Articles | Volume 14, issue 9
https://doi.org/10.5194/gmd-14-5669-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-14-5669-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of a coupled simulation framework representing the lake and river continuum of mass and energy (TCHOIR v1.0)
Daisuke Tokuda
CORRESPONDING AUTHOR
Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
Hyungjun Kim
Moon Soul Graduate School of Future Strategy, Korea Advanced Institute
of Science and Technology, Daejeon, Republic of Korea
Department of Civil and Environmental Engineering, Korea Advanced
Institute of Science and Technology, Daejeon, Republic of Korea
Institute of Industrial Science, University of Tokyo, Tokyo, Japan
Dai Yamazaki
Institute of Industrial Science, University of Tokyo, Tokyo, Japan
Taikan Oki
Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
Rector's Office, United Nations University, Tokyo, Japan
Related authors
No articles found.
Qing He, Naota Hanasaki, Akiko Matsumura, Edwin H. Sutanudjaja, and Taikan Oki
EGUsphere, https://doi.org/10.5194/egusphere-2025-2952, https://doi.org/10.5194/egusphere-2025-2952, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This work presents a global groundwater modeling framework at 5-arcminute resolution, developed through an offline coupling of the H08 water resource model and MODFLOW6. The model includes a single-layer aquifer and is designed to capture long-term mean groundwater dynamics under varying climate types. The manuscript describes the model structure, input datasets, and evaluation against available observations.
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899, https://doi.org/10.5194/egusphere-2025-1899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP) is an international collaborative effort to systematically assess tipping point risks in the Earth system using state-of-the-art coupled and stand-alone domain models. TIPMIP will provide a first global atlas of potential tipping dynamics, respective critical thresholds and key uncertainties, generating an important building block towards a comprehensive scientific basis for policy- and decision-making.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Xin Huang, Qing He, Naota Hanasaki, Rolf H. Reichle, and Taikan Oki
EGUsphere, https://doi.org/10.5194/egusphere-2025-2004, https://doi.org/10.5194/egusphere-2025-2004, 2025
Preprint archived
Short summary
Short summary
This study demonstrates a new method using SMAP soil moisture products to identify irrigation effects, tested to be valid in an example region in California's Central Valley and showed great potential for application in arid/ semi-arid regions. The approach offers a simple, straightforward approach to monitoring irrigation signals without additional in-situ data or model tuning, providing a useful tool to extract irrigation water use data in observation-scarce regions.
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025, https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
Short summary
The Baseline Climate Variables for Earth System Modelling (ESM-BCVs) are defined as a list of 135 variables which have high utility for the evaluation and exploitation of climate simulations. The list reflects the most frequently used variables from Earth system models based on an assessment of data publication and download records from the largest archive of global climate projects.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Shinichiro Nakamura, Fuko Nakai, Yuichiro Ito, Ginga Okada, and Taikan Oki
Hydrol. Earth Syst. Sci., 28, 2329–2342, https://doi.org/10.5194/hess-28-2329-2024, https://doi.org/10.5194/hess-28-2329-2024, 2024
Short summary
Short summary
The formation of levee systems is an important factor in determining whether a society fights or adapts to floods. This study presents the levee system transformation process over the past century, from the indigenous levee system to modern continuous levees, and its impacts on human–flood coevolution in the Kiso River basin, Japan, and reveals the interactions between levee systems and human–water systems involving different scales and water phenomena.
Yuki Kimura, Yukiko Hirabayashi, and Dai Yamazaki
EGUsphere, https://doi.org/10.22541/essoar.170365204.46854879/v1, https://doi.org/10.22541/essoar.170365204.46854879/v1, 2024
Preprint archived
Short summary
Short summary
The limited number of ensemble members causes uncertainty in future climate predictions. To address this, using multiple simulations under a single future climate scenario can increase the sample size, but data availability is limited in the scenario-based future projection experiment of climate model intercomparison projects. Our proposed method integrates multiple climate scenarios at specific temperature increases, effectively reducing uncertainty in future flood hazard assessments globally.
Menaka Revel, Xudong Zhou, Prakat Modi, Jean-François Cretaux, Stephane Calmant, and Dai Yamazaki
Earth Syst. Sci. Data, 16, 75–88, https://doi.org/10.5194/essd-16-75-2024, https://doi.org/10.5194/essd-16-75-2024, 2024
Short summary
Short summary
As satellite technology advances, there is an incredible amount of remotely sensed data for observing terrestrial water. Satellite altimetry observations of water heights can be utilized to calibrate and validate large-scale hydrodynamic models. However, because large-scale models are discontinuous, comparing satellite altimetry to predicted water surface elevation is difficult. We developed a satellite altimetry mapping procedure for high-resolution river network data.
Yuheng Li, Kanon Kino, Alexandre Cauquoin, and Taikan Oki
Clim. Past, 19, 1891–1904, https://doi.org/10.5194/cp-19-1891-2023, https://doi.org/10.5194/cp-19-1891-2023, 2023
Short summary
Short summary
Our study using the isotope-enabled climate model MIROC5-iso model shows that lakes may have contributed to the Green Sahara during the mid-Holocene period (6000 years ago). The lakes induced cyclonic circulation response, enhancing the near-surface monsoon westerly flow and potentially humidifying the northwestern Sahara with the stronger West African Monsoon moving northward. Our findings provide valuable insights into understanding the presence of the Green Sahara during this period.
Md Safat Sikder, Jida Wang, George H. Allen, Yongwei Sheng, Dai Yamazaki, Chunqiao Song, Meng Ding, Jean-François Crétaux, and Tamlin M. Pavelsky
Earth Syst. Sci. Data, 15, 3483–3511, https://doi.org/10.5194/essd-15-3483-2023, https://doi.org/10.5194/essd-15-3483-2023, 2023
Short summary
Short summary
We introduce Lake-TopoCat to reveal detailed lake hydrography information. It contains the location of lake outlets, the boundary of lake catchments, and a wide suite of attributes that depict detailed lake drainage relationships. It was constructed using lake boundaries from a global lake dataset, with the help of high-resolution hydrography data. This database may facilitate a variety of applications including water quality, agriculture and fisheries, and integrated lake–river modeling.
Youjiang Shen, Karina Nielsen, Menaka Revel, Dedi Liu, and Dai Yamazaki
Earth Syst. Sci. Data, 15, 2781–2808, https://doi.org/10.5194/essd-15-2781-2023, https://doi.org/10.5194/essd-15-2781-2023, 2023
Short summary
Short summary
Res-CN fills a gap in a comprehensive and extensive dataset of reservoir-catchment characteristics for 3254 Chinese reservoirs with 512 catchment-level attributes and significantly enhanced spatial and temporal coverage (e.g., 67 % increase in water level and 225 % in storage anomaly) of time series of reservoir water level (data available for 20 % of 3254 reservoirs), water area (99 %), storage anomaly (92 %), and evaporation (98 %), supporting a wide range of applications and disciplines.
Yuki Kimura, Yukiko Hirabayashi, Yuki Kita, Xudong Zhou, and Dai Yamazaki
Hydrol. Earth Syst. Sci., 27, 1627–1644, https://doi.org/10.5194/hess-27-1627-2023, https://doi.org/10.5194/hess-27-1627-2023, 2023
Short summary
Short summary
Since both the frequency and magnitude of flood will increase by climate change, information on spatial distributions of potential inundation depths (i.e., flood-hazard map) is required. We developed a method for constructing realistic future flood-hazard maps which addresses issues due to biases in climate models. A larger population is estimated to face risk in the future flood-hazard map, suggesting that only focusing on flood-frequency change could cause underestimation of future risk.
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Arjen Haag, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, https://doi.org/10.5194/nhess-23-823-2023, 2023
Short summary
Short summary
In coastal deltas, flooding can occur from interactions between coastal, riverine, and pluvial drivers, so-called compound flooding. Global models however ignore these interactions. We present a framework for automated and reproducible compound flood modeling anywhere globally and validate it for two historical events in Mozambique with good results. The analysis reveals differences in compound flood dynamics between both events related to the magnitude of and time lag between drivers.
Menaka Revel, Xudong Zhou, Dai Yamazaki, and Shinjiro Kanae
Hydrol. Earth Syst. Sci., 27, 647–671, https://doi.org/10.5194/hess-27-647-2023, https://doi.org/10.5194/hess-27-647-2023, 2023
Short summary
Short summary
The capacity to discern surface water improved as satellites became more available. Because remote sensing data is discontinuous, integrating models with satellite observations will improve knowledge of water resources. However, given the current limitations (e.g., parameter errors) of water resource modeling, merging satellite data with simulations is problematic. Integrating observations and models with the unique approaches given here can lead to a better estimation of surface water dynamics.
Robert J. Parker, Chris Wilson, Edward Comyn-Platt, Garry Hayman, Toby R. Marthews, A. Anthony Bloom, Mark F. Lunt, Nicola Gedney, Simon J. Dadson, Joe McNorton, Neil Humpage, Hartmut Boesch, Martyn P. Chipperfield, Paul I. Palmer, and Dai Yamazaki
Biogeosciences, 19, 5779–5805, https://doi.org/10.5194/bg-19-5779-2022, https://doi.org/10.5194/bg-19-5779-2022, 2022
Short summary
Short summary
Wetlands are the largest natural source of methane, one of the most important climate gases. The JULES land surface model simulates these emissions. We use satellite data to evaluate how well JULES reproduces the methane seasonal cycle over different tropical wetlands. It performs well for most regions; however, it struggles for some African wetlands influenced heavily by river flooding. We explain the reasons for these deficiencies and highlight how future development will improve these areas.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Fei Luo, Frank Selten, Kathrin Wehrli, Kai Kornhuber, Philippe Le Sager, Wilhelm May, Thomas Reerink, Sonia I. Seneviratne, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, and Dim Coumou
Weather Clim. Dynam., 3, 905–935, https://doi.org/10.5194/wcd-3-905-2022, https://doi.org/10.5194/wcd-3-905-2022, 2022
Short summary
Short summary
Recent studies have identified the weather systems in observational data, where wave patterns with high-magnitude values that circle around the whole globe in either wavenumber 5 or wavenumber 7 are responsible for the extreme events. In conclusion, we find that the climate models are able to reproduce the large-scale atmospheric circulation patterns as well as their associated surface variables such as temperature, precipitation, and sea level pressure.
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022, https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Short summary
Reliable data on global inundated areas remain uncertain. By matching a leading global data product on inundation extents (GIEMS) against predictions from a global hydrodynamic model (CaMa-Flood), we found small but consistent and non-random biases in well-known tropical wetlands (Sudd, Pantanal, Amazon and Congo). These result from known limitations in the data and the models used, which shows us how to improve our ability to make critical predictions of inundation events in the future.
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Short summary
Global hydrological models (GHMs) are usually applied with a spatial resolution of about 50 km, but this time we applied the H08 model, one of the most advanced GHMs, with a high resolution of 2 km to Kyushu island, Japan. Since the model was not accurate as it was, we incorporated local information and improved the model, which revealed detailed water stress in subregions that were not visible with the previous resolution.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Seoung Soo Lee, Kyung-Ja Ha, Manguttathil Gopalakrishnan Manoj, Mohammad Kamruzzaman, Hyungjun Kim, Nobuyuki Utsumi, Youtong Zheng, Byung-Gon Kim, Chang Hoon Jung, Junshik Um, Jianping Guo, Kyoung Ock Choi, and Go-Un Kim
Atmos. Chem. Phys., 21, 16843–16868, https://doi.org/10.5194/acp-21-16843-2021, https://doi.org/10.5194/acp-21-16843-2021, 2021
Short summary
Short summary
Using a modeling framework, a midlatitude stratocumulus cloud system is simulated. It is found that cloud mass in the system becomes very low due to interactions between ice and liquid particles compared to that in the absence of ice particles. It is also found that interactions between cloud mass and aerosols lead to a reduction in cloud mass in the system, and this is contrary to an aerosol-induced increase in cloud mass in the absence of ice particles.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Xudong Zhou, Wenchao Ma, Wataru Echizenya, and Dai Yamazaki
Nat. Hazards Earth Syst. Sci., 21, 1071–1085, https://doi.org/10.5194/nhess-21-1071-2021, https://doi.org/10.5194/nhess-21-1071-2021, 2021
Short summary
Short summary
This article assesses different uncertainties in the analysis of flood risk and found the runoff generated before the river routing is the primary uncertainty source. This calls for attention to be focused on selecting an appropriate runoff for the flood analysis. The uncertainties are reflected in the flood water depth, inundation area and the exposure of the population and economy to the floods.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Cited articles
Abril, G., Martinez, J.-M., Artigas, L. F., Moreira-Turcq, P.,
Benedetti, M. F., Vidal, L., Meziane, T., Kim, J.-H., Bernardes, M. C., and
Savoye, N.: Amazon River carbon dioxide outgassing fuelled by wetlands,
Nature, 505, 395–398, 2014.
Assel, R. A.: NOAA Atlas: An Electronic Atlas of Great Lakes Ice Cover,
Winters 1973–2002, Great Lakes Environmental Research Laboratory, Ann Arbor, MI,
2003.
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, 2010.
Beek, L. P. H., Eikelboom, T., Vliet, M. T. H., and Bierkens, M. F. P.: A physically based model of global freshwater surface temperature, Water Resour. Res., 48, W09530, https://doi.org/10.1029/2012WR011819, 2012.
Bennett, E. B.: Water Budgets for Lake Superior and Whitefish Bay, J. Great Lakes Res., 4, 331–342, https://doi.org/10.1016/S0380-1330(78)72202-1, 1978.
Birkett, C. M., Reynolds, C. A., Deeb, E. J., Ricko, M., Beckley, B. D., and Yang, X.: G-REALM: A Lake/Reservoir Monitoring tool for Water Resources and Regional Security assessment, AGUFM, 2018, H51S-1570, 2018.
Bonnet, M.-P., Poulin, M., and Devaux, J.: Numerical modeling of thermal stratification in a lake reservoir. Methodology and case study, Aquat. Sci., 62, 105–124, 2000.
Caissie, D.: The thermal regime of rivers: a review, Freshwater Biol., 51, 1389–1406, 2006.
Carrea, L. and Merchant, C. J.: GloboLakes: lake surface water temperature (LSWT) v4.0 (1995–2016), Centre for Environmental Data Analysis, 29, https://doi.org/10.5285/76a29c5b55204b66a40308fc2ba9cdb3, 2019.
Croley, T. E. and Assel, R. A.: A one-dimensional ice thermodynamics model for the Laurentian Great Lakes, Water Resour. Res., 30, 625–639, https://doi.org/10.1029/93WR03415, 1994.
Dake, J. M. K. and Harleman, D. R. F.: Thermal stratification in lakes: analytical and laboratory studies, Water Resour. Res., 5, 484–495, 1969.
Dickinson, R. E., Henderson-Sellers, A., and Kennedy, P. J.: Biosphere-atmosphere transfer scheme (BATS) version le as coupled to the NCAR community climate model, Technical note, NCAR (National Center for Atmospheric Research), No. PB-94-106150/XAB; NCAR/TN-387+ STR, National Center for Atmospheric Research, Boulder, CO, United States, Scientific Computing Div., 1993.
Döll, P., Kaspar, F., and Lehner, B.: A global hydrological model for deriving water availability indicators: model tuning and validation, J. Hydrol., 270, 105–134, 2003.
Gao, H., Bohn, T. J., Podest, E., McDonald, K. C., and Lettenmaier, D. P.: On the causes of the shrinking of Lake Chad, Environ. Res. Lett., 6, 034021, https://doi.org/10.1088/1748-9326/6/3/034021, 2011.
Goudsmit, G. H., Burchard, H., Peeters, F., and Wüest, A.: Application of
k-ε turbulence models to enclosed basins: The role of internal
seiches, J. Geophys. Res.-Oceans, 107, 23-1–23-13, https://doi.org/10.1029/2001jc000954, 2002.
Goyette, S., McFarlane, N. A., and Flato, G. M.: Application of the Canadian Regional Climate Model to the Laurentian Great Lakes region: Implementation of a lake model, Atmos. Ocean, 38, 481–503, 2000.
Gu, H., Jin, J., Wu, Y., Ek, M. B., and Subin, Z. M.: Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model, Climatic Change, 129, 471–483, https://doi.org/10.1007/s10584-013-0978-y, 2015.
Gu, R. and Stefan, H. G.: Year-round temperature simulation of cold climate lakes, Cold Reg. Sci. Technol., 18, 147–160, 1990.
Guinaldo, T., Munier, S., Le Moigne, P., Boone, A., Decharme, B.,
Choulga, M., and Leroux, D. J.: Parametrization of a lake water dynamics model
MLake in the ISBA-CTRIP land surface system (SURFEX v8.1), Geosci. Model Dev.,
14, 1309–1344, https://doi.org/10.5194/gmd-14-1309-2021, 2021.
Hanasaki, N., Kanae, S., and Oki, T.: A reservoir operation scheme for global river routing models, J. Hydrol., 327, 22–41, 2006.
Henderson-Sellers, B.: New formulation of eddy diffusion thermocline models, Appl. Math. Model., 9, 441–446, 1985.
Hodges, B. R.: Numerical Techniques in CWR-ELCOM (code release v. 1), CWR
Manuscr. WP, 1422, BH. Cent. for Water Res., Univ. of Western Australia, Nedlands, Australia, 2000.
Hondzo, M. and Stefan, H. G.: Riverbed heat conduction prediction, Water Resour. Res. 30, 1503–1513 1994.
Hostetler, S. W.: Simulation of lake ice and its effect on the late-Pleistocene evaporation rate of Lake Lahontan, Clim. Dynam., 6, 43–48, 1991.
Hostetler, S. W. and Bartlein, P. J.: Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon, Water Resour. Res., 26, 2603–2612, 1990.
Hostetler, S. W., Bates, G. T., and Giorgi, F.: Interactive coupling of a lake thermal model with a regional climate model, J. Geophys. Res.-Atmos., 98, 5045–5057, 1993.
Joehnk, K. D. and Umlauf, L.: Modelling the metalimnetic oxygen minimum in a medium sized alpine lake, Ecol. Model., 136, 67–80, https://doi.org/10.1016/S0304-3800(00)00381-1, 2001.
Keller, H. M.: Sources of streamflow in a small high country catchment in
Canterbury, New Zealand, J. Hydrol. New Zealand, 6, 2–19, 1967.
Kim, H.: Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions (Experiment 1) [data set], Data Integr. Anal. Syst. (DIAS), https://doi.org/10.20783/DIAS.501, 2017.
Kim, H.: [Global Climate] River discharge and runoff, in: State of the Climate in 2019, B. Am. Meteorol. Soc., 101, S53–S55, 2020.
Kim, H., Yeh, P. J., Oki, T., and Kanae, S.: Role of rivers in the seasonal variations of terrestrial water storage over global basins, Geophys. Res. Lett., 36, L17402, https://doi.org/10.1029/2009GL039006, 2009.
Kondo, J.: Bulk transport coefficient on water surface, J. Japan Soc. Hydrol. Water Resour., 5, 50–55, 1992.
Kummu, M., Tes, S., Yin, S., Adamson, P., Józsa, J., Koponen, J., Richey, J., and Sarkkula, J.: Water balance analysis for the Tonle Sap Lake-floodplain system, Hydrol. Process., 28, 1722–1733, https://doi.org/10.1002/hyp.9718, 2014.
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., and Magome, J.: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Front. Ecol. Environ., 9, 494–502, 2011.
Lemoalle, J., Bader, J. C., Leblanc, M., and Sedick, A.: Recent changes in Lake Chad: Observations, simulations and management options (1973–2011), Global Planet. Change, 80–81, 247–254, https://doi.org/10.1016/j.gloplacha.2011.07.004, 2012.
Li, H., Ruby Leung, L., Tesfa, T., Voisin, N., Hejazi, M., Liu, L., Liu, Y., Rice, J., Wu, H., and Yang, X.: Modeling stream temperature in the A nthropocene: An earth system modeling approach, J. Adv. Model. Earth Sy., 7, 1661–1679, 2015.
Liu, S., Xie, Z., Liu, B., Wang, Y., Gao, J., Zeng, Y., Xie, J., Xie, Z., Jia, B., Qin, P., Li, R., Wang, L., and Chen, S.: Global river water warming due to climate change and anthropogenic heat emission, Global Planet. Change, 193, 103289, https://doi.org/10.1016/j.gloplacha.2020.103289, 2020.
Manabe, S.: Climate and the Ocean Circulation, Mon. Weather Rev., 97, 775–805, https://doi.org/10.1175/1520-0493(1969)097<0775:catoc>2.3.co;2, 1969.
Meigh, J. R., McKenzie, A. A., and Sene, K. J.: A grid-based approach to water scarcity estimates for eastern and southern Africa, Water Resour. Manag., 13, 85–115, 1999.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach, Nat. Commun., 7, 13603, https://doi.org/10.1038/ncomms13603, 2016.
O'Sullivan, P. and Reynolds, C. S.: The lakes handbook: lake restoration and
rehabilitation, John Wiley and Sons, Oxford, UK 2008.
Oki, T., Musiake, K., Matsuyama, H., and Masuda, K.: Global atmospheric water
balance and runoff from large river basins, Hydrol. Process., 9, 655–678,
https://doi.org/10.1002/hyp.3360090513, 1995.
Ozaki, N., Fukushima, T., Harasawa, H., Kojiri, T., Kawashima, K., and Ono, M.: Statistical analyses on the effects of air temperature fluctuations on river water qualities, Hydrol. Process., 17, 2837–2853, 2003.
Patterson, J. C., Hamblin, P. F., and May, N.: Thermal Simulation of a Lake with Winter Ice Cover, Limnology, 33, 323–338, 1998.
Raptis, C. E., van Vliet, M. T. H., and Pfister, S.: Global thermal pollution of rivers from thermoelectric power plants, Environ. Res. Lett., 11, 104011, https://doi.org/10.1088/1748-9326/11/10/104011, 2016.
Shiklomanov, I. A.: Appraisal and Assessment of world water resources, Water Int., 25, 11–32, https://doi.org/10.1080/02508060008686794, 2000.
Shin, S., Pokhrel, Y., and Miguez-Macho, G.: High-Resolution Modeling of Reservoir Release and Storage Dynamics at the Continental Scale, Water Resour. Res., 55, 787–810, https://doi.org/10.1029/2018WR023025, 2019.
Sinokrot, B. A. and Stefan, H. G.: Stream temperature dynamics: measurements and modeling, Water Resour. Res., 29, 2299–2312, 1993.
Small, E. E., Sloan, L. C., Hostetler, S., and Giorgi, F.: Simulating the water balance of the Aral Sea with a coupled regional climate-lake model, J. Geophys. Res.-Atmos., 104, 6583–6602, https://doi.org/10.1029/98JD02348, 1999.
Smeltzer, E. and Quinn, S.: A phosphorus budget, model, and load reduction strategy for lake champlain, Lake Reserv. Manage., 12, 381–393, https://doi.org/10.1080/07438149609354279, 1996.
Smith, K.: Some thermal characteristics of two rivers in the Pennine area of northern England, J. Hydrol., 6, 405–416, 1968.
Stepanenko, V. M., Martynov, A., Jöhnk, K. D., Subin, Z. M., Perroud, M., Fang, X., Beyrich, F., Mironov, D., and Goyette, S.: A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake, Geosci. Model Dev., 6, 1337–1352, https://doi.org/10.5194/gmd-6-1337-2013, 2013.
Subin, Z. M., Riley, W. J., and Mironov, D.: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1, J. Adv. Model. Earth Sy., 4, 1–27, https://doi.org/10.1029/2011MS000072, 2012.
Takata, K., Emori, S., and Watanabe, T.: Development of the minimal advanced treatments of surface interaction and runoff, Global Planet. Change, 38, 209–222, 2003.
Tokuda, D., Kim, H., Yamazaki, D., and Oki, T.: Development of a global river water temperature model considering fluvial dynamics and seasonal freeze-thaw cycle, Water Resour. Res., 55, 1366–1383, 2019.
Tokuda, D., Kim, H., Yamazaki, D., and Oki, T.: TCHOIR: Tightly Coupled framework for Hydrology of Open water Interactions in River–lake network (1.1), Zenodo [code], https://doi.org/10.5281/zenodo.5152668, 2021.
Vanderkelen, I., Lipzig, N. P. M., Lawrence, D. M., Droppers, B., Golub, M., Gosling, S. N., Janssen, A. B. G., Marce, R., Schmied, H. M., Perroud, M., Pierson, D., Pokhrel, Y., Satoh, Y., Schewe, J., Seneviratne, S. I., Stepanenko, V. M., Tan, Z., Woolway, R. I., and Thiery, W.: Global heat uptake by inland waters, Geophys. Res. Lett., 47, e2020GL087867, https://doi.org/10.1029/2020gl087867, 2020.
van Vliet, M. T. H., Wiberg, D., Leduc, S., and Riahi, K.: Power-generation system vulnerability and adaptation to changes in climate and water resources, Nat. Clim. Change, 6, 375–380, 2016.
Veldkamp, T. I. E., Wada, Y., Aerts, J. C. J. H., Döll, P., Gosling, S. N., Liu, J., Masaki, Y., Oki, T., Ostberg, S., Pokhrel, Y., Satoh, Y., Kim, H., and Ward, P. J.: Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century, Nat. Commun., 8, 15697, https://doi.org/10.1038/ncomms15697, 2017.
Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P., and van Beek, L. P. H.: High-Resolution Global Water Temperature Modeling, Water Resour. Res., 55, 2760–2778, 2019.
Wang, J., Bai, X., Hu, H., Clites, A., Colton, M., and Lofgren, B.: Temporal and spatial variability of Great Lakes ice cover, 1973–2010, J. Climate, 25, 1318–1329, https://doi.org/10.1175/2011JCLI4066.1, 2012.
Wang, W., Lee, X., Xiao, W., Liu, S., Schultz, N., Wang, Y., Zhang, M., and Zhao, L.: Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate, Nat. Geosci., 11, 410–414, https://doi.org/10.1038/s41561-018-0114-8, 2018.
Webb, B. W.: Trends in stream and river temperature, Hydrol. Process., 10, 205–226, 1996.
Webb, B. W. and Zhang, Y.: Spatial and seasonal variability in the components of the river heat budget, Hydrol. Process., 11, 79–101, 1997.
Yamazaki, D., Oki, T., and Kanae, S.: Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map, Hydrol. Earth Syst. Sci., 13, 2241–2251, https://doi.org/10.5194/hess-13-2241-2009, 2009.
Yamazaki, D., Kanae, S., Kim, H., and Oki, T.: A physically based description of floodplain inundation dynamics in a global river routing model, Water Resour. Res., 47, W04501, https://doi.org/10.1029/2010WR009726, 2011.
Yamazaki, D., Almeida, G. A. M., and Bates, P. D.: Improving computational efficiency in global river models by implementing the local inertial flow equation and a vector-based river network map, Water Resour. Res., 49, 7221–7235, 2013.
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high-accuracy map of global terrain elevations, Geophys. Res. Lett., 44, 5844–5853, https://doi.org/10.1002/2017GL072874, 2017.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset, Water Resour. Res., 55, 5053–5073, https://doi.org/10.1029/2019WR024873, 2019.
Yigzaw, W., Li, H. Y., Demissie, Y., Hejazi, M. I., Leung, L. R., Voisin, N., and Payn, R.: A New Global Storage-Area-Depth Data Set for Modeling Reservoirs in Land Surface and Earth System Models, Water Resour. Res., 54, 10372–10386, https://doi.org/10.1029/2017WR022040, 2018.
Yigzaw, W., Li, H. Y., Fang, X., Leung, L. R., Voisin, N., Hejazi, M. I., and Demissie, Y.: A Multilayer Reservoir Thermal Stratification Module for Earth System Models, J. Adv. Model. Earth Sy., 11, 3265–3283, https://doi.org/10.1029/2019MS001632, 2019.
Short summary
We developed TCHOIR, a hydrologic simulation framework, to solve fluvial- and thermodynamics of the river–lake continuum. This provides an algorithm for upscaling high-resolution topography as well, which enables the representation of those interactions at the global scale. Validation against in situ and satellite observations shows that the coupled mode outperforms river- or lake-only modes. TCHOIR will contribute to elucidating the role of surface hydrology in Earth’s energy and water cycle.
We developed TCHOIR, a hydrologic simulation framework, to solve fluvial- and thermodynamics of...