Articles | Volume 14, issue 11
https://doi.org/10.5194/gmd-14-7133-2021
https://doi.org/10.5194/gmd-14-7133-2021
Development and technical paper
 | 
24 Nov 2021
Development and technical paper |  | 24 Nov 2021

How biased are our models? – a case study of the alpine region

Denise Degen, Cameron Spooner, Magdalena Scheck-Wenderoth, and Mauro Cacace

Related authors

About the trustworthiness of physics-based machine learning – considerations for geomechanical applications
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
Solid Earth, 16, 477–502, https://doi.org/10.5194/se-16-477-2025,https://doi.org/10.5194/se-16-477-2025, 2025
Short summary
Exploiting Physics-Based Machine Learning to Quantify Geodynamic Effects – Insights from the Alpine Region
Denise Degen, Ajay Kumar, Magdalena Scheck-Wenderoth, and Mauro Cacace
EGUsphere, https://doi.org/10.5194/egusphere-2025-1925,https://doi.org/10.5194/egusphere-2025-1925, 2025
Short summary
Perspectives of physics-based machine learning strategies for geoscientific applications governed by partial differential equations
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023,https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
Effects of transient processes for thermal simulations of the Central European Basin
Denise Degen and Mauro Cacace
Geosci. Model Dev., 14, 1699–1719, https://doi.org/10.5194/gmd-14-1699-2021,https://doi.org/10.5194/gmd-14-1699-2021, 2021
Short summary

Cited articles

Aretz-Nellesen, N., Grepl, M. A., and Veroy, K.: 3D-VAR for parameterized partial differential equations: a certified reduced basis approach, Adv. Comput. Math., 45, 2369–2400, 2019. a
Baroni, G. and Tarantola, S.: A General Probabilistic Framework for uncertainty and global sensitivity analysis of deterministic models: A hydrological case study, Environ. Modell. Softw., 51, 26–34, 2014. a
Baş, D. and Boyacı, I. H.: Modeling and optimization I: Usability of response surface methodology, J. Food Eng., 78, 836–845, 2007. a
Benner, P., Gugercin, S., and Willcox, K.: A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems, SIAM Rev., 57, 483–531, 2015. a, b, c
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., and Escaleira, L. A.: Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76, 965–977, 2008. a
Download
Short summary
In times of worldwide energy transitions, an understanding of the subsurface is increasingly important to provide renewable energy sources such as geothermal energy. To validate our understanding of the subsurface we require data. However, the data are usually not distributed equally and introduce a potential misinterpretation of the subsurface. Therefore, in this study we investigate the influence of measurements on temperature distribution in the European Alps.
Share