Articles | Volume 14, issue 7
https://doi.org/10.5194/gmd-14-4683-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-4683-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Data reduction for inverse modeling: an adaptive approach v1.0
Xiaoling Liu
Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
August L. Weinbren
Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
He Chang
Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
Jovan M. Tadić
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Marikate E. Mountain
Atmospheric and Environmental Research, Inc., Lexington, MA, USA
Michael E. Trudeau
Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Arlyn E. Andrews
Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
Zichong Chen
Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
Related authors
No articles found.
Hanyu Liu, Felix R. Vogel, Misa Ishizawa, Zhen Zhang, Benjamin Poulter, Doug E. J. Worthy, Leyang Feng, Anna L. Gagné-Landmann, Ao Chen, Ziting Huang, Dylan C. Gaeta, Joe R. Melton, Douglas Chan, Vineet Yadav, Deborah Huntzinger, and Scot M. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2025-2150, https://doi.org/10.5194/egusphere-2025-2150, 2025
Short summary
Short summary
We find that the state-of-the-art process-based methane flux models have both lower flux magnitude and reduced inter-model uncertainty compared to a previous model inter-comparison from over a decade ago. Despite these improvements, methane flux estimates from process-based models are still likely too high compared to atmospheric observations. We also find that models with simpler parameterizations often result in better agreement with atmospheric observations in high-latitude North America.
Archana Dayalu, Marikate Mountain, Bharat Rastogi, John B. Miller, and Luciana Gatti
Biogeosciences, 22, 1509–1528, https://doi.org/10.5194/bg-22-1509-2025, https://doi.org/10.5194/bg-22-1509-2025, 2025
Short summary
Short summary
The Amazon is facing unprecedented disturbance. Determining trends in Amazonia's carbon balance and its sensitivity to disturbance requires reliable vegetation models that adequately capture how its ecosystems exchange carbon with the atmosphere. Using ground- and satellite-based ecosystem products, we present an improved model of land–atmosphere vegetation carbon exchange across the Amazon. Our model agrees with independent aircraft observations from different locations.
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 17, 8853–8872, https://doi.org/10.5194/gmd-17-8853-2024, https://doi.org/10.5194/gmd-17-8853-2024, 2024
Short summary
Short summary
Making an informed decision about what prior information to incorporate or discard in an inverse model is important yet very challenging, as it is often not straightforward to distinguish between informative and non-informative variables. In this study, we develop a new approach for incorporating prior information in an inverse model using predictor variables, while simultaneously selecting the relevant predictor variables for the estimation of the unknown quantity of interest.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Lei Hu, Deborah Ottinger, Stephanie Bogle, Stephen A. Montzka, Philip L. DeCola, Ed Dlugokencky, Arlyn Andrews, Kirk Thoning, Colm Sweeney, Geoff Dutton, Lauren Aepli, and Andrew Crotwell
Atmos. Chem. Phys., 23, 1437–1448, https://doi.org/10.5194/acp-23-1437-2023, https://doi.org/10.5194/acp-23-1437-2023, 2023
Short summary
Short summary
Effective mitigation of greenhouse gas (GHG) emissions relies on an accurate understanding of emissions. Here we demonstrate the added value of using inventory- and atmosphere-based approaches for estimating US emissions of SF6, the most potent GHG known. The results suggest a large decline in US SF6 emissions, shed light on the possible processes causing the differences between the independent estimates, and identify opportunities for substantial additional emission reductions.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Taewon Cho, Julianne Chung, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 15, 5547–5565, https://doi.org/10.5194/gmd-15-5547-2022, https://doi.org/10.5194/gmd-15-5547-2022, 2022
Short summary
Short summary
Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air pollution emissions at the Earth's surface using observations of these gases collected in the atmosphere. The launch of new satellites, the expansion of surface observation networks, and a desire for more detailed maps of surface fluxes have yielded numerous computational and statistical challenges. This article describes computationally efficient methods for large-scale atmospheric inverse modeling.
Xiao Lu, Daniel J. Jacob, Haolin Wang, Joannes D. Maasakkers, Yuzhong Zhang, Tia R. Scarpelli, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Hannah Nesser, A. Anthony Bloom, Shuang Ma, John R. Worden, Shaojia Fan, Robert J. Parker, Hartmut Boesch, Ritesh Gautam, Deborah Gordon, Michael D. Moran, Frances Reuland, Claudia A. Octaviano Villasana, and Arlyn Andrews
Atmos. Chem. Phys., 22, 395–418, https://doi.org/10.5194/acp-22-395-2022, https://doi.org/10.5194/acp-22-395-2022, 2022
Short summary
Short summary
We evaluate methane emissions and trends for 2010–2017 in the gridded national emission inventories for the United States, Canada, and Mexico by inversion of in situ and satellite methane observations. We find that anthropogenic methane emissions for all three countries are underestimated in the national inventories, largely driven by oil emissions. Anthropogenic methane emissions in the US peak in 2014, in contrast to the report of a steadily decreasing trend over 2010–2017 from the US EPA.
Bharat Rastogi, John B. Miller, Micheal Trudeau, Arlyn E. Andrews, Lei Hu, Marikate Mountain, Thomas Nehrkorn, Bianca Baier, Kathryn McKain, John Mund, Kaiyu Guan, and Caroline B. Alden
Atmos. Chem. Phys., 21, 14385–14401, https://doi.org/10.5194/acp-21-14385-2021, https://doi.org/10.5194/acp-21-14385-2021, 2021
Short summary
Short summary
Predicting Earth's climate is difficult, partly due to uncertainty in forecasting how much CO2 can be removed by oceans and plants, because we cannot measure these exchanges directly on large scales. Satellites such as NASA's OCO-2 can provide part of the needed information, but data need to be highly precise and accurate. We evaluate these data and find small biases in certain months that are similar to the signals of interest. We argue that continued improvement of these data is necessary.
Elizabeth B. Wiggins, Arlyn Andrews, Colm Sweeney, John B. Miller, Charles E. Miller, Sander Veraverbeke, Roisin Commane, Steven Wofsy, John M. Henderson, and James T. Randerson
Atmos. Chem. Phys., 21, 8557–8574, https://doi.org/10.5194/acp-21-8557-2021, https://doi.org/10.5194/acp-21-8557-2021, 2021
Short summary
Short summary
We analyzed high-resolution trace gas measurements collected from a tower in Alaska during a very active fire season to improve our understanding of trace gas emissions from boreal forest fires. Our results suggest previous studies may have underestimated emissions from smoldering combustion in boreal forest fires.
Zichong Chen, Junjie Liu, Daven K. Henze, Deborah N. Huntzinger, Kelley C. Wells, Stephen Sitch, Pierre Friedlingstein, Emilie Joetzjer, Vladislav Bastrikov, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica L. Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Benjamin Poulter, Hanqin Tian, Andrew J. Wiltshire, Sönke Zaehle, and Scot M. Miller
Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021, https://doi.org/10.5194/acp-21-6663-2021, 2021
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite observes atmospheric CO2 globally. We use a multiple regression and inverse model to quantify the relationships between OCO-2 and environmental drivers within individual years for 2015–2018 and within seven global biomes. Our results point to limitations of current space-based observations for inferring environmental relationships but also indicate the potential to inform key relationships that are very uncertain in process-based models.
Xiao Lu, Daniel J. Jacob, Yuzhong Zhang, Joannes D. Maasakkers, Melissa P. Sulprizio, Lu Shen, Zhen Qu, Tia R. Scarpelli, Hannah Nesser, Robert M. Yantosca, Jianxiong Sheng, Arlyn Andrews, Robert J. Parker, Hartmut Boesch, A. Anthony Bloom, and Shuang Ma
Atmos. Chem. Phys., 21, 4637–4657, https://doi.org/10.5194/acp-21-4637-2021, https://doi.org/10.5194/acp-21-4637-2021, 2021
Short summary
Short summary
We use an analytical solution to the Bayesian inverse problem to quantitatively compare and combine the information from satellite and in situ observations, and to estimate global methane budget and their trends over the 2010–2017 period. We find that satellite and in situ observations are to a large extent complementary in the inversion for estimating global methane budget, and reveal consistent corrections of regional anthropogenic and wetland methane emissions relative to the prior inventory.
Shamil Maksyutov, Tomohiro Oda, Makoto Saito, Rajesh Janardanan, Dmitry Belikov, Johannes W. Kaiser, Ruslan Zhuravlev, Alexander Ganshin, Vinu K. Valsala, Arlyn Andrews, Lukasz Chmura, Edward Dlugokencky, László Haszpra, Ray L. Langenfelds, Toshinobu Machida, Takakiyo Nakazawa, Michel Ramonet, Colm Sweeney, and Douglas Worthy
Atmos. Chem. Phys., 21, 1245–1266, https://doi.org/10.5194/acp-21-1245-2021, https://doi.org/10.5194/acp-21-1245-2021, 2021
Short summary
Short summary
In order to improve the top-down estimation of the anthropogenic greenhouse gas emissions, a high-resolution inverse modelling technique was developed for applications to global transport modelling of carbon dioxide and other greenhouse gases. A coupled Eulerian–Lagrangian transport model and its adjoint are combined with surface fluxes at 0.1° resolution to provide high-resolution forward simulation and inverse modelling of surface fluxes accounting for signals from emission hot spots.
Cited articles
Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., Meinhardt, F., Graul, R., Ramonet, M., Peters, W., and Dlugokencky, E. J.: Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5, Atmos. Chem. Phys., 5, 2431–2460, https://doi.org/10.5194/acp-5-2431-2005, 2005. a
Buis, A.: GeoCarb: A New View of Carbon Over the Americas, ExploreEarth,
available at: https://www.nasa.gov/feature/jpl/geocarb-a-new-view-of-carbon-over-the-americas (last access: 17 July 2020), 2018. a
Crisp, D.:
Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2 (OCO-2),
in: Earth Observing Systems XX, vol. 9607,
edited by Butler, J. J., Xiong, X. J., and Gu, X.,
International Society for Optics and Photonics, SPIE, https://doi.org/10.1117/12.2187291, 1–7, 2015. a, b
Crowell, S., Baker, D., Schuh, A., Basu, S., Jacobson, A. R., Chevallier, F., Liu, J., Deng, F., Feng, L., McKain, K., Chatterjee, A., Miller, J. B., Stephens, B. B., Eldering, A., Crisp, D., Schimel, D., Nassar, R., O'Dell, C. W., Oda, T., Sweeney, C., Palmer, P. I., and Jones, D. B. A.: The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network, Atmos. Chem. Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, 2019. a, b
Eldering, A., Wennberg, P., Crisp, D., Schimel, D., Gunson, M., Chatterjee, A., Liu, J., Schwandner, F., Sun, Y., O'Dell, C. W., Frankenberg, C., Taylor, T., Fisher, B., Osterman, G. B., Wunch, D., Hakkarainen, J., Tamminen, J., and Weir, B.:
The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes,
Science,
358, eaam5745, https://doi.org/10.1126/science.aam5745, 2017. a, b, c
Garland, M. and Heckbert, P. S.:
Surface simplification using quadric error metrics,
in: SIGGRAPH '97: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, Los Angeles California USA on 3–8 August, 209–216,
https://doi.org/10.1145/258734.258849, 1997. a, b
Guo, L., Lei, L., Zeng, Z., Zou, P., Liu, D., and Zhang, B.:
Evaluation of Spatio-Temporal Variogram Models for Mapping XCO2 Using Satellite Observations: A Case Study in China,
IEEE J. Sel. Top. Appl.,
8, 376–385, https://doi.org/10.1109/JSTARS.2014.2363019, 2015. a
Hammerling, D. M., Michalak, A. M., O'Dell, C., and Kawa, S. R.:
Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT),
Geophys. Res. Lett.,
39, L08804, https://doi.org/10.1029/2012GL051203, 2012b. a, b, c, d
Henze, D. K., Hakami, A., and Seinfeld, J. H.: Development of the adjoint of GEOS-Chem, Atmos. Chem. Phys., 7, 2413–2433, https://doi.org/10.5194/acp-7-2413-2007, 2007. a
Hu, L., Andrews, A. E., Thoning, K. W., Sweeney, C., Miller, J. B., Michalak, A. M., Dlugokencky, E., Tans, P. P., Shiga, Y. P., Mountain, M., Nehrkorn, T., Montzka, S. A., McKain, K., Kofler, J., Trudeau, M., Michel, S. E., Biraud, S. C., Fischer, M. L., Worthy, D. E. J., Vaughn, B. H., White, J. W. C., Yadav, V., Basu, S., and van der Velde, I. R.:
Enhanced North American carbon uptake associated with El Niño,
Science Advances,
5, eaaw0076, https://doi.org/10.1126/sciadv.aaw0076, 2019. a
Katzfuss, M. and Cressie, N.:
Tutorial on fixed rank kriging (FRK) of CO2 data, Tech. Rep. 858,
Department of Statistics, The Ohio State University, Columbus, Ohio,
available at: https://niasra.uow.edu.au/content/groups/public/@web/@inf/@math/documents/mm/uow175999.pdf (last access: 17 July 2020), 2011. a, b
Keppel-Aleks, G., Wennberg, P. O., and Schneider, T.: Sources of variations in total column carbon dioxide, Atmos. Chem. Phys., 11, 3581–3593, https://doi.org/10.5194/acp-11-3581-2011, 2011. a
Kitanidis, P. K. and Vomvoris, E. G.:
A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations,
Water Resour. Res.,
19, 677–690, https://doi.org/10.1029/WR019i003p00677, 1983. a
Krol, M., Houweling, S., Bregman, B., van den Broek, M., Segers, A., van Velthoven, P., Peters, W., Dentener, F., and Bergamaschi, P.: The two-way nested global chemistry-transport zoom model TM5: algorithm and applications, Atmos. Chem. Phys., 5, 417–432, https://doi.org/10.5194/acp-5-417-2005, 2005. a
Kulawik, S. S., Crowell, S., Baker, D., Liu, J., McKain, K., Sweeney, C., Biraud, S. C., Wofsy, S., O'Dell, C. W., Wennberg, P. O., Wunch, D., Roehl, C. M., Deutscher, N. M., Kiel, M., Griffith, D. W. T., Velazco, V. A., Notholt, J., Warneke, T., Petri, C., De Mazière, M., Sha, M. K., Sussmann, R., Rettinger, M., Pollard, D. F., Morino, I., Uchino, O., Hase, F., Feist, D. G., Roche, S., Strong, K., Kivi, R., Iraci, L., Shiomi, K., Dubey, M. K., Sepulveda, E., Rodriguez, O. E. G., Té, Y., Jeseck, P., Heikkinen, P., Dlugokencky, E. J., Gunson, M. R., Eldering, A., Crisp, D., Fisher, B., and Osterman, G. B.: Characterization of OCO-2 and ACOS-GOSAT biases and errors for CO2 flux estimates, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2019-257, 2019. a, b
Lazarus, S. M., Splitt, M. E., Lueken, M. D., Ramachandran, R., Li, X., Movva, S., Graves, S. J., and Zavodsky, B. T.:
Evaluation of Data Reduction Algorithms for Real-Time Analysis,
Weather Forecast.,
25, 837–851, https://doi.org/10.1175/2010WAF2222296.1, 2010. a
Li, S., Marsaglia, N., Garth, C., Woodring, J., Clyne, J., and Childs, H.:
Data Reduction Techniques for Simulation, Visualization and Data Analysis,
Comput. Graph. Forum,
37, 422–447, https://doi.org/10.1111/cgf.13336, 2018. a, b, c
Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis, K. J., and Grainger, C. A.:
A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model,
J. Geophys. Res.-Atmos.,
108, 4493, https://doi.org/10.1029/2002JD003161, 2003. a, b
Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., Bloom, A. A., Wunch, D., Frankenberg, C., Sun, Y., O'Dell, C. W., Gurney, K. R., Menemenlis, D., Gierach, M., Crisp, D., and Eldering, A.:
Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño,
Science,
358, eaam5690, https://doi.org/10.1126/science.aam5690, 2017. a
Liu, X., Miller, S. M., and Weinbren, A.: greenhousegaslab/data_reduction: data reduction for large atmospheric satellite datasets (Version v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.3899317, 2020. a
Lorenc, A. C.:
A Global Three-Dimensional Multivariate Statistical Interpolation Scheme,
Mon. Weather Rev.,
109, 701–721, https://doi.org/10.1175/1520-0493(1981)109<0701:AGTDMS>2.0.CO;2, 1981. a
Michalak, A. M., Bruhwiler, L., and Tans, P. P.:
A geostatistical approach to surface flux estimation of atmospheric trace gases,
J. Geophys. Res.-Atmos.,
109, D14109, https://doi.org/10.1029/2003JD004422, 2004. a, b, c
Miller, S. M.: greenhousegaslab/geostatistical_inverse_modeling: Geostatistical inverse modeling with large atmospheric datasets (Version v1.1), Zenodo [code], https://doi.org/10.5281/zenodo.3595574, 2019. a
Miller, S. M., Saibaba, A. K., Trudeau, M. E., Andrews, A. E., Nehrkorn, T., and Mountain, M. E.: Geostatistical inverse modeling with large atmospheric data: data files for a case study from OCO-2 (Version 1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.3241467, 2019. a
Miller, S. M., Saibaba, A. K., Trudeau, M. E., Mountain, M. E., and Andrews, A. E.: Geostatistical inverse modeling with very large datasets: an example from the Orbiting Carbon Observatory 2 (OCO-2) satellite, Geosci. Model Dev., 13, 1771–1785, https://doi.org/10.5194/gmd-13-1771-2020, 2020. a, b, c, d, e
Miyoshi, T. and Kunii, M.: Using AIRS retrievals in the WRF-LETKF system to improve regional numerical weather prediction,
Tellus A,
64, 18408, https://doi.org/10.3402/tellusa.v64i0.18408, 2012. a
Mueller, K. L., Gourdji, S. M., and Michalak, A. M.:
Global monthly averaged CO2 fluxes recovered using a geostatistical inverse modeling approach: 1. Results using atmospheric measurements,
J. Geophys. Res.-Atmos.,
113, D21114, https://doi.org/10.1029/2007JD009734, 2008. a
Nehrkorn, T., Eluszkiewicz, J., Wofsy, S. C., Lin, J. C., Gerbig, C., Longo, M., and Freitas, S.:
Coupled weather research and forecasting–stochastic time-inverted lagrangian transport (WRF–STILT) model,
Meteorol. Atmos. Phys.,
107, 51–64, https://doi.org/10.1007/s00703-010-0068-x, 2010. a, b
NOAA Global Monitoring Laboratory:
CarbonTracker,
available at: https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/ (last access: 17 July 2020), 2020b. a
NOAA National Centers for Environmental Prediction Weather Prediction Center:
Daily Weather Map,
available at: https://www.wpc.ncep.noaa.gov/dailywxmap/ (last access: 17 July 2020), 2020. a
Ochotta, T., Gebhardt, C., Saupe, D., and Wergen, W.:
Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods,
Q. J. Roy. Meteor. Soc.,
131, 3427–3437, https://doi.org/10.1256/qj.05.94, 2005. a, b, c
O'Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., Frankenberg, C., Kiel, M., Lindqvist, H., Mandrake, L., Merrelli, A., Natraj, V., Nelson, R. R., Osterman, G. B., Payne, V. H., Taylor, T. E., Wunch, D., Drouin, B. J., Oyafuso, F., Chang, A., McDuffie, J., Smyth, M., Baker, D. F., Basu, S., Chevallier, F., Crowell, S. M. R., Feng, L., Palmer, P. I., Dubey, M., García, O. E., Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi, R., Morino, I., Notholt, J., Ohyama, H., Petri, C., Roehl, C. M., Sha, M. K., Strong, K., Sussmann, R., Te, Y., Uchino, O., and Velazco, V. A.: Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539–6576, https://doi.org/10.5194/amt-11-6539-2018, 2018. a, b
Parazoo, N. C., Denning, A. S., Kawa, S. R., Corbin, K. D., Lokupitiya, R. S., and Baker, I. T.: Mechanisms for synoptic variations of atmospheric CO2 in North America, South America and Europe, Atmos. Chem. Phys., 8, 7239–7254, https://doi.org/10.5194/acp-8-7239-2008, 2008. a
Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Pétron, G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P. O., Krol, M. C., and Tans, P. P.:
An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker,
P. Natl. Acad. Sci. USA,
104, 18925–18930, https://doi.org/10.1073/pnas.0708986104, 2007. a
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, 2019. a
Ramachandran, R., Li, X., Movva, S., Graves, S., Greco, S., Emmitt, D., Terry, J., and Atlas, R.:
Intelligent data thinning algorithm for earth system numerical model research and application,
in: Proc. 21st Intl. Conf. on IIPS, 9–13 January 2005, San Diego, California, abstract number: 13.8, 2005. a, b, c
Richman, M. B., Leslie, L. M., Trafalis, T. B., and Mansouri, H.:
Data selection using support vector regression,
Adv. Atmos. Sci.,
32, 277–286, https://doi.org/10.1007/s00376-014-4072-9, 2015. a, b
Rodgers, C. D.:
Inverse Methods for Atmospheric Sounding: Theory and Practice,
4, Series On Atmospheric, Oceanic And Planetary Physics,
World Scientific Publishing Company, London, 2000. a
Schroeder, W. J., Zarge, J. A., and Lorensen, W. E.:
Decimation of triangle meshes,
in: PSIGGRAPH '92: Proceedings of the 19th annual conference on Computer graphics and interactive techniques, Chicago Illinois USA, 26–31 July 1992,
65–70, https://doi.org/10.1145/133994.134010, 1992. a, b
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.:
NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System,
B. Am. Meteorol. Soc.,
96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2016. a
Tadić, J. M., Qiu, X., Miller, S., and Michalak, A. M.: Spatio-temporal approach to moving window block kriging of satellite data v1.0, Geosci. Model Dev., 10, 709–720, https://doi.org/10.5194/gmd-10-709-2017, 2017. a, b, c, d
Torres, A. D., Keppel-Aleks, G., Doney, S. C., Fendrock, M., Luis, K., De Maziere, M., Hase, F., Petri, C., Pollard, D. F., Roehl, C. M., Sussmann, R., Velazco, V. A., Warneke, T., and Wunch, D.: A
Geostatistical Framework for Quantifying the Imprint of Mesoscale Atmospheric Transport on Satellite Trace Gas Retrievals,
J. Geophys. Res.-Atmos.,
124, 9773–9795, https://doi.org/10.1029/2018JD029933, 2019. a, b
Wu, D., Lin, J. C., Fasoli, B., Oda, T., Ye, X., Lauvaux, T., Yang, E. G., and Kort, E. A.:
A Lagrangian approach towards extracting signals of urban CO2 emissions from satellite observations of atmospheric column CO2 (XCO2): X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”), Geosci. Model Dev., 11, 4843–4871, https://doi.org/10.5194/gmd-11-4843-2018, 2018.
a
Zeng, Z., Lei, L., Hou, S., Ru, F., Guan, X., and Zhang, B.:
A Regional Gap-Filling Method Based on Spatiotemporal Variogram Model of CO2 Columns,
IEEE T. Geosci. Remote,
52, 3594–3603, https://doi.org/10.1109/TGRS.2013.2273807, 2014. a
Short summary
Observations of greenhouse gases have become far more numerous in recent years due to new satellite observations. The sheer size of these datasets makes it challenging to incorporate these data into statistical models and use these data to estimate greenhouse gas sources and sinks. In this paper, we develop an approach to reduce the size of these datasets while preserving the most information possible. We subsequently test this approach using satellite observations of carbon dioxide.
Observations of greenhouse gases have become far more numerous in recent years due to new...