Climate, 23,
5905–5926, 2010. a
Pham, T. V. and Rockel, B.: Starter Package ICON-CLM_SP (Version ICON-CLM_SP_beta1), Zenodo, https://doi.org/10.5281/zenodo.3896136, 2020. a
Pham, T. V., Brauch, J., Dieterich, C., Früh, B., and Ahrens, B.: New
coupled atmosphere-ocean-ice system COSMO-CLM/NEMO: assessing air
temperature sensitivity over the North and Baltic Seas, Oceanologia,
56, 167–189, https://doi.org/10.5697/oc.56-2.167, 2014. a
Rieger, D., Köhler, M., Hogan, R., Schäfer, S., Seifert, A., Lozar,
A. D., and Zängl, G.: ecRad in ICON – Implementation Overview, Reports
on ICON, Deutscher Wetterdienst, Offenbach, Germany, https://doi.org/10.5676/DWDpub/nwv/icon004, 2019. a
Ritter, B. and Geleyn, J.-F.: A comprehensive radiation scheme for numerical
weather prediction models with potential applications in climate simulations,
Mon. Weather Rev., 120, 303–325, 1992. a
Rockel, B., Will, A., and Hense, A.: The regional climate model COSMO-CLM
(CCLM), Meteorol. Z., 17, 347–348, https://doi.org/10.1127/0941-2948/2008/0309, 2008. a
Sanchez-Gomez, E., Somot, S., and Déqué, M.: Ability of an ensemble of
regional climate models to reproduce weather regimes over Europe-Atlantic
during the period 1961–2000, Clim. Dynam., 33, 723–736, 2009. a
Schrodin, R. and Heise, E.: The multi-layer version of the DWD soil model
TERRA_LM, Deutscher Wetterdienst, Offenbach, Germany, https://doi.org/10.5676/DWD_pub/nwv/cosmo-tr_2,
2001. a
Schulz, J.-P., Vogel, G., Becker, C., Kothe, S., Rummel, U., and Ahrens, B.:
Evaluation of the ground heat flux simulated by a multi-layer land surface
scheme using high-quality observations at grass land and bare soil,
Meteorol. Z., 25, 607–620, https://doi.org/10.1127/metz/2016/0537,
2016. a
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: Atmospheric
component of the MPI-M Earth System Model: ECHAM6, J. Adv. Model
Earth Sy., 5, 146–172, https://doi.org/10.1002/jame.20015, 2013. a
Tegen, I., Hollrig, P., Chin, M., Fung, I., Jacob, D., and Penner, J.:
Contribution of different aerosol species to the global aerosol extinction
optical thickness: Estimates from model results, J. Geophys.
Res.-Atmos., 102, 23895–23915, 1997. a
Trusilova, K., Früh, B., Brienen, S., and Keuler, K.: Urban effects in
climate simulations for CORDEX Europe, CLM-Community Newsletter, 2, 4–7,
2014. a
Van den Besselaar, E., Haylock, M., Van der Schrier, G., and Klein Tank, A.: A
European daily high-resolution observational gridded data set of sea level
pressure, J. Geophys. Res.-Atmos., 116, D11110, https://doi.org/10.1029/2010JD015468, 2011. a, b
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON
(ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M:
Description of the non-hydrostatic dynamical core, Q. J.
Roy. Meteor. Soc., 141, 563–579,
https://doi.org/10.1002/qj.2378, 2015. a
Short summary
A new regional climate model was prepared based on a weather forecast model. Slow processes of the climate system such as ocean state development and greenhouse gas emissions were implemented. A model infrastructure and evaluation tools were also prepared to facilitate long-term simulations and model evalution. The first ICON-CLM results were close to observations and comparable to those from COSMO-CLM, the recommended model being used at the Deutscher Wetterdienst and CLM Community.
A new regional climate model was prepared based on a weather forecast model. Slow processes of...