Articles | Volume 14, issue 2
Geosci. Model Dev., 14, 935–959, 2021
Geosci. Model Dev., 14, 935–959, 2021

Model evaluation paper 12 Feb 2021

Model evaluation paper | 12 Feb 2021

Evaluation of polar stratospheric clouds in the global chemistry–climate model SOCOLv3.1 by comparison with CALIPSO spaceborne lidar measurements

Michael Steiner et al.

Related authors

Mountain-wave-induced polar stratospheric clouds and their representation in the global chemistry model ICON-ART
Michael Weimer, Jennifer Buchmüller, Lars Hoffmann, Ole Kirner, Beiping Luo, Roland Ruhnke, Michael Steiner, Ines Tritscher, and Peter Braesicke
Atmos. Chem. Phys., 21, 9515–9543,,, 2021
Short summary

Related subject area

Climate and Earth system modeling
Oil palm modelling in the global land surface model ORCHIDEE-MICT
Yidi Xu, Philippe Ciais, Le Yu, Wei Li, Xiuzhi Chen, Haicheng Zhang, Chao Yue, Kasturi Kanniah, Arthur P. Cracknell, and Peng Gong
Geosci. Model Dev., 14, 4573–4592,,, 2021
Short summary
Testing the reliability of interpretable neural networks in geoscience using the Madden–Julian oscillation
Benjamin A. Toms, Karthik Kashinath, Prabhat, and Da Yang
Geosci. Model Dev., 14, 4495–4508,,, 2021
Short summary
Climate-model-informed deep learning of global soil moisture distribution
Klaus Klingmüller and Jos Lelieveld
Geosci. Model Dev., 14, 4429–4441,,, 2021
Short summary
fv3gfs-wrapper: a Python wrapper of the FV3GFS atmospheric model
Jeremy McGibbon, Noah D. Brenowitz, Mark Cheeseman, Spencer K. Clark, Johann P. S. Dahm, Eddie C. Davis, Oliver D. Elbert, Rhea C. George, Lucas M. Harris, Brian Henn, Anna Kwa, W. Andre Perkins, Oliver Watt-Meyer, Tobias F. Wicky, Christopher S. Bretherton, and Oliver Fuhrer
Geosci. Model Dev., 14, 4401–4409,,, 2021
Short summary
Recalibrating decadal climate predictions – what is an adequate model for the drift?
Alexander Pasternack, Jens Grieger, Henning W. Rust, and Uwe Ulbrich
Geosci. Model Dev., 14, 4335–4355,,, 2021
Short summary

Cited articles

Akiyoshi, H., Zhou, L. B., Yamashita, Y., Sakamoto, K., Yoshiki, M., Nagashima, T., Takahashi, M., Kurokawa, J., Takigawa, M., and Imamura, T.: A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980–2004 under the CCMVal scenarios, J. Geophys. Res., 114, D03103,, 2009. a
Biele, J., Tsias, A., Luo, B. P., Carslaw, K. S., Neuber, R., Beyerle, G., and Peter, T.: Nonequilibrium coexistence of solid and liquid particles in Arctic stratospheric clouds, J. Geophys. Res., 106, 22991–23007,, 2001. a, b
Brühl, C., Steil, B., Stiller, G., Funke, B., and Jöckel, P.: Nitrogen compounds and ozone in the stratosphere: comparison of MIPAS satellite data with the chemistry climate model ECHAM5/MESSy1, Atmos. Chem. Phys., 7, 5585–5598,, 2007. a
Carslaw, K. S., Luo, B. P., and Peter, T.: An analytic expression for the composition of aqueous HNO3−H2SO4 stratospheric aerosols including gas-phase removal of HNO3, Geophys. Res. Lett., 22, 1877–1880,, 1995. a, b
Carslaw, K. S., Peter, T., Bacmeister, J. T., and Eckermann, S. D.: Widespread solid particle formation by mountain waves in the Arctic stratosphere, J. Geophys. Res.-Atmos., 104, 1827–1836,, 1999. a
Short summary
We evaluate polar stratospheric clouds (PSCs) as simulated by the chemistry–climate model (CCM) SOCOLv3.1 in comparison with measurements by the CALIPSO satellite. A cold bias results in an overestimated PSC area and mountain-wave ice is underestimated, but we find overall good temporal and spatial agreement of PSC occurrence and composition. This work confirms previous studies indicating that simplified PSC schemes may also achieve good approximations of the fundamental properties of PSCs.