Articles | Volume 14, issue 9
https://doi.org/10.5194/gmd-14-5825-2021
https://doi.org/10.5194/gmd-14-5825-2021
Model description paper
 | 
24 Sep 2021
Model description paper |  | 24 Sep 2021

UBER v1.0: a universal kinetic equation solver for radiation belts

Liheng Zheng, Lunjin Chen, Anthony A. Chan, Peng Wang, Zhiyang Xia, and Xu Liu

Related subject area

Solar-terrestrial science
Physics-motivated cell-octree adaptive mesh refinement in the Vlasiator 5.3 global hybrid-Vlasov code
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024,https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
New routine NLTE15µmCool-E v1.0 for calculating the non-local thermodynamic equilibrium (non-LTE) CO2 15 µm cooling in general circulation models (GCMs) of Earth's atmosphere
Alexander Kutepov and Artem Feofilov
Geosci. Model Dev., 17, 5331–5347, https://doi.org/10.5194/gmd-17-5331-2024,https://doi.org/10.5194/gmd-17-5331-2024, 2024
Short summary
Daily INSOLation (DINSOL-v1.0): an intuitive tool for classrooms and specifying solar radiation boundary conditions
Emerson D. Oliveira
Geosci. Model Dev., 16, 2371–2390, https://doi.org/10.5194/gmd-16-2371-2023,https://doi.org/10.5194/gmd-16-2371-2023, 2023
Short summary
SSolar-GOA v1.0: a simple, fast, and accurate Spectral SOLAR radiative transfer model for clear skies
Victoria Eugenia Cachorro, Juan Carlos Antuña-Sanchez, and Ángel Máximo de Frutos
Geosci. Model Dev., 15, 1689–1712, https://doi.org/10.5194/gmd-15-1689-2022,https://doi.org/10.5194/gmd-15-1689-2022, 2022
Short summary
Application of CCM SOCOL-AERv2-BE to cosmogenic beryllium isotopes: description and validation for polar regions
Kseniia Golubenko, Eugene Rozanov, Gennady Kovaltsov, Ari-Pekka Leppänen, Timofei Sukhodolov, and Ilya Usoskin
Geosci. Model Dev., 14, 7605–7620, https://doi.org/10.5194/gmd-14-7605-2021,https://doi.org/10.5194/gmd-14-7605-2021, 2021
Short summary

Cited articles

Albert, J. M., Meredith, N. P., and Horne, R. B.: Three-dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm, J. Geophys. Res.-Space, 114, A09214, https://doi.org/10.1029/2009JA014336, 2009. a
Albert, J. M., Tao, X., and Bortnik, J.: Aspects of Nonlinear Wave-Particle Interactions, American Geophysical Union, https://doi.org/10.1029/2012GM001324, 255–264, 2013. a
Amdahl, G. M.: Validity of the single processor approach to achieving large scale computing capabilities, in: Proceedings of the April 18–20, 1967, spring joint computer conference, 483–485, 1967. a
Ames, W. F.: Numerical methods for partial differential equations, Academic Press, San Diego, California, 2014. a, b
Artemyev, A. V., Neishtadt, A. I., Vasiliev, A. A., and Mourenas, D.: Kinetic equation for nonlinear resonant wave-particle interaction, Phys. Plasmas, 23, 090701, https://doi.org/10.1063/1.4962526, 2016. a, b, c
Download
Short summary
Earth’s Van Allen belts are studied by solving particular kinds of equations that could be notoriously difficult when different physical processes are acting together. In this article, we describe a numerical code that can solve these equations with unprecedented freedom from the numerous restrictions of existing models, even the ones that no other can solve. The abilities of our code could mean a breakthrough in Van Allen belt studies from the diffusive into the non-diffusive transport regime.