Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-521-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-521-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Numerical model to simulate long-term soil organic carbon and ground ice budget with permafrost and ice sheets (SOC-ICE-v1.0)
Research Center for Environmental Modeling and Application, JAMSTEC, Yokohama, 236-0001, Japan
Hirokazu Machiya
CORRESPONDING AUTHOR
Research Center for Environmental Modeling and Application, JAMSTEC, Yokohama, 236-0001, Japan
Go Iwahana
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Tokuta Yokohata
National Institute for Environment Studies, Tsukuba, 305-0053, Japan
Hiroshi Ohno
Kitami Institute of Technology, Kitami, 090-8507, Japan
Related authors
No articles found.
Natsuki Watanabe, Masahiro Watanabe, Tomohiro Hajima, Tokuta Yokohata, and Irina Melnikova
EGUsphere, https://doi.org/10.5194/egusphere-2025-4088, https://doi.org/10.5194/egusphere-2025-4088, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Permafrost stores a large amount of carbon which will be released as green house gases (GHGs) if thawing occurs during global warming. Using a CMIP6-class Earth System Model, we studied permafrost response to CO2 emission changes. We found permafrost area is reversible but with hysteresis, while permafrost property shows irreversibility. These arise from delay in soil moisture phase change. Because of hysteresis, permafrost thaws even during climate recovery, releasing additional GHGs.
Tomotaka Saruya, Atsushi Miyamoto, Shuji Fujita, Kumiko Goto-Azuma, Motohiro Hirabayashi, Akira Hori, Makoto Igarashi, Yoshinori Iizuka, Takao Kameda, Hiroshi Ohno, Wataru Shigeyama, and Shun Tsutaki
The Cryosphere, 19, 2365–2385, https://doi.org/10.5194/tc-19-2365-2025, https://doi.org/10.5194/tc-19-2365-2025, 2025
Short summary
Short summary
Crystal orientation fabrics and microstructures in the deep sections of the Dome Fuji (DF) ice core were investigated using innovative methods with dense depth coverage. Together with our previous studies, we have obtained whole layer profiles of the crystal orientation fabric and physical properties of the DF ice core. Development and fluctuation of the crystal orientation fabric were found to be highly dependent on impurity concentrations and recrystallization processes.
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025, https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers, and data users.
Irina Melnikova, Philippe Ciais, Katsumasa Tanaka, Hideo Shiogama, Kaoru Tachiiri, Tokuta Yokohata, and Olivier Boucher
Earth Syst. Dynam., 16, 257–273, https://doi.org/10.5194/esd-16-257-2025, https://doi.org/10.5194/esd-16-257-2025, 2025
Short summary
Short summary
Reducing non-CO2 greenhouse gases is important alongside CO2 for climate mitigation. Here, we look at how reducing their emissions compares to reducing CO2 using an Earth system model. While both types of gases contribute to warming, their regional climate impacts differ. Besides, the carbon cycle responds differently depending on whether climate change is driven by CO2 or non-CO2 gases. Considering both types of gases is important for carbon cycle analysis and climate mitigation strategies.
Detlef van Vuuren, Brian O'Neill, Claudia Tebaldi, Louise Chini, Pierre Friedlingstein, Tomoko Hasegawa, Keywan Riahi, Benjamin Sanderson, Bala Govindasamy, Nico Bauer, Veronika Eyring, Cheikh Fall, Katja Frieler, Matthew Gidden, Laila Gohar, Andrew Jones, Andrew King, Reto Knutti, Elmar Kriegler, Peter Lawrence, Chris Lennard, Jason Lowe, Camila Mathison, Shahbaz Mehmood, Luciana Prado, Qiang Zhang, Steven Rose, Alexander Ruane, Carl-Friederich Schleussner, Roland Seferian, Jana Sillmann, Chris Smith, Anna Sörensson, Swapna Panickal, Kaoru Tachiiri, Naomi Vaughan, Saritha Vishwanathan, Tokuta Yokohata, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3765, https://doi.org/10.5194/egusphere-2024-3765, 2025
Short summary
Short summary
We propose a set of six plausible 21st century emission scenarios, and their multi-century extensions, that will be used by the international community of climate modeling centers to produce the next generation of climate projections. These projections will support climate, impact and mitigation researchers, provide information to practitioners to address future risks from climate change, and contribute to policymakers’ considerations of the trade-offs among various levels of mitigation.
Xiaoran Zhu, Dong Chen, Maruko Kogure, Elizabeth Hoy, Logan T. Berner, Amy L. Breen, Abhishek Chatterjee, Scott J. Davidson, Gerald V. Frost, Teresa N. Hollingsworth, Go Iwahana, Randi R. Jandt, Anja N. Kade, Tatiana V. Loboda, Matt J. Macander, Michelle Mack, Charles E. Miller, Eric A. Miller, Susan M. Natali, Martha K. Raynolds, Adrian V. Rocha, Shiro Tsuyuzaki, Craig E. Tweedie, Donald A. Walker, Mathew Williams, Xin Xu, Yingtong Zhang, Nancy French, and Scott Goetz
Earth Syst. Sci. Data, 16, 3687–3703, https://doi.org/10.5194/essd-16-3687-2024, https://doi.org/10.5194/essd-16-3687-2024, 2024
Short summary
Short summary
The Arctic tundra is experiencing widespread physical and biological changes, largely in response to warming, yet scientific understanding of tundra ecology and change remains limited due to relatively limited accessibility and studies compared to other terrestrial biomes. To support synthesis research and inform future studies, we created the Synthesized Alaskan Tundra Field Dataset (SATFiD), which brings together field datasets and includes vegetation, active-layer, and fire properties.
Xuanming Su, Kiyoshi Takahashi, Tokuta Yokohata, Katsumasa Tanaka, Shinichiro Fujimori, Jun'ya Takakura, Rintaro Yamaguchi, and Weiwei Xiong
EGUsphere, https://doi.org/10.5194/egusphere-2024-1640, https://doi.org/10.5194/egusphere-2024-1640, 2024
Preprint archived
Short summary
Short summary
We created a new model combining socioeconomic data and climate projections. Using multiple future scenarios, we calculated new costs for reducing emissions, estimated damage based on the latest impacts, and extended our analysis to the year 2450. Our results show different ways to control emissions and their effects on future temperatures. This highlights the importance of adapting climate policies to different economic growth scenarios for better long-term planning.
Charles E. Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy J. Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data, 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024, https://doi.org/10.5194/essd-16-2605-2024, 2024
Short summary
Short summary
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar (SAR) surveys of over 120 000 km2 in Alaska and northwestern Canada during 2017, 2018, 2019, and 2022. This paper summarizes those results and provides links to details on ~ 80 individual flight lines. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band SAR data.
Ikumi Oyabu, Kenji Kawamura, Shuji Fujita, Ryo Inoue, Hideaki Motoyama, Kotaro Fukui, Motohiro Hirabayashi, Yu Hoshina, Naoyuki Kurita, Fumio Nakazawa, Hiroshi Ohno, Konosuke Sugiura, Toshitaka Suzuki, Shun Tsutaki, Ayako Abe-Ouchi, Masashi Niwano, Frédéric Parrenin, Fuyuki Saito, and Masakazu Yoshimori
Clim. Past, 19, 293–321, https://doi.org/10.5194/cp-19-293-2023, https://doi.org/10.5194/cp-19-293-2023, 2023
Short summary
Short summary
We reconstructed accumulation rate around Dome Fuji, Antarctica, over the last 5000 years from 15 shallow ice cores and seven snow pits. We found a long-term decreasing trend in the preindustrial period, which may be associated with secular surface cooling and sea ice expansion. Centennial-scale variations were also found, which may partly be related to combinations of volcanic, solar and greenhouse gas forcings. The most rapid and intense increases of accumulation rate occurred since 1850 CE.
Shun Tsutaki, Shuji Fujita, Kenji Kawamura, Ayako Abe-Ouchi, Kotaro Fukui, Hideaki Motoyama, Yu Hoshina, Fumio Nakazawa, Takashi Obase, Hiroshi Ohno, Ikumi Oyabu, Fuyuki Saito, Konosuke Sugiura, and Toshitaka Suzuki
The Cryosphere, 16, 2967–2983, https://doi.org/10.5194/tc-16-2967-2022, https://doi.org/10.5194/tc-16-2967-2022, 2022
Short summary
Short summary
We constructed an ice thickness map across the Dome Fuji region, East Antarctica, from improved radar data and previous data that had been collected since the late 1980s. The data acquired using the improved radar systems allowed basal topography to be identified with higher accuracy. The new ice thickness data show the bedrock topography, particularly the complex terrain of subglacial valleys and highlands south of Dome Fuji, with substantially high detail.
Tomotaka Saruya, Shuji Fujita, Yoshinori Iizuka, Atsushi Miyamoto, Hiroshi Ohno, Akira Hori, Wataru Shigeyama, Motohiro Hirabayashi, and Kumiko Goto-Azuma
The Cryosphere, 16, 2985–3003, https://doi.org/10.5194/tc-16-2985-2022, https://doi.org/10.5194/tc-16-2985-2022, 2022
Short summary
Short summary
Crystal orientation fabrics (COF) of the Dome Fuji ice core were investigated with an innovative method with unprecedentedly high statistical significance and dense depth coverage. The COF profile and its fluctuation were found to be highly dependent on concentrations of chloride ion and dust. The data suggest deformation of ice at the deepest zone is highly influenced by COF fluctuations that progressively develop from the near-surface firn toward the deepest zone within ice sheets.
Irina Melnikova, Olivier Boucher, Patricia Cadule, Katsumasa Tanaka, Thomas Gasser, Tomohiro Hajima, Yann Quilcaille, Hideo Shiogama, Roland Séférian, Kaoru Tachiiri, Nicolas Vuichard, Tokuta Yokohata, and Philippe Ciais
Earth Syst. Dynam., 13, 779–794, https://doi.org/10.5194/esd-13-779-2022, https://doi.org/10.5194/esd-13-779-2022, 2022
Short summary
Short summary
The deployment of bioenergy crops for capturing carbon from the atmosphere facilitates global warming mitigation via generating negative CO2 emissions. Here, we explored the consequences of large-scale energy crops deployment on the land carbon cycle. The land-use change for energy crops leads to carbon emissions and loss of future potential increase in carbon uptake by natural ecosystems. This impact should be taken into account by the modeling teams and accounted for in mitigation policies.
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020, https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
Cited articles
Alley, R. A., Brook, E. J., and Anandakrishnan, S.: A northern lead in the orbital band: north–south phasing of Ice-Age events, Quaternary Sci. Rev., 21, 431–441, 2002.
AMAP:
Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere,
Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 2011.
AMAP:
Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017,
Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 2017.
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W.:
The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based upon GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories,
Geophys. J. Int.,
198, 537–563, https://doi.org/10.1093/gji/ggu140, 2014.
Beilman, D. W., MacDonald, G. M., Smith, L. C., and Reimer, P. J.:
Carbon accumulation in peatlands of West Siberia over the last 2000 years,
Global Biogeochem. Cy.,
23, GB1012, https://doi.org/10.1029/2007GB003112, 2009.
Belyea, L. R. and Baird, A. J.:
Beyond “The limits to peat bog growth”: Cross-scale feedback in peatland development,
Ecol. Monogr.,
76, 299–322, 2006.
Berrisford, P., Dee, D. P., Poli, P., Brugge, R., Fielding, M., Fuentes, M., Kållberg, P. W., Kobayashi, S., Uppala, S., and Simmons, A.: The ERA-Interim archive Version 2.0, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, last access: 25 January 2021.
Biasi, C., Rusalimova, O., Meyer, H., Kaiser, C., Wanek, W., Barsukov, P., Junger, H., and Richter, A.:
Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs,
Rapid Commun. Mass Sp.,
19, 1401–1408, https://doi.org/10.1002/rcm.1911, 2005.
Bindshadler, R. A., Nowicki, S., Abe-Ouchi, A., Aschwanden, A., Choi, H., Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U., Jackson, C., Johnson, J., Khroulev, C., Levermann, A., Lipscomp, W. H., Martin, M. A., Morlighem, M., Parizek, B. R., Pollard, D., Price, S. F., Ren, D., Saito, F., Sato, T., Seddik, H., Seroussi, H., Takahashi, K., Walker, R., and Wang, W. L.:
Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project),
J. Glaciol.,
59, https://doi.org/10.3189/2013JoG12J125, 2013.
Boudreau, B. P. and Ruddick, B. R.:
On a reactive continuum representation of organic matter diagenesis,
Am. J. Sci.,
291, 507–538, 1991.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.:
Evaluation of climate models using palaeoclimatic data,
Nat. Clim. Change,
2, 417–424, https://doi.org/10.1038/NCLIMATE1456, 2012.
Brouchkov, A. and Fukuda, M.:
Preliminary Measurements on Methane Content in Permafrost, Central Yakutia, and some Experimental Data,
Permafrost Periglac.,
13, 187–197, 2002.
Brovkin, V. Boysen, L., Raddatz, T., Gayler, V., Loew, A., and Claussen, M.: Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations, J. Adv. Model. Earth Syst., 5, 48–57, https://doi.org/10.1029/2012MS000169, 2013.
Brown, J., Ferrians, O. J., Heginbottom, J. A., and Melnikov, E. S.:
Circum-arctic map of permafrost and ground ice conditions,
Digital media,
National Snow and Ice Data Center, Boulder, CO, 1998 (revised 2002).
Charman, D. J., Amesbury, M. J., Hinchliffe, W., Hughes, P. D. M., Mallon, G., Blake, W. H., Daley, T. J., Gallego-Sala, A. V., and Mauquoy, D.:
Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America,
Quaternary Sci. Rev.,
121, 110–119, 2015.
Clymo, R. S.:
The limits to peat bog growth,
Philos. T. R. Soc. Lon. B,
303, 605–654, 1984.
Clymo, R. S.:
Models of peat growth,
Suo,
43, 127–136, 1992.
Conant, R., Ryan, M., Ågren, G. I., Birgé, H., Davidson, E., Eliasson, P., Evans, S., Frey, S., Giardina, Ch., Hopkins, F., Hyvönen, R., Kirschbaum, M., Lavallee, J., Leifeld, J., Parton, W., Steinweg, J. M., Wallenstein, M., Wetterstedt, M., and Bradford, M.:
Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward,
Glob. Change Biol.,
17, 3392–3404, https://doi.org/10.1111/j.1365-2486.2011.02496.x, 2011.
Cook, E. R., Esper, J., and D'Arrigo, R. D.: Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years, Quaternary Sci. Rev., 23, 2063–2074, 2004.
Dean, J. F., Middelburg, J. J., Röckmann, T., Aerts, R., Blauw, L. G., Egger, M., Jetten, M. S. M., de Jong, A. E. E., Meisel, O. H., Rasigraf, O., Slomp, C. P., in't Zandt, M. H., and Dolman, A. J.:
Methane Feedbacks to the Global Climate System in a Warmer World,
Rev. Geophys.,
56, 207–250, https://doi.org/10.1002/2017RG000559, 2018a.
Dean, J. F., van derVelde, Y., Garnett, M. H., Dinsmore, K. J., Baxter, R., Lessels, J. S., Smith, P., and Street, L. E.:
Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback,
Environ. Res. Lett.,
13, 034024, 2018b.
De Deyn, G. B., Cornelissen, J. H. C., and Bardgett, R. D.:
Plant functional traits and soil carbon sequestrationin contrasting biomes,
Ecol. Lett.,
11, 516–531, https://doi.org/10.1111/j.1461-0248.2008.01164.x, 2008.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.:
The ERA-Interim reanalysis: configuration and performance of the data assimilation system,
Q. J. Roy. Meteor. Soc.,
137, 553–597, 2011.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O. Balkanski, Y. Bekki, S. Bellenger, H., Benshila, R., Bony, S., Bopp, L. Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S. Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.:
Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5,
Clim. Dynam.,
40, 2123, https://doi.org/10.1007/s00382-012-1636-1, 2013.
Dyke, A. S.:
Late Quaternary Vegetation History of Northern North America Based on Pollen Macrofossil, and Faunal Remains,
Geogr. Phys. Quatern.,
59, 211–262, 2005.
Dyke, L. D. and Sladen, W. E.: Permafrost and Peatland Evolution in the Northern Hudson Bay Lowland, Manitoba, Arctic, 63, 429–441, 2010.
Esper, J., Cook, E. R., and Schweingruber, F. H.: Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability, Science, 295, 2250–2253, 2002.
French, H. M.:
The periglacial environment,
John Wiley & Sons Ltd., Chichester, England, pp. 458, 2007.
Frenzel, B., Pécsi, M., and Velichko, A. A. (Eds.):
Atlas of Paleoclimates and Paleoenvironments of the Northern Hemisphere,
Geographical Research Institute, Hungarian Academy of Sciences, Budapest, 153 pp., Gustav Fischer Verlag, Stuttgart, 1992.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z., and Zhang, M.:
The Community Climate System Model Version 4,
J. Climate,
24, 4973–4991, 2011.
Gorham, E.:
Northern Peatlands: Role in the carbon cycle and probable responses to climatic warming,
Ecol. Appl.,
1, 182–195, 1991.
Greve, R., Saito, F., and Abe-Ouchi, A.: Initial results of the SeaRISE numerical experiments with the models SICOPOLIS and IcIES for the Greenland ice sheet, Ann. Glaciol., 52, 23–30, https://doi.org/10.3189/172756411797252068, 2011.
Harden, J. W., Sundquist, E. T., Stallard, R. F., and Mark, R. K.:
Dynamics of Soil Carbon During Deglaciation of the Laurentide Ice Sheet,
Science,
258, 5090, 1921–1924, 1992.
Harris, S. A.: Climatic Relationships of Permafrost Zones in Areas of Low Winter Snow-Cover, Arctic, 34, 64–70, 1981.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.:
SoilGrids250m: Global gridded soil information based on machine learning,
PLoS ONE,
12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Hilbert, D. W., Roulet, N., and Moore, T.:
Modelling and analysis of peatlands as dynamical systems,
J. Ecol.,
88, 230–242, 2000.
Hu, F., Philip, S., Higuera, E., Duffy, P., Chipman, M. L., Rocha, A. V., Young, A. M., Kelly, R., and Dietze, M. C.:
Arctic tundra fires: natural variability and responses to climate change,
Front. Ecol. Environ.,
13, 369–377, https://doi.org/10.1890/150063, 2015.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., Treat, C., Turetsky, M., Voigt, C., and Yu, Z.:
Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw,
P. Natl. Acad. Sci. USA,
117, 20438–20446, 2020.
Ingram, H. A. P.:
Soil layers in mires: function and terminology,
J. Soil Sci.,
29, 224–227, 1978.
IPCC:
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Ito, A.:
Methane emission from pan-Arctic natural wetlands estimated using a process-based model, 1901–2016,
Polar Sci.,
21, 26–36, https://doi.org/10.1016/j.polar.2018.12.001, 2019.
Iwahana, G., Uchida, M., Liu, L., Gong, W., Meyer, F., Guritz, R., Yamanokuchi, T., and Hinzman, L.:
InSAR Detection and Field Evidence for Thermokarst after a Tundra Wildfire, Using ALOS-PALSAR,
Remote Sens.-Basel,
8, 218, https://doi.org/10.3390/rs8030218, 2016.
Jassey, V. E. and Signarbieux, J. C.:
Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits,
Glob. Change Biol.,
25, 3859–3870, https://doi.org/10.1111/gcb.14788, 2019.
Jenny, H., Gessel, S. P., and Bingham, F. T.:
Comparative study of decomposition rates of organic matter in temperate and tropical regions,
Soil Sci.,
68, 419–432, 1949.
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C. U., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J. P.:
Irregular glacial interstadials recorded in a new Greenland ice core,
Nature,
359, 311–313, https://doi.org/10.1038/359311a0, 1992.
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Gundestrup, N. S., Hammer, C. U., Andersen, U., Andersen, K. K., Hvidberg, C. S, Dahl-Jensen, D., Steffensen, J. P., Shoji, H., Sveinbjörnsdóttir, Á. E., White, J., Jouzel, J., and Fisher, D.:
The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability,
J. Geophys. Res.,
102, 26397–26410, https://doi.org/10.1029/97JC00167, 1997.
Jones, B. M., Kolden, C. A., Jandt, R., Abatzoglou, J. T., Urban, F., and Arp, C. D.:
Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River tundra fire, North Slope, Alaska,
Arct. Antarct. Alp. Res.,
41, 309–316, 2009.
Jones, M. C. and Yu, Z.:
Rapid deglacial and early Holocene expansion of peatlands in Alaska,
P. Natl. Acad. Sci. USA,
107, 7347–7352, https://doi.org/10.1073/pnas.0911387107, 2010.
Jorgenson, M. T., Kanevskiy, M., Shur, Y., Moskalenko, N., Brown, D. R. N., Wickland, K., Striegl, R., and Koch, J.:
Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization,
J. Geophys. Res. Earth,
120, 2280–2297, https://doi.org/10.1002/2015JF003602, 2015.
Kanevskiy, M., Shur, Y., Fortier, D., Jorgenson, M. T., and Stephani, E.:
Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure,
Quaternary Res.,
75, 584–596, https://doi.org/10.1016/j.yqres.2010.12.003, 2011.
Kanevskiy, M., Shur, Y., Jorgenson, M. T., Ping, C.-L., Michaelson, G. J., Fortier, D., Stephani, E., Dillon, M., and Tumskoy, V.:
Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska,
Cold Reg. Sci. Technol.,
85, 56–70, https://doi.org/10.1016/j.coldregions.2012.08.002, 2013.
Klein, E. S., Booth, R. K., Yu, Z., Mark, B. G., and Stansell, N. D.:
Hydrology-mediated differential response of carbon accumulation to late Holocene climate change at two peatlands in Southcentral Alaska,
Quaternary Sci. Rev.,
64, 61–75, 2013.
Koven, C. D., Schuur, E. A. G., Schädel, C., Bohn, T. J., Burke, E. J., Chen, G., Chen, X,. Ciais, P., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Jafarov, E. E., Krinner, G., Kuhry, P., Lawrence, D. M., MacDougall, A. H., Marchenko, S. S., McGuire, A. D., Natali, S. M., Nicolsky, D. J., Olefeldt, D., Peng, S., Romanovsky, V. E., Schaefer, K. M., Strauss, J., Treat, C. C., and Turetsky, M.:
A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback,
Philos. T. R. Soc. A,
373, 20140423, 2015.
Kukla, G. J., Bender, M. L., de Beaulieu, J.-L., Bond, G., Broecker, W. S., Cleveringa, P., Gavin, J. E., Herbert, T. D., Imbrie, J., Jouzel, J., Keigwin, L. D., Knudsen, K.-L., McManus, J. F., Merkt, J., Muhs, D. R., Müller, H., Poore, R. Z., Porter, S. C, Seret, G., Shackleton, N. J., Turner, C., Polychronis C., Tzedakis, C., and Winograd, I. J.:
Last Interglacial Climates,
Quaternary Res.,
58, 2–13, https://doi.org/10.1006/qres.2001.2316, 2002.
Li, B., Rodell, M., Kumar, S., Beaudoing, H., Getirana, A., Zaitchik, B. F., de Goncalves, L. G., Cossetin, C., Bhanja, S., Mukherjee, A., Tian, S., Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I. B., Daira, D., Bila, M., de Lannoy, G., Mocko, D., Steele-Dunne, S. C., Save, H., and Bettadpuret, S.:
Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges,
Water Resour. Res.,
55, 7564–7586, https://doi.org/10.1029/2018wr024618, 2019.
Li, B., Beaudoing, H., and Rodell, M.:
GLDAS Catchment Land Surface Model L4 daily 0.25 × 0.25 degree GRACE-DA1 V2.2,
Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, Maryland, USA, https://doi.org/10.5067/TXBMLX370XX8 (last access: 25 January 2021), 2020.
Loisel, J. and Yu, Z.:
Holocene peatland carbon dynamics in Patagonia,
Quaternary Sci. Rev.,
69, 125–141, 2013.
Loisel, J., van Bellen, S., Pelletier, L., Talbot, J., Hugelius, G., Karran, D., Yu, Z., Nichols, J., and Holmquist, J.:
Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum,
Earth-Sci. Rev.,
165, 9–80, 2017.
Lunardini, V.:
Permafrost formation time, CRREL Report 95–8,
Cold Regions Research and Engineering Laboratory, US Army Corps of Engineers, Hanover, New Hampshire, 1995.
Lund, M., Lafleur, P. M., Roulet, N. T., Lindroth, A., Christensen, T. R., Aurela, M., Chojnicki, B. H., Flanagan, L. B., Humphreys, E. R., Laurila, T., Oechel, W. C., Olejnik, J., Rinne, J., Schubert, P., and Nilson, M. B.:
Variability in exchange of CO2 across 12 northern peatland and tundra sites,
Glob. Change Biol.,
16, 2436–2448, https://doi.org/10.1111/j.1365-2486.2009.02104.x, 2010.
Luo, Zh., Wang, G., and Wang, E.:
Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate,
Nat. Commun.,
10, 3688, https://doi.org/10.1038/s41467-019-11597-9, 2019.
MacDonald, G. M., Beilman, D. W., Kremenetski, K. V., Sheng, Y., Smith, L. C., and Velichko, A. A.:
Rapid Early Development of Circumarctic Peatlands and Atmospheric CH4 and CO2 Variations,
Science,
314, 285–288, https://doi.org/10.1126/science.1131722, 2006.
MacDougall, A. H. and Knutti, R.: Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach, Biogeosciences, 13, 2123–2136, https://doi.org/10.5194/bg-13-2123-2016, 2016.
Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S.,
and Ni, F.: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia, P. Natl. Acad. Sci. USA, 105, 13252–13257, 2008.
McGuire, A. D., Koven, C., Lawrence, D. M., Clein, J. S., Xia, J., Beer, C., Burke, E., Chen, G., Chen, X., Delire, C., Jafarov, E., MacDougall, A. H., Marchenko, S., Nicolsky, D., Peng, S., Rinke, A., Saito, K., Zhang, W., Alkama, R., Bohn, T. J., Ciais, P., Decharme, B., Ekici, A., Gouttevin, I., Hajima, T., Hayes, D. J., Ji, D., Krinner, G., Lettenmaier, D. P., Miller, P. A., Moore, J. C., Romanovsky, V., Schadel, C., Schaefer, K., Schuur, E. A. G., Smith, B., Sueyoshi, T., and Zhuang, Q.:
Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009,
Global Biogeochem. Cy.,
30, 1015–1037, 2016.
Miyazaki, S., Saito, K., Mori, J., Yamazaki, T., Ise, T., Arakida, H., Hajima, T., Iijima, Y., Machiya, H., Sueyoshi, T., Yabuki, H., Burke, E. J., Hosaka, M., Ichii, K., Ikawa, H., Ito, A., Kotani, A., Matsuura, Y., Niwano, M., Nitta, T., O'ishi, R., Ohta, T., Park, H., Sasai, T., Sato, A., Sato, H., Sugimoto, A., Suzuki, R., Tanaka, K., Yamaguchi, S., and Yoshimura, K.: The GRENE-TEA model intercomparison project (GTMIP): overview and experiment protocol for Stage 1, Geosci. Model Dev., 8, 2841–2856, https://doi.org/10.5194/gmd-8-2841-2015, 2015.
Morris, P. J., Swindles, G. T., Valdes, P. J., Ivanovic, R. F., Gregoire, L. J., Smith, M. W., Tarasov, L., Haywood, A. M., and Bacon, K. L.:
Global peatland initiation driven by regionally asynchronous warming,
P. Natl. Acad. Sci. USA,
115, 4851–4856, https://doi.org/10.1073/pnas.1717838115, 2018.
Murton, J. B., Goslar, T., Edwards, M. E., Bateman, M. D., Danilov, P. P., Savvinov, G. N., Gubin, S. V., Ghaleb, B., Haile, J., Kanevskiy, M., Lozhkin, A. V., Lupachev, A. V., Murton, D. K., Shur, Y., Tikhonov, A., Vasil'chuk, A. C., Vasil'chuk, Y. K., and Wolfe, S. A.:
Palaeoenvironmental interpretation of Yedoma silt (Ice Complex) deposition as cold-climate loess, Duvanny Yar, Northeast Siberia,
Permafrost Periglac.,
26, 208–288, https://doi.org/10.1002/ppp.1843, 2015.
Nakagawa, T., Kitagawa, H., Yasuda, Y., Tarasov, P. E., Nishida, K., Gotanda, K., Sawai, Y., and Yangtze River Civilization Program Members: Asynchronous Climate Changes in the North Atlantic and Japan
During the Last Termination, Science, 299, 688–691, 2003.
Narita, K., Harada, K., Saito, K., Sawada, Y., Fukuda, M., and Tsuyuzaki, Sh.:
Vegetation and permafrost thaw depth 10 years after a tundra fire in 2002, Seward Peninsula, Alaska,
Arct. Antarct. Alp. Res.,
47, 547–559, https://doi.org/10.1657/AAAR0013-031, 2015.
Nichols, J. E. and Peteet, D. M.:
Rapid expansion of northern peatlands and doubled estimate of carbon storage,
Nat. Geosci.,
12, 917–921, https://doi.org/10.1038/s41561-019-0454-z, 2019.
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P., McGuire, A. D., Romanovsky, V. E., Sannel, A. B. K., Schuur, E. A. G., and Turetsky, M. R.:
Circumpolar distribution and carbon storage of thermokarst landscapes,
Nat. Commun.,
7, 13043, https://doi.org/10.1038/ncomms13043, 2016.
Park, H., Iijima, Y., Yabuki, H., Ohta, T., Walsh, J., Kodama, Y., and Ohata, T.:
The application of a coupled hydrological and biogeochemical model (CHANGE) for modeling of energy, water, and CO2 exchanges over a larch forest in eastern Siberia,
J. Geophys. Res.,
116, D15102, https://doi.org/10.1029/2010JD015386, 2011.
Peltier, W. R., Argus, D. F., and Drummond, R.:
Space geodesy constrains ice-age terminal deglaciation: The global ICE-6G_C (VM5a) model,
J. Geophys. Res. Sol. Ea.,
120, 450–487, https://doi.org/10.1002/2014JB011176, 2015.
Perruchoud, D., Joos, F., Fischlin, A., Hajdas, I., and Bonani, G.:
Evaluating timescales of carbon turnover in temperate forest soils with radiocarbon data,
Global Biogeochem. Cy.,
13, 555–573, 1999.
Plaza, C., Pegoraro, E., Bracho, R., Kathryn, G. C., Crummer, G., Hutchings, J. A., Hicks Pries, C. E., Mauritz, M., Natali, S. M., Salmon, V. G., Schädel, C., Webb, E. E., and Schuur, E. A. G.:
Nat. Geosci.,
12, 627–631, https://doi.org/10.1038/s41561-019-0387-6, 2019.
Pugh, T. A. M., Rademacher, T., Shafer, S. L., Steinkamp, J., Barichivich, J., Beckage, B., Haverd, V., Harper, A., Heinke, J., Nishina, K., Rammig, A., Sato, H., Arneth, A., Hantson, S., Hickler, T., Kautz, M., Quesada, B., Smith, B., and Thonicke, K.: Understanding the uncertainty in global forest carbon turnover, Biogeosciences, 17, 3961–3989, https://doi.org/10.5194/bg-17-3961-2020, 2020.
Rodell, M. and Beaudoing, H. K:
GLDAS Mosaic Land Surface Model L4 3 Hourly 1.0 × 1.0 degree Subsetted V001,
Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, Maryland, USA, https://doi.org/10.5067/DLVU8VOPKN7L (last access: 25 January 2021), 2007.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.:
The Global Land Data Assimilation System,
B. Am. Meteorol. Soc.,
85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
Saito, K. and Machiya, H.: Conceptual Model to Simulate Long-term Soil Organic Carbon and Ground Ice Budget with Permafrost and Ice Sheets (Version v1.0), Zenodo, https://doi.org/10.5281/zenodo.3839222, 2020.
Saito, K., Marchenko, S., Romanovsky, V., Hendricks, A., Bigelow, N., Yoshikawa, K., and Walsh, J.:
Evaluation of LPM permafrost distribution in NE Asia reconstructed and downscaled from GCM simulations,
Boreas,
43, 733–749, https://doi.org/10.1111/bor.12038, 2014.
Saito, K., Trombotto Liaudat, D., Yoshikawa, K., Mori, J., Sone, T., Marchenko, S., Romanovsky, V., Walsh, J., Hendricks, A., and Bottegal, E.:
Late Quaternary Permafrost Distributions Downscaled for South America: Examinations of GCM-based Maps with Observations,
Permafrost Periglac.,
27, 43–55, 2016.
Saito, K., Machiya, H., Iwahana, G., Ohno, H., and Yokohata, T.: Mapping simulated circum-Arctic organic carbon, ground ice, and vulnerability of ice-rich permafrost to degradation, Prog. Earth Planet. Sci., 7, 31, https://doi.org/10.1186/s40645-020-00345-z, 2020.
Sannel, A. B. K. and Kuhry, P.:
Warming-induced destabilization of peat plateau/thermokarst lake complexes,
J. Geophys. Res.,
116, G03035, https://doi.org/10.1029/2010JG001635, 2011.
Sato, H., Kobayashi, H., Iwahana, G., and Ohta, T.:
Endurance of larch forest ecosystems in eastern Siberia under warming trends,
Ecol. Evol.,
6, 5690–5704, 2016.
Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G., and Witt, R.: The impact of the permafrost carbon feedback on global
climate, Environ. Res. Lett., 9, 085003, https://doi.org/10.1088/1748-9326/9/8/085003, 2014..
Schneider von Deimling, T., Grosse, G., Strauss, J., Schirrmeister, L., Morgenstern, A., Schaphoff, S., Meinshausen, M., and Boike, J.: Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity, Biogeosciences, 12, 3469–3488, https://doi.org/10.5194/bg-12-3469-2015, 2015.
Schuur, E. A. G., Abbott, B., and Permafrost Carbon Network:
Permafrost Carbon High risk of permafrost thaw,
Nature,
480, 32–33, 2011.
Smith, L. C., MacDonald, G. M., Velichko, A. A., Beilman, D. W. Borisova, O. K. Frey, K. E., Kremenetski, K. V., and Shen, Y.:
Siberian Peatlands a Net Carbon Sink and Global Methane Source Since the Early Holocene,
Science, 303, 353–356, 2004.
Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G., Knoblauch, C., Romanovsky, V., Schädel, C., Schneidervon Deimling, T., Schuur, E. A. G., Shmelev, D., Ulrich, M., and Veremeeva, A.:
Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability,
Earth-Sci. Rev.,
172, 75–86, https://doi.org/10.1016/j.earscirev.2017.07.007, 2017.
Sueyoshi, T., Saito, K., Miyazaki, S., Mori, J., Ise, T., Arakida, H., Suzuki, R., Sato, A., Iijima, Y., Yabuki, H., Ikawa, H., Ohta, T., Kotani, A., Hajima, T., Sato, H., Yamazaki, T., and Sugimoto, A.: The GRENE-TEA model intercomparison project (GTMIP) Stage 1 forcing data set, Earth Syst. Sci. Data, 8, 1–14, https://doi.org/10.5194/essd-8-1-2016, 2016.
Svenning, J.-C. and Sandel, B.:
Disequilibrium vegetation dynamics under future climate change,
Am. J. Bot.,
100, 1266–1286, https://doi.org/10.3732/ajb.1200469, 2013.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.:
An overview ofcmip5 and the experiment design,
B. Am. Meteorol. Soc.,
93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thornton, P. E., Law, B. E., Gholz, H. L., Clark, K. L., Falge, E., Ellsworth, D. S., Goldstein, A. H., Monson, R. K., Hallinger, D., Falk, M., Chen, J., and Sparks, J. P.:
Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests,
Agr. Forest Meteorol.,
113, 185–222, 2002.
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence, D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.:
Carbon release through abrupt permafrost thaw,
Nat. Geosci.,
13, 38–143, https://doi.org/10.1038/s41561-019-0526-0, 2020.
van Bellen, S., Garneau, M., and Booth, R. K.:
Holocene carbon accumulation rates from three ombrotrophic peatlands in boreal Quebec, Canada: impact of climate-driven ecohydrological change,
Holocene,
21, 1217e1231, 2011.
van Everdingen, R.: Multi-language glossary of permafrost and related ground-ice terms,The Arctic Institute of North America, The University of Calgary, Calgary, Alberta, Canada, 1998.
Vitt, D. H., Halsey, L. A., Bauer, I. E., and Campbell, C.:
Spatial and temporal trends in carbon storage of peatlands of continental Western Canada through the Holocene,
Can. J. Earth Sci.,
37, 683–693, 2000a.
Vitt, D. H., Halsey, L. A., and Zoltai, S. C.:
The changing landscape of Canada's western boreal forest: the current dynamics of permafrost,
Can. J. Forest Res.,
30, 283–287, 2000b.
Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., and Chauvin, F.:
The CNRM-CM5.1 global climate model: description and basic evaluation,
Clim. Dynam.,
40, 2091–2121, https://doi.org/10.1007/s00382-011-1259-y, 2011.
Walter Anthony, K. M., Schneider von Deimling, T., Nitze, I., Frolking, S., Emond, A., Daanen, R., Anthony, P., Lindgren, P., Jones, B., and Grosse, G.:
21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes,
Nat. Commun.,
9, 3262, https://doi.org/10.1038/s41467-018-05738-9, 2018.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Willeit, M. and Ganopolski, A.: Coupled Northern Hemisphere permafrost–ice-sheet evolution over the last glacial cycle, Clim. Past, 11, 1165–1180, https://doi.org/10.5194/cp-11-1165-2015, 2015.
Willmott, C. J. and Matsuura, K.:
Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999),
NOAA/OAR/ESRL PSD, available at: http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html (last access: 25 January 2021), 2001.
Willmott, C. J. and Matsuura, K.: Air Temperature & Precipitation, University of Delaware, available at: https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html (last access: 25 January 2021).
Xing, W., Bao, K., Gallego-Sala, A. V., Charman, D. J., Zhang, Z., Gao, C., Lu, X., and Wang, G.:
Climate controls on carbon accumulation in peatlands of Northeast China,
Quaternary Sci. Rev.,
115, 78–88, 2015.
Yokohata, T., Saito, K., Ito, A., Ohno, H., Tanaka, K., Hajima, T., and Iwahana, G.:
Future projection of climate change due to permafrost degradation with a simple numerical scheme,
Prog. Earth Planet. Sci.,
7, 56, https://doi.org/10.1186/s40645-020-00366-8, 2020.
Yu, Z., Vitt, D. H., Campbell, I. D., and Apps, M. J:
Understanding Holocene peat accumulation pattern of continental fens in western Canada,
Can. J. Botany,
81, 267–282, 2003.
Yu, Z., Beilman, D. W., and Jones, M. C.:
Sensitivity of Northern Peatland Carbon Dynamics to Holocene Climate Change,
Geoph. Monog. Series,
184, 55–69, https://doi.org/10.1029/2008GM000822, 2009.
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.:
Global peatland dymanics since the Last Glacial Maximum,
Geophys. Res. Lett.,
37, L13402, https://doi.org/10.1029/2010GL043584, 2010.
Yu, Z. C.: Northern peatland carbon stocks and dynamics: a review, Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, 2012.
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T. Y., Shindo, E., Tsujino, H., Deushi, M., and Mizuta, R.:
A new global climate model of the Meteorological Research Institute: MRI-CGCM3 model description and basic performance,
J. Meteorol. Soc. Jpn.,
90A, 23–64, 2012.
Short summary
Soil organic carbon (SOC) and ground ice (ICE) are essential but under-documented information to assess the circum-Arctic permafrost degradation impacts. A simple numerical model of essential SOC and ICE dynamics, developed and integrated north of 50° N for 125,000 years since the last interglacial, reconstructed the history and 1° distribution of SOC and ICE consistent with current knowledge, together with successful demonstration of climatic and topographical controls on SOC evolution.
Soil organic carbon (SOC) and ground ice (ICE) are essential but under-documented information to...