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Abstract. Geophysical process simulations play a crucial
role in the understanding of the subsurface. This understand-
ing is required to provide, for instance, clean energy sources
such as geothermal energy. However, the calibration and val-
idation of the physical models heavily rely on state measure-
ments such as temperature. In this work, we demonstrate that
focusing analyses purely on measurements introduces a high
bias. This is illustrated through global sensitivity studies. The
extensive exploration of the parameter space becomes feasi-
ble through the construction of suitable surrogate models via
the reduced basis method, where the bias is found to result
from very unequal data distribution. We propose schemes to
compensate for parts of this bias. However, the bias cannot be
entirely compensated. Therefore, we demonstrate the conse-
quences of this bias with the example of a model calibration.

1 Introduction

Understanding the subsurface is as important in the field of
geosciences as understanding climatic processes. In this pa-
per, we focus on the understanding of the subsurface tem-
perature field, which is of major importance for geothermal
applications. Here, we focus on numerical process simula-
tions to improve our understanding of the subsurface. These
simulations are based on both geological and physical mod-
els; however, in this paper we will primarily further inves-
tigate the latter. The physical model has two major sources
of uncertainties arising from the physical processes itself
(i.e., neglected processes, generalizations) (i.e., Houghton
et al., 2001; Murphy et al., 2004; Refsgaard et al., 2007) and
from the physical parameters (i.e., thermal conductivity, ra-

diogenic heat production) in terms of ranges (i.e., Freymark
et al., 2017; Lehmann et al., 1998; Vogt et al., 2010; Wag-
ner and Clauser, 2005) and their distribution (i.e., Feyen and
Caers, 2006; Floris et al., 2001).

To compensate for both sources of uncertainties, one com-
monly performs model calibrations, either deterministically
(i.e., Doherty and Hunt, 2010; Fuchs and Balling, 2016; Hill
and Tiedeman, 2006; Wellmann and Reid, 2014) or stochas-
tically (i.e., Elison et al., 2019; Linde et al., 2017). Model
calibrations aim to compensate for existing model error by
adjusting the model parameters to a given data set. Naturally,
the data set itself is subject to uncertainties. However, if we
perform, for instance, stochastic model calibrations such as
Markov chain Monte Carlo (Iglesias and Stuart, 2014), we
are able to take these uncertainties into account. Nonethe-
less, there is another problem related to the data set, i.e.,
data distribution. Note that in the following we introduce
the problems arising from data distribution through the ex-
ample of temperature measurements. Still, many of the pre-
sented problems are generalizable for other geophysical data
sources.

The first problem related to the data distribution is the
depth location of the individual measurements. Our geother-
mal models have a depth in the magnitude of 100 km. In con-
trast, our deepest thermal measurements are commonly at a
depth of 5 to 7 km. The second problem is also related to data
density. Focusing on the horizontal data distribution, we face
the problem of data sparsity and unequal data distribution. In
certain model areas, we have very few temperature measure-
ments and in other areas, we have a much larger data density.
This inequality can be compensated by using data-weighting
schemes (i.e., Degen et al., 2021; Lerch, 1991). However,
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we also have areas where no temperature measurements ex-
ist. Data weighting cannot compensate for these nonexistent
measurements. The problem is further enlarged by the data
source. Most of our temperature measurements come from
the hydrocarbon industry; however, their targets and those
of the geothermal industry are not the same in every region.
This means that we can face the problem of lower data reso-
lution in areas of interest whilst possessing higher data reso-
lution in areas that are not of primary interest.

The problem of data sparsity is widely recognized (i.e.,
Cherpeau and Caumon, 2015; Zehner et al., 2010). However,
there are no studies systematically investigating the bias we
introduce due to temperature measurements in a geothermal
setting. Studies for the measurement bias are common in the
field of remote sensing (i.e., Feng et al., 2016; Schwarz et al.,
2020); however, their focus is entirely different. In remote
sensing, the location of the measurements is subjected to un-
certainties. In contrast, our problems do not arise from impre-
cise measurement locations but their distribution. Naturally,
our locations are also associated with uncertainties; however,
in basin-scale applications they are of minor importance.

In this paper, we aim to provide a systematic investiga-
tion of the bias induced by measurement distribution. There-
fore, we perform global sensitivity analyses to determine the
influence of the model parameters (i.e., thermal conductiv-
ity, radiogenic heat production) on the model response (i.e.,
temperature) within the spatial extent of the Alpine models.
Sensitivity analyses can be subdivided into local and global
analyses. We choose a global sensitivity analysis to investi-
gate not only the influence of the parameters themselves but
also the parameter correlations. Note that a local sensitivity
analysis assumes that all parameters are independent of each
other (Degen et al., 2021; Saltelli, 2002; Saltelli et al., 2010;
Sobol, 2001; Wainwright et al., 2014). Furthermore, we want
to avoid a possible overestimation of the influences. A pre-
vious model study showed that the local sensitivity analysis
can overestimate the influences (Degen et al., 2021). Global
sensitivity analyses have been performed before in, for ex-
ample, Baroni and Tarantola (2014); Cannavó (2012); Cloke
et al. (2008); Degen et al. (2021); Fernández et al. (2017);
van Griensven et al. (2006); Song et al. (2015); Tang et al.
(2007); Wainwright et al. (2014); Zhan et al. (2013); how-
ever, they are either in a different geophysical setting and or
with a different focus of interest.

Global sensitivity analyses have the disadvantage of be-
ing computationally very demanding since they require sev-
eral thousand to several hundred thousand forward simula-
tions. This makes these analyses infeasible even for state-of-
the-art finite element problems. To compensate for the ex-
pensive nature of the method, we employ the reduced basis
method to construct suitable surrogate models. The principle
idea is to replace the original high dimensional model with
a low dimensional model while keeping the key character-
istic of the problem (Benner et al., 2015; Hesthaven et al.,
2016; Prud’homme et al., 2002; Quarteroni et al., 2015). In

this paper, we do not focus on the observation space alone
but also investigate the entire temperature state. Hence, we
need a surrogate model for the entire state. The reduced
basis method is able to provide us with this, in contrast
to many other surrogate model techniques (Baş and Boy-
acı, 2007; Bezerra et al., 2008; Frangos et al., 2010; Khuri
and Mukhopadhyay, 2010; Miao et al., 2019; Mo et al.,
2019; Myers et al., 2016; Navarro et al., 2018). The re-
duced basis method is widely known in mathematical ap-
plications (i.e., Benner et al., 2015; Grepl, 2005; Hesthaven
et al., 2016; Aretz-Nellesen et al., 2019; Kärcher et al., 2018;
Prud’homme et al., 2002; Quarteroni et al., 2015; Rozza
et al., 2007); however, only few geoscientific applications ex-
ist (Degen et al., 2020a). Nevertheless, some studies do use
comparable approaches (Ghasemi and Gildin, 2016; Gosses
et al., 2018; Rizzo et al., 2017; Rousset et al., 2014; Zlotnik
et al., 2015).

In this paper, we investigate the problems related to data
distribution for the case study of the Alpine region. The geo-
logical model, covering the Alpine orogen and its forelands,
is taken from a previous study (Spooner et al., 2020b). Ther-
mal studies of the Alpine region are of interest to understand
how the present-day deformation is linked to the thermal
field. Therefore, we want to illustrate how the interpretation
of the temperature field might be biased.

2 Materials and methods

In the following, we briefly introduce the concepts of global
sensitivity analyses and the reduced basis method. Further-
more, we introduce the physical model and the temperature
data used throughout this study.

2.1 Global sensitivity analysis

In this study, we investigate the measurement bias and there-
fore require knowledge of which parameters the temperature
distribution is sensitive to. Therefore, we employ a sensitivity
analysis (SA). We distinguish two types of sensitivity anal-
yses: local and global. The local sensitivity analysis investi-
gates the influence of the model parameters with respect to
a user-defined reference parameter set. All parameter varia-
tions are considered independently of each other and only the
vicinity of the input parameters is explored, e.g., in a vari-
ation range of ±1 % of the input parameters (Sobol, 2001;
Wainwright et al., 2014). In contrast, the global sensitivity
analysis explores the entire parameter space and also inves-
tigates the parameter correlations (Sobol, 2001). In this pa-
per, we use a global sensitivity analysis with the Saltelli sam-
pler (Saltelli, 2002; Saltelli et al., 2010), and we investigate
two types of sensitivity indices: the first- and total-order in-
dices. First-order indices describe the influence arising from
the model parameter itself. Total-order indices additionally
contain information about the parameter correlation (Sobol,
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2001). We perform the SA with the Python library SALib
(Herman and Usher, 2017) and 100 000 realizations per pa-
rameter to reduce the statistical error. For further informa-
tion regarding the global sensitivity analysis, refer to Sobol
(2001); Saltelli (2002); Saltelli et al. (2010), and for a com-
parison between local and global sensitivity analysis, refer to
Wainwright et al. (2014) and Degen et al. (2021).

2.2 Forward problem

For this case study, we are using a conductive heat trans-
fer problem (Turcotte and Schubert, 2002). To ensure that
we investigate the relative importance of the parameters and
for better efficiency, we use the following non-dimensional
form:

λ

λrefSref

∇
2

l2ref

(
T − Tref

Tref

)
+

S

SrefTrefλref
= 0, (1)

where λ is the thermal conductivity, S is the radiogenic heat
production, and T is the temperature. The subscript “ref” de-
notes the respective reference parameters, and lref is the ref-
erence length. Note that the Laplace operator acts on the nor-
malized space.

2.3 Reduced-order modeling

In this work, we require a surrogate model that is representa-
tive of the entire temperature state to ensure the feasibility of
the study. Therefore, we use the reduced-basis (RB) method
for the surrogate model construction, a projection-based
model order reduction technique. It aims to replace the orig-
inal high-dimensional model with a low-dimensional rep-
resentation while keeping the input–output relationship the
same. Hence, the method preserves the underlying physics.
One limitation of the RB method is that it is restricted to
underlying low-dimensional parameter spaces. With higher-
dimensional parameter spaces the complexity of the param-
eter space tends to increase, leading to longer construction
times and surrogate model dimensions that are too large. The
RB method destroys the sparsity pattern of the system, mean-
ing that a large surrogate model will require a longer execu-
tion time than the original finite element model due to its
dense nature. To overcome this issue, we use a hierarchical
sensitivity study, as we will discuss in Sect. 3.1.

The RB method is comprised of the following two parts:
the offline and online stages. During the offline stage, we
construct our surrogate model. This stage is computation-
ally expensive but needs to be performed only once. In the
online stage, we use the low-dimensional surrogate model.
This stage is computationally fast and therefore ideal for ex-
pensive outer-loop processes such as the global sensitivity
analysis. In previous studies, we showed that the RB method
yields a speed-up of several orders of magnitude for the here-
described physical problem (Degen et al., 2020a, 2021).

All reduced models are generated with the software pack-
age DwarfElephant (Degen et al., 2020a). Degen et al.
(2020a) also contains a detailed description of the reduced-
order model construction, which is omitted here for the sake
of brevity. For further information regarding the RB method,
refer to Hesthaven et al. (2016); Prud’homme et al. (2002);
Quarteroni et al. (2015), and for a detailed overview of vari-
ous model order reduction techniques, refer to Benner et al.
(2015). Further information regarding the RB method in the
field of geosciences is presented by Degen et al. (2020a) and
specifically for basin-scale thermal applications by Degen
et al. (2021).

2.4 Temperature data

We present the temperature data set in the form of a his-
togram in Fig. 1 and illustrate the spatial distribution in
Fig. 2. These temperature data are identical to those pre-
sented by Spooner et al. (2020b). The entire data set is com-
prised of 8120 measurements with a maximum depth of
7.3 km and a mean depth of 1.8 km. The Italian National
Geothermal Database (Trumpy and Manzella, 2017) pro-
vides the data for the southern foreland of the Alps. For the
northern foreland, the data are derived from the Upper Rhine
Graben (URG) database provided in Freymark et al. (2017)
and references therein. The data of the Molasse Basin are re-
trieved from Przybycin et al. (2015) and references therein,
whereas the data from the Alps are compiled from Luijendijk
et al. (2020).

The spatial distribution of measurements varies widely
across the region, it is sparse in the Molasse Basin (103)
and Alps (83) and ranges to being dense in the Po Basin
(7619). In an effort to alleviate a significant bias and to im-
prove the efficiency of the presented methods, the data set
was filtered to give a more uniform measurement density
across the region, with a significant reduction in the Po Basin
(2028) whilst retaining those in the Molasse Basin (103) and
Alps (83). Deeper measurements (> 2 km) were preferen-
tially maintained throughout the region as they better indi-
cate crustal temperatures, a particular focus of the work un-
dertaken here. This procedure resulted in a filtered data set of
2388 wellbore temperature measurements with a mean depth
of 2.3 km.

2.4.1 Weighting

A common issue of the temperature data for the calibration
of thermal models is their unequal distribution. To compen-
sate for this inequality, we introduce a weighting scheme in
this paper. There are different possibilities to weight the mea-
surement data. In this paper, we use a regional weighting
scheme that combines quantitative measures and our knowl-
edge about the geophysical setting and the data quality. As
previously mentioned, the data set was reduced to 2388 data
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Figure 1. Distribution of the measurements according to the geological layers. For the layer IDs, please refer to Table A1 in the Appendix.

Figure 2. Spatial distribution of the temperature measurements (a) projected on the surface, (b) along the cross section (i), and (c) along the
cross section (ii).

points in total. We subdivide the model into the following
four regions:

– the Alps with 83 measurements,

– the URG with 177 measurements,

– the Molasse with 103 measurements,

– and the Po Basin with 2025 measurements.

As we can see, the Po Basin contains many more temperature
measurements than the other regions. Additionally, we need
to take into account that the temperature measurements of the
Alps are non-robust since they are minimum temperature val-
ues. In addition, the data from the Upper Rhine Graben need
to be treated carefully since we do not account for convec-
tive processes in this paper. These aspects yield the following
weighting scheme:
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– the Po Basin is not weighted,

– the Molasse is weighted by a factor of 20 since the Po
Basin contains 20 times more data points,

– and the Upper Rhine Graben and the Alps are weighted
by a factor of 0.5.

The weight of 0.5 of the data from the Upper Rhine Graben
and the Alps is based on the extensive experience of the au-
thors from previous studies in the regions. This value is sub-
jective and can be updated once quantitative measures of the
data quality are available. Keep in mind that this study aims
to demonstrate the effects of the data bias rather than to pro-
vide an optimal weighting scheme for the Alpine region.

The weighting scheme is applied to the quantity of inter-
est of the global sensitivity analyses. Here, we consider the
L2 norm of the difference between the measured (Tmes) and
simulated temperatures (Tsim). We apply the weighting to this
temperature misfit:∑
i

√((
Ti,mes− Ti,sim

)
·ωi

)2
, (2)

where ω is the weighting factor. The procedure for the model
calibration (see Sect. 4.3) is analogous, with the difference
that we apply it to L1 instead of the L2 norm in the cost
function.

3 Alpine region

In this paper, we study two versions of the Alps model.

1. The first one focuses on the sediments and the litho-
spheric mantle. This model has been presented in
Spooner et al. (2020b) and is from here on denoted
as the “General-Focus Alps” model. It consists of 31
geological layers. Each layer has a homogeneous and
isotropic thermal conductivity and radiogenic heat pro-
duction.

2. The second model concentrates on the upper crust and is
denoted as the “Crustal-Focus Alps” model. This model
contains 34 geological layers, and again each layer has
a homogeneous and isotropic thermal conductivity and
radiogenic heat production. For this second model, we
have a higher number of geological layers because sev-
eral layers of the “General-Focus Alps” model have
been further subdivided, as demonstrated in Table A1.

Both models have an extent of 640 km in the x di-
rection and 600 km in the y direction. In the vertical
direction both models extend down to the lithosphere–
asthenosphere boundary (LAB). The models are discretized
using hexahedrons with a horizontal resolution of about
21.33 km× 19.35 km.

At the top of both models we apply a Dirichlet boundary
condition representing the annual average surface tempera-
tures (Böhm et al., 2009; Fan and Van den Dool, 2008; Lo-
carnini et al., 2013) varying from −10 ◦C (Alps) to 16 ◦C
(Adriatic Sea). Additionally, at the base of the model, we as-
sign a Dirichlet boundary condition varying between 1250 ◦C
below the Vosges massif and 1400 ◦C below the Bohemian
massif (Schaeffer and Lebedev, 2013). For further infor-
mation regarding the physical and geological setting of the
General-Focus Alps model, refer to Spooner et al. (2020b).

For the reference thermal conductivity, we use a value of
3.0 W m−1 K−1 (corresponding to the largest thermal con-
ductivity). Analogously, the reference length is 640 000 m
(corresponding to the maximum model extent) and the ref-
erence radiogenic heat production 2.6 µW m−3 (correspond-
ing to the largest radiogenic heat production). The reference
parameters are the same for both models.

In this paper, in addition to the General-Focus Alps model
already presented in Spooner et al. (2020b), we use the
Crustal-Focus Alps model, where the upper crust below the
Po Basin was thinned in order to better fit temperature obser-
vations from the previous thermal modeling work (Spooner
et al., 2020b), with requisite thickening of the lower crust car-
ried out in order to compensate. Inconsistencies in the orig-
inal classification of unconsolidated sediments and consol-
idated sediments were also rectified, specifically in the re-
gion of the southern Alps. Small alterations to the depth of
the Moho were also made as a result of more recent obser-
vations (Magrin and Rossi, 2020). The gravity residual of
the newly generated structural model was then re-minimized
using the same methodology described in Spooner et al.
(2019a), achieving a misfit as good as the original model. An
overview of all models and analyses presented in this paper
is given in Fig. 3.

3.1 Thermal model

To avoid the problem of the parameter space dimension be-
coming too large, we perform a hierarchical global sensitivity
analysis. The setup of the hierarchical sensitivity analysis is
shown in Figs. 4 and 5. The setup for both the General-Focus
and Crustal-Focus Alps model is the same. Therefore, we ex-
plain the hierarchical sensitivity analysis using the General-
Focus Alps model. For the top-level sensitivity analysis, we
separately combine layers with equal thermal conductivi-
ties and radiogenic heat productions, reducing the number
of thermal parameters from 62 to 19. This top-level sensitiv-
ity analysis investigates the influences of the thermal prop-
erties in the entire model region. However, the investigated
properties combine several entities, so in order to isolate the
thermal properties that are influencing the temperature dis-
tribution, we perform additional sensitivity analysis for those
properties that exceed our threshold value of 1×10−2 for the
total-order sensitivity indices. This threshold was chosen at a
level where we observed a significant decrease in the sensi-
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Figure 3. Schematic overview of the models used in this paper.

tivity indices. In total, we perform three additional sensitivity
analysis for the following indices:

1. unconsolidated sediments and the lower crust (red rect-
angle of Fig. 4 and peak 1 of Fig. 5),

2. unconsolidated and consolidated sediments (gray rect-
angle of Fig. 4 and peak 2 of Fig. 5),

3. and the upper crust (blue rectangles of Fig. 4 and peak
3 of Fig. 5).

Each of these additional sensitivity analyses also contains
a thermal parameter from the top-level sensitivity analysis
to enable a comparison between all analyses. We investigate
all thermal properties of the upper crust instead of only those
that are above the threshold since the upper crust has been the
primary interest in previous studies (Spooner et al., 2020b).
Note that in this section we only present the setup of the hi-
erarchical sensitivity analysis. A detailed presentation of the
individual analyses follows in the next sections.

3.2 Influence of the quantity of interest

In this paper, we want to investigate how much our analyses
are influenced by focusing on measurements. This is impor-
tant since we calibrate and validate our analyses with, for in-
stance, temperature measurements. The sensitivity analysis
investigates the relative changes that are induced by changes
in the model parameters (i.e., thermal conductivity and radio-
genic heat production). For the sensitivity analysis, we need
to define a quantity of interest, which allows us to define with
respect to what measure the changes are investigated. To in-
vestigate the influence of the measurements, we perform the
hierarchical sensitivity analyses with two different quantities
of interest for the General-Focus Alps model (branch 1.1 and
1.2 of Fig. 3).

1. The first quantity of interest is defined as the sum of the
absolute temperature values of the entire model. This
results in a sensitivity analysis that is representative of
the physical processes since all regions in the model are
treated equally.

2. The second quantity of interest is defined as the abso-
lute misfit between the simulated and measured temper-
ature values. Hence, the resulting sensitivity analysis is
focused on the temperature measurements.

In the following, we focus on the difference in the total
order sensitivity indices between those two hierarchical sen-
sitivity analyses (branch 1.1 and 1.2 of Fig. 3) to present the
bias introduced by the measurements and the consequences
of using temperature data from the hydrocarbon industry for
the calibration of geothermal models. In this study, we use
only the General-Focus Alps model to avoid any influence
from factors other than the measurements. The results of
the hierarchical global sensitivity analysis are presented in
Figs. 6 to 9. We again follow the procedure illustrated in
Fig. 5. This means that the hierarchical analysis consists of
the following four global sensitivity analyses: (i) the entire
model (Fig. 6), (ii) the unconsolidated sediments and lower
crust (Fig. 7), (iii) the unconsolidated sediments and consol-
idated sediments (Fig. 8), and (iv) the upper crust (Fig. 9).

Focusing on the difference between the hierarchical sensi-
tivity analyses, we make two key observations.

1. We observe tendentiously higher difference for the ther-
mal conductivities of deeper geological layers. This is
highlighted in Fig. 6 with gray rectangles. Here, we ob-
serve the highest differences for the following indices:

– λ1, i.e., the thermal conductivity of the unconsoli-
dated sediments of the Upper Rhine Graben below
1 km;

– λ4, i.e., the thermal conductivity of the unconsoli-
dated sediments of the Molasse Basin;

– λ11,λ12, λ18, λ19, λ22, λ23, and λ25, which denote
the thermal conductivities of the Appennine, Istrea,
Molasse, eastern Alps, Po, northeastern Adria, and
southeastern Adria upper crust, respectively;

– λ13, λ14, λ20, and λ24, which denote the ther-
mal conductivities of the Moldanubian, Bohemian,
western Alps, and Ivrea upper crust, respectively;

– λ17, i.e., the thermal conductivity of the Vosges up-
per crust.

Geosci. Model Dev., 14, 7133–7153, 2021 https://doi.org/10.5194/gmd-14-7133-2021
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Figure 4. Representation of the hierarchical process-focused sensitivity analysis of the General-Focus Alps model. For the layer IDs and
symbols, please refer to Table A1.

Figure 5. Schematic representation of the hierarchical global sensitivity analysis.

Furthermore, this can be confirmed by looking at the ad-
ditional sensitivity analysis of the unconsolidated sed-
iments of the lower crust (Fig. 7), where we observe
higher differences for the lower crust thermal conduc-
tivities.

2. The difference in the sensitivity indices tend to be larger
for the radiogenic heat production than for the thermal
conductivity. This is highlighted in Figs. 6 and 9 with
red rectangles.

Furthermore, in the case of the process-focused analyses,
the model is sensitive to more parameters and we obtain a
slightly higher parameter correlation.

Here we focus on the difference observable for the analysis
of the unconsolidated and consolidated sediments. We obtain
huge differences in the sensitivities for both sediment types.

For the thermal conductivities of the unconsolidated sed-
iments, the measurement-focused analysis returns tenden-
tiously higher influences, whereas for the consolidated sed-
iments the process-focused analysis results in tendentiously
higher influences of the thermal conductivities.

Finally, we switch our focus to the analysis of the upper
crust. For the upper crust, we observe six thermal conductiv-
ities with a significant difference in the sensitivity indices:

– λ13, λ14, and λ20, which denote the thermal conductiv-
ities of the Moldanubian, Bohemian, and western Alps
upper crust, respectively;

– λ16, i.e., the thermal conductivity of the Saxothuringian
upper crust;

– λ17, i.e., the thermal conductivity of the Vosges upper
crust;
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Figure 6. Top-level sensitivity analysis (focusing on the entire Alps model) with different quantities of interest of the hierarchical global
sensitivity analysis for the General-Focus Alps model. For the layer IDs and symbols, please refer to Table A1. The solid black line denotes
the threshold value for determining if the parameters are influencing the model response.

Figure 7. Sensitivity analysis of the unconsolidated sediments and lower crust with different quantities of interest of the hierarchical global
sensitivity analysis for the General-Focus Alps model. For the layer IDs and symbols, please refer to Table A1.

– λ18, i.e., the thermal conductivity of the Molasse upper
crust;

– λ24, i.e., the thermal conductivity of the Ivrea upper
crust.

The differences for the radiogenic heat production are the
highest for the following indices:

– S12 and S24, which denote the radiogenic heat produc-
tion of the Istrea and Ivrea upper crust, respectively;

– S22, S23, and S25, which denote the radiogenic heat pro-
duction of the Po, northeastern Adria, and southeastern
Adria upper crust, respectively.

Note that the layers of the upper crust (λ22 in Fig. 7) and
lower crust (λ26 in Fig. 8) do not add any further informa-
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Figure 8. Sensitivity analysis of the unconsolidated and consolidated sediments with different quantities of interest of the hierarchical global
sensitivity analysis for the General-Focus Alps model. For the layer IDs and symbols, please refer to Table A1.

Figure 9. Sensitivity analysis of the upper crust with different quantities of interest of the hierarchical global sensitivity analysis for the
General-Focus Alps model. For the layer IDs and symbols, please refer to Table A1.

tion to this section. Both are properties directly taken from
the top-level sensitivity analysis and are required to enable
a comparison between the top-level and lower-level sensitiv-
ity analyses. However, they represent only one property from
their respective lithological unit. Therefore, they are not rep-
resentative of any kind of trend analysis.

3.3 Influence of the weighting

The consequences of introducing a weighting scheme have
been already partly addressed in Degen et al. (2021). How-
ever, there the authors focused on the consequences for the
process of model calibrations. Here, we want to investigate
how we can compensate for the measurement bias by apply-
ing weights.

Analogous to the previous section, we focus on the dif-
ferences in the total order sensitivity indices. Again, we per-
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form the hierarchical analyses (Figs. 10 to 13) as presented in
Fig. 5. Thus, analogously to the previous section, we present
the results of the global sensitivity analysis, focusing on (i)
the entire model (Fig. 10), (ii) the unconsolidated sediments
and lower crust (Fig. 11), (iii) the unconsolidated and consol-
idated sediments (Fig. 12), and (iv) the upper crust (Fig. 13).
For all analyses, we can observe that the weighted scenario
tends to be closer to the process-focused analysis than the
non-weighted scenario for the thermal conductivities. This is
highlighted by the gray rectangles in Figs. 10 and 13. The be-
havior is very prominent for the thermal conductivity of the
Moldanubian lower crust (gray rectangle of Fig. 11).

In contrast, we observe for the thermal conductivities of
the Upper Rhine Graben layers a closer resemblance of the
non-weighted scenario to the process-focused analysis (blue
rectangle of Fig. 10).

We also observe for the radiogenic heat production that
for most layers the indices of the weighted case are closer
to the process-focused analysis than the non-weighted case
(red rectangles of Fig. 10). Differing from this trend is the ra-
diogenic heat production of the Istrea and Ivrea upper crust.
Furthermore, we observe that the weighted analysis overesti-
mates the influence of the Molasse upper crust (Fig. 13).

3.4 Reduced basis method

Before discussing the results of this paper, we briefly present
the surrogate models obtained through the RB method in
terms of cost and accuracy. In total, we consider five differ-
ent surrogate models, as listed in Table 1. Here, the first four
models are based on the General-Focus Alps model (for the
setup, please refer to Fig. 5), and the fifth model is based on
the Crustal-Focus Alps model.

We observe from Table 1 that the model dimension for the
surrogate model varies between 54 to 360. Since we require
one finite element (FE) simulation for each basis function,
this corresponds to 54 to 360 FE simulations depending on
the surrogate model. Consequently, the cost for the most ex-
pensive surrogate model (fifth RB model) equals the cost we
require to calculate 360 FE simulations, which is several or-
ders of magnitude lower than the total number of forward
simulations performed in this paper. We do not provide the
actual execution times since they vary vastly between various
hardware structures. Furthermore, note that this stage is fully
parallelizable in contrast to some inversion methods. For all
surrogate models, we reach the pre-defined maximum rela-
tive error tolerance of 5× 10−4.

4 Discussion

In the following, we discuss the consequences of focusing a
study on measurements. Therefore, we discuss the changes
in the sensitivities for the different quantities of interest and

weighting schemes. Furthermore, we demonstrate the conse-
quences through a deterministic model calibration example.

4.1 Influence of the quantity of interest

The different quantities of interest represent the bias intro-
duced by the unequal distribution of the measurement lo-
cations. Hence, we can use the difference in the sensitivity
analysis to discuss the bias that is induced by the tempera-
ture measurements. So far, we had two key observations for
the study of the different quantities of interest:

1. the difference in the indices for the thermal conductivi-
ties is higher for deeper layers,

2. the differences are higher for the radiogenic heat pro-
ductions than for the thermal conductivities.

Both of these observations can be explained by having a
closer look at the depth distribution of the temperature mea-
surements (Fig. 14). We can see that most measurements are
located at a depth of up to 2 km. The deepest measurement
is at depth of about 7.3 km, whereas the model extends to a
maximum depth of about 140.5 km. Hence, most measure-
ments are located in shallower geological layers, and in the
deepest layers we find no measurements at all (Fig. 1). There-
fore, the measurement-focused analysis tends to underesti-
mate the influences of the deeper geological layers and over-
estimates the influences of shallower layers. This is true for
both thermal conductivity and radiogenic heat production.

We investigate the phenomenon more closely for the anal-
ysis of the unconsolidated and consolidated sediments. Here,
we have a prominent overestimation of the influences of the
unconsolidated sediments and an underestimation of the con-
solidated sediments, delineated as follows:

– 384 data points in the unconsolidated sediments of the
Upper Rhine Graben above 1 km (λ0 in Fig. 6),

– 755 data points in the unconsolidated sediments of the
Upper Rhine Graben below 1 km (λ1 in Fig. 6),

– 516 data points in the unconsolidated sediments of the
Po Basin below 2 km (λ7 in Fig. 6),

– 318 data points in the Consolidated sediments outside
of sedimentary basins (λ8 in Fig. 6),

– 18 data points in the consolidated sediments of the Mo-
lasse Basin (λ9 in Fig. 6),

– 63 data points in the consolidated sediments of the Po
Basin (λ10 in Fig. 6).

The much higher data density in the unconsolidated sedi-
ments explains the high influence of the thermal conductiv-
ities of the unconsolidated sediments for the measurement-
focused analysis. The only remaining question is why the
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Figure 10. Top-level sensitivity analysis (focusing on the entire Alps model) with different weighting schemes of the hierarchical global
sensitivity analysis for the General-Focus Alps model. For the layer IDs and symbols, please refer to Table A1. The solid black line denotes
the threshold value for determining if the parameters are influencing the model response.

Figure 11. Sensitivity analysis of the unconsolidated sediments and lower crust with different weighting schemes of the hierarchical global
sensitivity analysis for the General-Focus Alps model. For the layer IDs and symbols, please refer to Table A1.

influence of the thermal conductivity of the unconsolidated
sediments in the Po Basin below 2 km is underestimated de-
spite it containing 516 data points. This might be a bias in-
troduced by the high data density of 755 data points in the
unconsolidated sediments of the Upper Rhine Graben below
1 km (λ1).

The behavior is more pronounced for the radiogenic heat
production for lithological reasons. The highest influences of
the radiogenic heat productions arise from the upper crust
(Fig. 6), meaning that the radiogenic heat production is more

prominent in deeper parts of the model. However, these parts
of the model are further away from our measurement loca-
tions. Hence, the measurement-focused analysis highly un-
derestimates the influence of the radiogenic heat production.
The same effect can be observed for the thermal conductiv-
ity of the upper crust (λ5 in Fig. 6). For the measurement-
focused analysis, the influence of the thermal conductivity is
below the threshold, whereas for the process-focused analy-
sis it is above.
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Figure 12. Sensitivity analysis of the unconsolidated and consolidated sediments with different weighting schemes of the hierarchical global
sensitivity analysis for the General-Focus Alps model. For the layer IDs and symbols, please refer to Table A1.

Figure 13. Sensitivity analysis of the upper crust with different weighting schemes of the hierarchical global sensitivity analysis for the
General-Focus Alps model. For the Layer IDs and symbols, please refer to Table A1.

The consequence of the data distribution becomes obvious
once we look at the analysis of the unconsolidated sediments
and lower crust (Fig. 7). For all lower crustal layers, the in-
fluence is significantly underestimated in the measurement-
focused scenario. Consequently, by focusing on the measure-
ment in the further analysis we would lose all information
related to the lower crust, despite the layer possibly being
important for the physical understanding of the subsurface.

In addition, for the analysis of the upper crust (Fig. 9) we
are confronted with the consequences of the unequal data dis-
tribution. The huge difference in the influences of the thermal

conductivities of the Saxothuringian, Vosges, Molasse, and
Ivrea upper crust is caused by a very low or zero data den-
sity. In addition to this, the influence of the Moldanubian,
Bohemian, and western Alps upper crust is underestimated.
We have data for the Moldanubian and western Alps upper
crust but no data for the Bohemian upper crust, yielding this
discrepancy.

The influence of the radiogenic heat production of the
Istrea and Ivrea upper crust is underestimated in the
measurement-focused study due to the lack of data, whereas
the influence of the radiogenic heat production of the Po,
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Table 1. Overview of the various RB models. Here we present the focus of the different surrogate models and their dimensions.

Geological model Area of interest Number basis functions

1. RB model General-Focus Alps model Entire model 265
2. RB model General-Focus Alps model Unconsolidated sediments and lower crust 70
3. RB model General-Focus Alps model Unconsolidated sediments and consolidated sediments 54
4. RB model General-Focus Alps model Upper crust 104
5. RB model Crustal-Focus Alps model Entire model 360

Figure 14. Distribution of the measurements according to depth.

northeastern Adria, and southeastern Adria upper crust is
overestimated. This is likely caused by the measurements
available for both the Po and northeastern Adria upper crust
layers.

We also observed slightly higher parameter correlations
for the process-focused analysis. This is probably related to
the fact that the model is sensitive to more parameters.

4.2 Influence of the weighting

We observed that the weighted measurement-focused anal-
ysis tends to be closer to the process-focused analysis. This
becomes understandable by looking at the applied weighting
scheme. We applied a regional weighting scheme to com-
pensate for the unequal data distribution in the four regions
of our model. Hence, we can compensate partly for the mea-
surement bias. However, we are not able to fully compensate
for the data sparsity. The main reason for this is that we can
compensate for fewer data points but not for regions without
data points since no measurements are available to which we
could apply a higher weight. This can be observed, for in-
stance, in the properties related to the layers of the Molasse.

We observed that the sensitivity indices of the thermal
properties related to the layers inside the Upper Rhine
Graben are further apart for the weighted and process-

focused comparison than for the non-weighted process-
focused one. This is related to the choice of the weighting
scheme. We chose to put less weight on the temperature data
from the Upper Rhine Graben since we do not account for
convective effects in this paper. Analogously, the properties
of the Apennine upper crust layers also have a too small in-
fluence for the weighted scenario. As a reminder, we down-
graded the importance of the temperature data in this region
since the data consists of minimum temperature data.

Through the weighting we are able to compensate for the
underestimation of the unconsolidated sediments of the Po
Basin. Hence, the bias most likely induced by the high data
density of the other layers can be reduced.

For the thermal conductivities of the Saxothuringian, Vos-
ges, and Molasse upper crust (gray rectangle of Fig. 13), we
are again able to remove parts of the data bias caused by the
data sparsity of these layers. The same phenomenon is ob-
servable for the radiogenic heat production of the upper crust
(red rectangles of Fig. 13).

Note that the weighting scheme is case study and aim spe-
cific. Depending on our knowledge about data quality, re-
gions of interest, and other aspects the weighting scheme can
be designed in a case specific manner. In this paper, we do not
aim to provide “the ideal” weighting scheme for the Alpine
region. Instead, we demonstrate the impact of a weighting
scheme for thermal modeling. In addition, note that due to
the high impact of the weighting this also means that we
need to carefully consider the weighting scheme. An incor-
rect weighting scheme will increase the bias.

4.3 Calibration example

So far, we have presented that we obtain significantly differ-
ing sensitivities for the process-focused and measurement-
focused study. In the following, we demonstrate the conse-
quences of this difference through a deterministic model cal-
ibration. We choose the example of a model calibration be-
cause this is a typical inverse process that relies on observa-
tion data.

Model calibration aims to compensate for existing model
errors by adjusting the model parameters in accordance with
our temperature measurements. Analogous to Degen et al.
(2021), we use a sensitivity-driven model calibration for
more robust results. In this study, we performed various sen-
sitivity analyses. For the model calibration, we require the
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measurement-focused sensitivity analyses (branch 1.1 and
2.1 of Fig. 3). We need these sensitivity analyses because
they represent the information content that can be derived
from the temperature data. In the case of the General-Focus
model, five thermal parameters that can be calibrated are
yielded (Table 2). The data are insensitive to the remaining
parameters. Hence, we cannot calibrate these values. We are
left with mostly shallow layers to calibrate. The exception is
the lithospheric mantle, which is influential due to its large
volume.

In the following, we discuss the results of the automated
model calibration and its consequences. Note that in this
work we use the model calibration in a slightly different
way. Usually, it is used to compensate for model errors. That
means of course that it also identifies the problematic model
areas. In this work, we employ the model calibration as an
identification tool for model errors. Therefore, we use the
calibrated values by Spooner et al. (2020b) as initial values,
which have been obtained through a “trial-and-error” model
calibration. As a result, large discrepancies between our ini-
tial values and calibrated values identify model problems.

The first model problem that we can identify is the mea-
surement bias through an unequal data distribution (General-
Focus – unweighted). This can be at least partly removed
through data weighting (General-Focus – weighted), yield-
ing smaller differences between initial and calibrated values.
Nonetheless, we observe a low radiogenic heat production
in the upper crust, meaning that our model is non-ideal in the
description of the upper crust. This also leads to thermal con-
ductivities that are too low in the sediments and too high in
the lithospheric mantle.

Therefore, we introduce a second model, the Crustal-
Focus model. For this model, we obtain a good agreement
for the upper crust but greater discrepancies in unconsoli-
dated sediments (below 1 km) and the lithospheric mantle.
Hence, we can remove the error in the upper crust but at the
same time introduce new error sources.

For the calibration of the unweighted General-Focus
model, we achieve a R2 value of 0.87, and for the weighted
case we achieve a value of 0.86. Also, for the Crustal-Focus
model, we obtain a R2 value of 0.86. This shows that we
are able to fit any temperature distribution at the cost of ob-
taining partly unphysical thermal conductivities. To illustrate
this, we focus in this paper on the thermal properties and not
on the temperatures.

Note that we do not aim to present the “optimal” model in
this paper. Instead, we want to demonstrate various compo-
nents that influence the model. Generating an optimal model
is not possible since all models are per definition wrong
(Box, 1979). We present here two models that fulfill different
purposes. The General-Focus model is better if we are inter-
ested in the entire model domain. In the case that our area of
interest is only the upper crust, the Crustal-Focus model is
preferable.

4.4 Influence of the model

We have discussed the consequences of the model change for
the calibrated thermal conductivities. Now we want to briefly
discuss the consequences for the sensitivities. Therefore, we
repeat the process-focused and measurement-focused sensi-
tivity analysis for the Crustal-Focused model. Note that we
consider only the weighted scenario (branch 2.1.1 and 2.2.1
of Fig. 3).

For the Crustal-Focus model, we thinned the upper crust.
This can be clearly observed in the decreased sensitivities
of the model to the upper crust layers (red box of Fig. 15).
However, this change is only visible in the process-focused
analysis. The measurement-focused analysis mostly fails to
resolve these changes due to the data sparsity in the upper
crust (red box of Fig. 16). Underestimated changes are ob-
servable for the Saxothuringian upper crust. This again high-
lights the information loss of measurement-focused studies
and the dangers associated with calibrations.

The radiogenic heat production of most of the lower
crust is more influential for the Crustal-Focused model as
the upper crust was thinned by thickening the lower crust.
The only exception is the Saxothuringian lower crust (λ26).
For the process-focused analysis (Fig. 15) it loses impor-
tance, and for the measurement-focused analysis (Fig. 16)
it gains importance. For both models, we apply a Dirichlet
boundary condition at the top and the bottom of the model.
Hence, the temperature distribution is determined by the ra-
tio of the thermal properties. Therefore, the difference in the
Saxothuringian lower crust likely arises from the changes of
other geological layers. The same is likely for the changes
of the thermal conductivity of the unconsolidated sediments
in the Molasse Basin. In addition, the changes in the in-
fluences arising from the radiogenic heat production of the
lithospheric mantle are caused by other layers, especially
considering the very low values of these layers.

Furthermore, we observe a higher influence of the uncon-
solidated sediments in the Upper Rhine Graben (gray box of
Fig. 15) although the model has not been changed around
the Upper Rhine Graben. However, this might be an ef-
fect of the reclassification in the unconsolidated and consoli-
dated sediments. These changes are more pronounced for the
measurement-focused analysis (gray box of Fig. 16) than for
the process-focused analysis. This is again caused by the data
distribution since we have more measurements at a shallower
depth.

4.5 Gravity model

The model change is observable in both the model calibra-
tion for the thermal properties and the corresponding sensi-
tivities. However, if we look at the gravity residuals (Fig. 17),
we do not observe any significant changes. This highlights a
general point for the construction of geological models. We
have different data sources available for the construction of
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Table 2. Comparison of the initial thermal properties and the calibrated thermal properties for different geological models and different
weighting schemes. The parameter that is not considered in the model calibration due to sensitivities that are too low is denoted with n/a.

Parameter Initial value Calibrated value

General-Focus General-Focus Crustal-Focus
– unweighted – weighted – weighted

λ2 [W m−1 K−1] 2.0 1.53 1.70 2.02
λ3 [W m−1 K−1] 2.3 1.33 2.04 3.45
λ4,5 [W m−1 K−1] 1.8 n/a 1.62 1.53
λ6 [W m−1 K−1] 2.0 1.86 2.02 2.03
λ32,33 [W m−1 K−1] 3.0 3.71 3.18 2.5
S22,23,25 [µW m3] 1.3 0.2 0.8 1.3

Figure 15. Comparison of the sensitivities of the process-focused study for both the General-Focus and Crustal-Focus Alps model. The solid
black line denotes the threshold value for determining if the parameters are influencing the model response.

a geological model. It is crucial to incorporate multiple data
sources and not rely on a single data source. If we would
have constructed a model of the Alps purely based on grav-
ity, we would not have been able to identify the problem of
the thickness of the upper crust.

4.6 Outlook

In this paper, we have seen that the measurements induced
a significant bias. This opens the discussion of subsequent
projects. Therefore, we would like to investigate how we can
decrease this bias by incorporating further data sources that
give us only an indirect measure of the temperature. Fur-
thermore, it would be interesting to further explore the field
of joint inversion to incorporate various geophysical data
sources already used during model construction.

5 Conclusions

In this paper, we have demonstrated the bias that a
measurement-focused study can cause. This bias can be
partly removed through automated and customized data-
weighting schemes. However, as is typical for geoscientific
applications, many areas of the model do not have any asso-
ciated data. Unfortunately, it is not possible to compensate
for the bias arising from these areas. This shows the impor-
tance of focusing on regions where data are present whenever
possible.

However, many inverse processes such as deterministic
and stochastic model calibrations are dependent on measure-
ment data. In this case the bias is unavoidable. Nonetheless,
we need to be aware of which kind of bias we are introduc-
ing through this procedure to take the effects for all further
analyses into account. We need to be aware that the data are
often only informative towards the shallower layers. Hence,
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Figure 16. Comparison of the sensitivities of the measurement-focused study for both the General-Focus and Crustal-Focus Alps model. The
solid black line denotes the threshold value for determining if the parameters are influencing the model response.

Figure 17. Gravity residual of (a) the General-Focus model, (b) the Crustal-Focus model, and (c) the difference between the General-Focus
model and Crustal-Focus model. Acronyms are as follows: St stands for Saxothuringian Zone, Mn stands for Moldanubian Zone, Ha stands
for Helvetic Alps, bo stands for Bohemian Massif, vo stands for Vosges Massif, bf stands for Black Forest Massif, tw stands for Tauern
Window, bt stands for Briançonnais Terrane, pl stands for Periadriatic Lineament, gf stands for Guidicarie Fault, urg stands for Upper Rhine
Graben, mb stands for Molasse Basin, po stands for Po Basin, and vf stands for Veneto–Friuli plain.

we lose the information about deeper layers and at the same
time overestimate the influence of the shallower layers. This
also means that we are unable to calibrate and validate the
lower parts of our geological models. Nonetheless, these re-
gions are important to avoid influences from, for instance,
the lower boundary condition.

We have also seen the importance of considering various
data sources. The changes from the General-Focus to the
Crustal-Focus model were only visible in the thermal stud-
ies but not in the gravity residuals.

Note that although we performed the analyses for the case
study of the Alps, these aspects hold in general since the data
distribution shown here is typical for geoscientific applica-
tions.
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Appendix A: Appendix symbols and Layer IDs

Table A1. Symbols and layer IDs for both the General-Focus model and Crustal-Focus model.

Layer Layer ID Property Symbol

Unconsolidated sediments URG (top 1 km) 0 thermal conductivity radiogenic
heat production

λ0
S0

Unconsolidated sediments URG (below 1 km) 1 thermal conductivity λ1
radiogenic heat production S1

Unconsolidated sediments rest (top 1 km) 2 thermal conductivity λ2
radiogenic heat production S2

Unconsolidated sediments rest (below 1 km) 3 thermal conductivity λ3
radiogenic heat production S3

General-Focus model:
Unconsolidated sediments Molasse 4 thermal conductivity λ4

radiogenic heat production S4
Crustal-Focused model:
Unconsolidated sediments Molasse (top 1 km) 4 thermal conductivity λ4

radiogenic heat production S4
Unconsolidated sediments Molasse (below 1 km) 5 thermal conductivity λ4

radiogenic heat production S4

Unconsolidated sediments Po Basin (top 2 km) 6 thermal conductivity λ6
radiogenic heat production S6

Unconsolidated sediments Po Basin (below 2 km) 7 thermal conductivity λ7
radiogenic heat production S7

Consolidated sediments 8 thermal conductivity λ8
radiogenic heat production S8

Consolidated sediments Molasse 9 thermal conductivity λ9
radiogenic heat production S9

Consolidated sediments Po Basin 10 thermal conductivity λ10
radiogenic heat production S10

Upper crust Apennine 11 thermal conductivity λ11
radiogenic heat production S11

Upper crust Istrea 12 thermal conductivity λ12
radiogenic heat production S12

Upper crust Moldanubian 13 thermal conductivity λ13
radiogenic heat production S13

General-Focus model:
Upper crust Bohemian 14 thermal conductivity λ14

radiogenic heat production S14

Crustal-Focused model:
Upper crust Bohemian 14 thermal conductivity λ14

radiogenic heat production S14
Upper crust Bohemian Volcanics 15 thermal conductivity λ14

radiogenic heat production S14
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Table A1. Continued.

Layer Layer ID Property Symbol

Upper crust Saxothuringia 16 thermal conductivity λ16
radiogenic heat production S16

Upper crust Vosges 17 thermal conductivity λ17
radiogenic heat production S17

Upper crust Molasse 18 thermal conductivity λ18
radiogenic heat production S18

Upper crust eastern Alps 19 thermal conductivity λ19
radiogenic heat production S19

General-Focus model:
Upper crust western Alps 20 thermal conductivity λ20

radiogenic heat production S20
Crustal-Focused model:
Upper crust western Jura 20 thermal conductivity λ20

radiogenic heat production S20
Upper crust western Alps 21 thermal conductivity λ20

radiogenic heat production S20

Upper crust Po Basin 22 thermal conductivity λ22
radiogenic heat production S22

Upper crust northeastern Adria 23 thermal conductivity λ23
radiogenic heat production S23

Upper crust Ivrea 24 thermal conductivity λ24
radiogenic heat production S24

Upper crust southeastern Adria 25 thermal conductivity λ25
radiogenic heat production S25

Lower crust Saxothuringian 26 thermal conductivity λ26
radiogenic heat production S26

Lower crust Moldanubian 27 thermal conductivity λ27
radiogenic heat production S27

Lower crust Alps 28 thermal conductivity λ28
radiogenic heat production S28

Lower crust Ivrea 29 thermal conductivity λ29
radiogenic heat production S29

Lower crust Liguria and Apennine 30 thermal conductivity λ30
radiogenic heat production S30

Lower crust Adria 31 thermal conductivity λ31
radiogenic heat production S31

Lithospheric mantle northwest 32 thermal conductivity λ32
radiogenic heat production S32

Lithospheric mantle southeast 33 thermal conductivity λ33
radiogenic heat production S33
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Code availability. For the construction of the reduced
models, we used the software package DwarfElephant
(https://doi.org/10.5281/zenodo.4074777, Degen et al., 2020b;
Degen et al., 2020a). The software, which is based on the finite
element solver MOOSE (Permann et al., 2020), is freely available at
https://doi.org/10.5281/zenodo.4074777 (Degen et al., 2020b). The
sensitivity analyses are performed with the Python library SALib
https://salib.readthedocs.io/en/latest/, last access: 18 Novem-
ber 2021 (Herman and Usher, 2017), and the model calibrations
are performed with the Python library scipy https://scipy.org, last
access: 18 November 2021 (Virtanen et al., 2020).

Data availability. The structural model 3D-ALPS constrained in
Spooner et al. (2019a) and used in the General-Focus model
is freely available as DOI and online material via the follow-
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2019b). The thermal field (3D-ALPS_TR) generated in Spooner
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https://doi.org/10.5880/GFZ.4.5.2020.007 (Spooner et al., 2020a).
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