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Abstract. The number of greenhouse gas (GHG) observing
satellites has greatly expanded in recent years, and these new
datasets provide an unprecedented constraint on global GHG
sources and sinks. However, a continuing challenge for in-
verse models that are used to estimate these sources and
sinks is the sheer number of satellite observations, some-
times in the millions per day. These massive datasets often
make it prohibitive to implement inverse modeling calcula-
tions and/or assimilate the observations using many types
of atmospheric models. Although these satellite datasets are
very large, the information content of any single observation
is often modest and non-exclusive due to redundancy with
neighboring observations and due to measurement noise. In
this study, we develop an adaptive approach to reduce the
size of satellite datasets using geostatistics. A guiding princi-
ple is to reduce the data more in regions with little variability
in the observations and less in regions with high variabil-
ity. We subsequently tune and evaluate the approach using
synthetic and real data case studies for North America from
NASA’s Orbiting Carbon Observatory-2 (OCO-2) satellite.
The proposed approach to data reduction yields more accu-
rate CO2 flux estimates than the commonly used method of
binning and averaging the satellite data. We further develop
a metric for choosing a level of data reduction; we can re-
duce the satellite dataset to an average of one observation per
∼ 80–140 km for the specific case studies here without sub-
stantially compromising the flux estimate, but we find that
reducing the data further quickly degrades the accuracy of
the estimated fluxes. Overall, the approach developed here
could be applied to a range of inverse problems that use very
large trace gas datasets.

1 Introduction

Satellite observations of greenhouse gases (GHGs) have dra-
matically expanded over the past decade. New satellites with
smaller footprints, wider viewing angles, and efficient scan-
ning can collect millions of observations per day at high
density and with broad spatial coverage. Remote sensing of
carbon dioxide (CO2) is a prime example. The Greenhouse
Gases Observing Satellite (GOSAT), launched in early 2009,
is the first satellite dedicated to observing CO2 and methane
(CH4) from space. GOSAT collects a modest ∼ 1× 103

cloud-free soundings or observations per day. The Orbiting
Carbon Observatory 2 (OCO-2), launched 5 years later in late
2014, is NASA’s first satellite dedicated to observing CO2.
It collects far more cloud-free soundings than GOSAT – on
the order of 1× 105 (Crisp, 2015; Eldering et al., 2017).
By contrast, NASA’s forthcoming Geostationary Carbon Cy-
cle Observatory (GeoCarb), planned for launch in the early
2020s, is slated to collect ∼ 1× 107 soundings each day
(Buis, 2018). A substantial fraction of these soundings will
be unusable due to cloud contamination, but GeoCarb can
reduce contamination by scanning cloud-free regions.

These satellites observe average CO2 mixing ratios across
a vertical column of the atmosphere (XCO2), and these
XCO2 measurements can be used to estimate surface CO2
fluxes using inverse modeling. Specifically, an inverse model
will combine satellite observations (z, dimensions n×1) with
an estimate of atmospheric transport (H, n×m) to estimate
surface fluxes (s, m× 1):

z=Hs+ ε, (1)
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where ε (n×1) is a vector of errors in the measurements and
atmospheric modeling system. The objective of the inverse
model is to estimate s given z and H. Most existing inverse
models also require an estimate of the statistical properties
of ε to ensure that the solution does not under- or over-fit
the atmospheric observations (z). There are many different
strategies for estimating the fluxes (s); most existing stud-
ies implement an inverse model that is based upon Bayesian
statistics. Refer to Rodgers (2000), Michalak et al. (2004),
and Brasseur and Jacob (2017) for an overview of commonly
used strategies for inverse modeling.

Large satellite datasets often pose computational prob-
lems for inverse modeling, specifically for calculations that
involve the atmospheric model, H. The associated chal-
lenges vary depending upon the type of atmospheric model.
For example, one approach to inverse modeling is to esti-
mate H using a Lagrangian model, also known as a back-
trajectory model. These models estimate how fluxes or emis-
sions from different regions would impact mixing ratios at a
downwind observation site. Commonly used models include
the Stochastic Time-Inverted Lagrangian Transport (STILT)
model (Lin et al., 2003; Nehrkorn et al., 2010), the FLEX-
ible PARTicle dispersion model (FLEXPART) (Pisso et al.,
2019), and the Hybrid Single-Particle Lagrangian Integrated
Trajectory model (HYSPLIT) (Stein et al., 2016). One must
run simulations of the back-trajectory model for each of the n
observations used in the inverse model, and each simulation
becomes a different row of H. As a result of this setup, the
computational cost of the back-trajectory model scales with
the number of observations, the size of the modeling domain,
and the resolution of the model. This approach is commonly
employed for ground- and aircraft-based atmospheric obser-
vations but can quickly become computationally challenging
for large satellite datasets (e.g., Wu et al., 2018).

Another common approach to atmospheric modeling is to
use a gridded atmospheric model, also known as an Eulerian
model. Common models include the Goddard Earth Observ-
ing System – Chemistry model (GEOS-Chem) (e.g., Henze
et al., 2007; Liu et al., 2017) and TM5 (e.g., Krol et al., 2005;
Bergamaschi et al., 2005). These models are not typically
used to explicitly calculate H. Rather, these models are often
used to calculate the product of H or HT and a vector. One
can then estimate s by iterating toward the minimum of an
objective function (e.g., Eq. S1 in the Supplement) using a
series of matrix–vector products that involve H and HT (e.g.,
Brasseur and Jacob, 2017). Large satellite datasets can also
create computational challenges for inverse models that fol-
low this approach. The model output must be interpolated
to the locations and times of the observations and multiplied
by satellite parameters like the pressure weighting function
and averaging kernel. These calculations are often applied
repeatedly during the course of iterative inverse modeling al-
gorithms, and the computational cost of these calculations
will increase with more observations. In addition, file in-
put/output (I/O) can be a bottleneck for some types of at-

mospheric models, and this cost increases as the number of
observations increase. The GEOS-Chem model provides an
illustrative example. In test simulations, the current GEOS-
Chem forward and adjoint models for CO2 (v35, at the time
of writing) required ∼ 30 d of wall-clock time to calculate
the objective function and its gradient (i.e., first derivative)
using a year of OCO-2 observations from the “lite” file (i.e.,
using 3.1× 107 total observations for the year 2016; com-
puted on the University of Minnesota Mesabi cluster using
a global model spatial resolution of 2◦ latitude by 2.5◦ lon-
gitude). Most iterative inverse modeling algorithms require
calculating this objective function and its gradient multiple
times – at each iteration of the algorithm. By contrast, these
same calculations required ∼ 0.5 d of wall-clock time using
10 s averages of the OCO-2 observations (9× 104 total ob-
servations).

The most common solution to date for these computational
problems is to reduce the size of the satellite dataset. One
approach is to bin and average the data across a set inter-
val and/or run the atmospheric model at a set interval along
the satellite flight track. For example, recent inverse models
for OCO-2 use data that have been binned and averaged ev-
ery 10 s along the satellite flight track (e.g., Crowell et al.,
2019). This approach yields approximately one observation
per 70 km, far fewer observations than the original OCO-2
dataset.

Relatedly, scientists that use a back-trajectory model for
atmospheric simulations will often run the model at a set in-
terval along the flight track. For example, scientists at NOAA
have generated trajectory simulations for OCO-2 data over
North America using STILT as part of the CarbonTracker-
Lagrange project (e.g., NOAA Global Monitoring Labora-
tory, 2020a; Miller et al., 2020). These runs have been gen-
erated for a single location every 2 s along each satellite flight
track, thereby reducing the number of model simulations
required. This 2 s interval yields just under one simulation
per 10 km, the spatial resolution of the meteorology fields
used in the trajectory model simulations. The total compu-
tational cost of these simulations is substantial even using a
dataset reduced to 2 s intervals; each STILT simulation (i.e.,
for a single observation location) requires∼ 5 h of computing
time on a single core of the NASA Pleiades supercomputer.
NOAA scientists generated ∼ 9.88× 104 STILT simulations
for the year 2015.

These existing strategies for data reduction present several
challenges. First, one must decide how frequently to aver-
age the data (i.e., across how many seconds or kilometers)
or how frequently to generate atmospheric simulations along
a satellite flight track. It is not always practical to re-run the
atmospheric model and inverse model with different levels
of data reduction to decide on an optimal approach due to
the computing time involved. Instead, this decision is often
based upon the spatial resolution of the atmospheric transport
model (e.g., NOAA Global Monitoring Laboratory, 2020a)
or the anticipated spatial resolution of the flux estimate (e.g.,
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Crowell et al., 2019). Second, one level of averaging or data
reduction (e.g., 2 vs. 10 s) may work better for one inverse
modeling setup or one satellite dataset than another. Lastly,
satellite observations are typically non-stationary: they ex-
hibit different spatial and temporal variability in different lo-
cations and in different seasons (e.g., Katzfuss and Cressie,
2011; Hammerling et al., 2012a). These differences may be
important to account for when reducing the size of the satel-
lite dataset. For example, OCO-2 observations collected over
the remote ocean have a lower variance and are correlated
across longer distances than observations collected over ter-
restrial regions with heterogeneous surface sources and sinks
(e.g., Eldering et al., 2017). A one-size-fits-all approach to
data reduction may not be ideal in this circumstance. In-
stead, it may be advantageous to reduce the size of the dataset
more in regions with little variability and less in regions with
greater variability.

Scientists in other academic disciplines have also grappled
with many of these challenges, albeit in the context of very
different scientific applications. For example, data reduction
has become common in computer graphics and data visual-
ization because many remote sensing and/or medical images
are too large to render and display at native resolution (e.g.,
Li et al., 2018). Numerous studies reduce the size of the im-
age through a process known as mesh reduction; these algo-
rithms reduce the mesh more in regions of the image with lit-
tle variability and less in locations with high variability (e.g.,
Schroeder et al., 1992; Garland and Heckbert, 1997; Brod-
sky and Watson, 2000; Li et al., 2018). The algorithms are
therefore also adaptable to different images.

Data reduction has also become common in weather data
assimilation, in which the reduced datasets are typically re-
ferred to as “superobservations” or “superobs”. In most ex-
isting meteorology studies, the data are divided into different
grid boxes and averaged, analogous to the approach used in
recent GHG studies (e.g., Lorenc, 1981; Miyoshi and Ku-
nii, 2012). More recently, however, several studies have pro-
posed “adaptive” or “intelligent” approaches to data reduc-
tion (e.g., Ochotta et al., 2005; Ramachandran et al., 2005;
Lazarus et al., 2010; Richman et al., 2015). These studies
preferentially reduce or thin the data more in regions where
the observations have little variability or provide redundant
information. Existing studies have used different algorithms
to attain this goal, including mesh reduction (Ramachandran
et al., 2005), data clustering (e.g., Ochotta et al., 2005), and
machine learning (Richman et al., 2015). Compared to these
meteorology studies, data reduction in atmospheric inverse
modeling presents unique challenges. In weather data as-
similation, observations are used to directly nudge or adjust
a weather model in adjacent grid boxes. In inverse model-
ing, by contrast, the atmospheric observations and unknown
GHG fluxes are fundamentally different quantities with com-
plex relationships determined by atmospheric winds.

In the present study, we develop an approach to data re-
duction for inverse modeling of GHG observations. This ap-

proach follows the principles of adaptive reduction: we re-
duce the XCO2 data more in regions with little variability
in the observations and less in regions with high variability.
The goals of this approach are two-fold. First, improve the
computational feasibility of inverse modeling using satellite
data while preserving the accuracy of the estimated fluxes.
Second, develop an objective means to decide on the opti-
mal level of data reduction for a given satellite dataset and a
given inverse modeling problem. We subsequently tune and
evaluate this approach using several case studies from the
OCO-2 satellite – case studies that use synthetic and real data
and case studies from different seasons of the year. We then
compare CO2 fluxes estimated using the proposed approach
against fluxes estimated using a satellite dataset that has been
averaged to reduce its size. This comparison provides a lens
to evaluate the costs and benefits of the proposed approach to
data reduction vs. the commonly used approach of averaging
the data. The approach described here is designed not only
for OCO-2 but could be applied to current and future ob-
servations of CO2 (e.g., from GeoCarb) and observations of
CH4 (e.g., from the TROPOspheric Monitoring Instrument,
TROPOMI, and GeoCarb).

2 Approach to data reduction

We develop an approach to data reduction for inverse mod-
eling that leverages tools from geostatistics. Geostatistical
tools, like variogram modeling and kriging, have become
widespread in spatial data analysis (e.g., Kitanidis, 1997;
Wackernagel, 2003), and these tools are often straightfor-
ward to implement using software packages in R, MATLAB,
Python, and other scientific programming languages. Fur-
thermore, geostatistical tools are already used throughout in-
verse modeling and therefore offer an appealing framework
for data reduction.

The overall strategy developed here is first to character-
ize the spatial properties of the observations using variogram
analysis and second to use kriging to interpolate the satellite
observations to a number of locations that are fewer than in
the original dataset. The choice of locations is informed by
the variogram analysis: we retain fewer locations in regions
where the observations are correlated over longer distances
and more locations in regions with a shorter decorrelation
length.

2.1 Step 1: evaluate the spatial properties of the
satellite data

We estimate the degree of spatial correlation in the satel-
lite observations using a variogram analysis (e.g., Kitanidis,
1997). This analysis yields an estimate of the decorrelation
length – the distance at which the correlation between any
two observations is effectively zero.
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In this study, we estimate the decorrelation length by creat-
ing a variogram of the satellite observations (Fig. S6). A var-
iogram is a geostatistical tool that is used to quantify the dif-
ferences among observations as a function of distance. The
variogram of the observations is often known as an empirical
variogram, and we then fit a model to this empirical vari-
ogram using a least squares fit to estimate the decorrelation
length (e.g., Kitanidis, 1997; Wackernagel, 2003). There are
many possible choices for a variogram model, and we choose
an exponential model with a nugget because it has been used
in several existing studies of satellite-based XCO2 observa-
tions (e.g., Hammerling et al., 2012a; Zeng et al., 2014; Guo
et al., 2015; Tadić et al., 2015, 2017). The covariances be-
tween observations in this model decay exponentially as a
function of distance. Furthermore, the nugget component of
the variogram model accounts for fine-scale variability and
errors in the observations – specifically errors that are spa-
tially uncorrelated. Note that the exponential model yields
an estimate of the e-folding distance, the distance at which
covariances decay by a factor of e. In this study, we report
the decorrelation length (l) or 3 times the e-folding distance;
this is the distance at which the covariances effectively decay
to zero. Refer to Kitanidis (1997) or Wackernagel (2003) for
a review of different variogram models and model fitting.

We specifically estimate the decorrelation length along in-
dividual satellite flight tracks and estimate different lengths
at different locations along each track. The spatial proper-
ties of the satellite observations often differ in different re-
gions of the globe, and these differences are important to ac-
count for. In this particular study, we include all observations
within 2000 km when making the estimate at each location
along a flight track (as in Hammerling et al., 2012a, b). Note
that we do not quantify correlations or covariances among
different flight tracks or different days for the case studies
using OCO-2 (Sect. 3); that satellite has a narrow swath of
∼ 10 km and a 16 d revisit time, so the individual flight tracks
on a given day or week are spaced relatively far apart (e.g.,
Crisp, 2015; Eldering et al., 2017). For new and forthcom-
ing satellites with a wider swath and/or more frequent revisit
time, one could quantify zonal, meridional, and/or temporal
decorrelation lengths, depending upon the characteristics of
the satellite in question.

2.2 Step 2: reduce the data using kriging

We subsequently reduce the satellite dataset by estimating at-
mospheric CO2 at one location per fraction of a correlation
length along each satellite flight track. For example, a mod-
eler could reduce the dataset to one observation per 0.1l or
1.0l. The latter choice would reduce the size of the dataset to
a much greater degree but increase the risk of losing informa-
tion that would ultimately inform the inverse model. Sect. 2.3
discusses strategies for deciding on an optimal level of data
reduction.

The correlation length will differ in different locations,
and this procedure will therefore yield a different density of
points in different regions. For example, the proposed ap-
proach will result in a greater density of points in regions
where XCO2 varies across small spatial scales and a lower
density of points in regions where XCO2 is correlated across
long distances.

This approach is conceptually similar to several adaptive
strategies for data reduction in other scientific fields. Many
existing studies either remove, merge, or cluster data points
based on spatial variability. In computer visualization, mesh
reduction studies merge or remove vertices from the image
based upon the curvature or flatness of the original image,
and different studies use various metrics to quantify this cur-
vature and flatness (e.g., Schroeder et al., 1992; Garland and
Heckbert, 1997; Brodsky and Watson, 2000; Li et al., 2018).
Studies in meteorology use similar algorithms. For example,
Ochotta et al. (2005) developed a metric to cluster observa-
tions based upon both the squared distance between obser-
vations and the squared difference in the observation values.
Similarly, Ramachandran et al. (2005) reduced the data based
upon the variance of the data in each locale. In this particu-
lar study, we use the decorrelation length, a common tool in
geostatistics, as a measure of variability in the original data
and to guide the data reduction.

At each chosen location along the flight track, we sub-
sequently interpolate the observations using ordinary krig-
ing (e.g., Kitanidis, 1997). Numerous existing studies have
applied various forms of kriging to interpolate satellite ob-
servations of CO2, including, for example, Katzfuss and
Cressie (2011), Hammerling et al. (2012a), Hammerling
et al. (2012b), and Tadić et al. (2015). Kriging accounts for
the spatial and/or temporal properties of the quantity of inter-
est, yielding a more accurate estimate. Kriging also yields an
estimate of uncertainty in the estimated quantity – in this case
uncertainties in the reduced XCO2 dataset. These uncertain-
ties account for the variability (or lack thereof) in the OCO-2
data in the vicinity of each location, the density or sparsity of
the original OCO-2 dataset near each location, and random
noise in the OCO-2 observations, among other error sources.
Both the best estimate of XCO2 and the corresponding un-
certainties can be calculated using a simple linear system of
equations.

We specifically implement ordinary kriging using a mov-
ing neighborhood (e.g., Kitanidis, 1997; Hammerling et al.,
2012a, b); the quantity of interest is only estimated at a sin-
gle location at one time using nearby observations. This ap-
proach contrasts with other variants of kriging that incorpo-
rate all observations to estimate all unknown locations simul-
taneously. Ordinary kriging with a moving neighborhood is
particularly useful when the observations are non-stationary
and exhibit different spatial properties and/or error charac-
teristics in different regions, as is often the case with XCO2
(e.g., Hammerling et al., 2012a).
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Ordinary kriging with a moving neighborhood requires
two steps. First, a modeler must estimate the spatial prop-
erties of the observations in the vicinity of the estimation
location. We estimate these properties as part of the anal-
ysis in Sect. 2.1 and use that estimate as an input in ordi-
nary kriging. Second, we estimate XCO2 at each location
of interest by solving a system of linear equations. Kitani-
dis (1997) describes this approach in detail, and Hammerling
et al. (2012a, b) describe the application of moving neighbor-
hood kriging to observations of XCO2. The XCO2 estimates
from kriging can then be incorporated as observations in in-
verse modeling.

Note that traditional kriging models are designed to in-
terpolate the quantity of interest to the same spatial sup-
port as the observations. In other words, the footprint size
of the kriging estimate will be the same as that of the obser-
vations. This setup works well for the case study presented
here; the atmospheric simulations in this study are generated
using a back-trajectory model, and each simulation corre-
sponds to a specific point location and time along an OCO-2
flight track. By contrast, a variant of kriging known as block
kriging can be used to estimate a representative or average
value for an entire grid box (e.g., Wackernagel, 2003; Tadić
et al., 2015, 2017). This approach may be desirable when
generating atmospheric simulations using an Eulerian model
in which the outputs represent grid averages. Tadić et al.
(2015, 2017) describe this approach in detail, including ap-
plications to interpolating XCO2.

2.3 Step 3: decide on an optimal level of data reduction

A modeler must decide on an optimal level of data reduction.
That decision is often based on multiple considerations: the
native spatial resolution of the atmospheric model, the com-
putational demands of the inverse model, and the accuracy of
the resulting flux estimate. For example, the resolution of the
atmospheric model may help dictate a level of data reduction.
An atmospheric model will not be able to resolve patterns in
the fluxes at spatial scales smaller than the model resolution,
so there may be little need to assimilate CO2 observations at
a finer density than the model resolution.

For the specific algorithm described here, one must decide
on a fraction of a correlation length and reduce the dataset
accordingly. A modeler could decide on the optimal level of
data reduction using a brute force approach: create numerous
datasets with different levels of data reduction, run the in-
verse model on each, and decide on a level of data reduction
based upon a comparison of the estimated fluxes. In practice,
this approach is time consuming.

Instead, we propose a criterion for choosing a level of data
reduction based upon the variance of the satellite data. We
first select all data points in the original CO2 dataset that
fall between two specific kriged points. We then calculate
the variance of those selected points using the var() func-
tion in R. We repeat this procedure for each pair of kriged

points in the model domain. We finally average these vari-
ances calculated across each pair of kriged points. Some of
this variance will undoubtedly be due to measurement error,
but some of this variance will likely be due to real variability
in atmospheric CO2.

This variance represents the variability in the data that is
lost through the process of data reduction, and it provides a
metric for choosing a level of data reduction that does not re-
quire re-running the inverse model. This number is smallest
when the data reduction is minimal and increases for greater
levels of data reduction. For the case studies in Sect. 3, this
variance is often a nonlinear function of the level of data re-
duction; it increases slowly if the data reduction is minimal,
reaches an inflection point, and then increases more quickly
at greater levels of data reduction. A modeler can then choose
a level of data reduction that is preferably below the inflec-
tion point and therefore reduces the potential for information
loss while balancing the computational requirements of the
inverse model.

We evaluate this proposed approach for deciding on a level
of data reduction through several case studies based upon
the OCO-2 satellite, described in detail in the next section
(Sect. 3).

3 Description of the case studies

We evaluate the data reduction algorithm using three case
studies based on the OCO-2 satellite. In each case, we esti-
mate CO2 fluxes across North America for 6 weeks at a 3-
hourly temporal resolution and a 1◦× 1◦ latitude–longitude
spatial resolution. Note that this setup targets a particular ap-
plication of OCO-2 observations to inverse modeling across a
continent. One could apply data reduction to inverse models
that target urban areas or the entire globe, but the algorithm
tuning (e.g., Sect. 2.3) and inverse modeling results will de-
pend upon the particular application involved.

We specifically estimate fluxes using synthetic observa-
tions from July and early August 2015 using synthetic ob-
servations from March and early April 2015, and using real
observations from July and early August 2015. Synthetic ob-
servations make it possible to compare the results against
a known solution; they are therefore particularly useful for
evaluating the data reduction algorithm proposed here. We
further evaluate the algorithm in a real data simulation that
mirrors real-world inverse modeling applications. Note that
we present the details of the summer real data case study in
the Supplement and focus on the synthetic case studies in the
main text. The results of the real data case study are qualita-
tively very similar to the synthetic case studies, so we include
that information in the Supplement to avoid duplicating sim-
ilar information in the main text.

We further estimate the CO2 fluxes using a geostatistical
inverse model (e.g., Kitanidis and Vomvoris, 1983; Michalak
et al., 2004; Miller et al., 2020). The inverse model used here
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also has a non-informative prior. In other words, the prior
has no spatial variability (e.g., Michalak et al., 2004; Mueller
et al., 2008). As a result, any patterns in the estimated fluxes
reflect the information content of the observations and not
any prior information. This setup is identical to the case stud-
ies in Miller et al. (2020), and the reader is referred to both
the Supplement and that study for additional details.

The case studies here also use atmospheric transport simu-
lations from NOAA’s CarbonTracker-Lagrange project (e.g.,
Hu et al., 2019; NOAA Global Monitoring Laboratory,
2020a). These simulations are used to create H (Eq. 1) and
are generated using the Weather Research and Forecasting
(WRF) model coupled with the STILT model (e.g., Lin et al.,
2003; Nehrkorn et al., 2010). The WRF simulations have
a spatial resolution of 10 km over most of the continental
United States and a resolution of 30 km across other regions
of North America. The WRF-STILT simulations have also
been processed to account for the pressure weighting func-
tion and averaging kernel of each OCO-2 observation. Miller
et al. (2020) provides additional detail on the specific setup
of the WRF-STILT runs used here. Note that the STILT sim-
ulations for CarbonTracker-Lagrange were generated every
2 s along the OCO-2 flight track and not at every individual
OCO-2 observation due to the large number of observations
and due to computational constraints. Hence, we only eval-
uate data reduction that yields fewer than one observation
every 2 s for the case studies here.

We further create the synthetic data for each case study
using WRF-STILT and CO2 fluxes from NOAA’s Carbon-
Tracker (CT2017) product (Peters et al., 2007; NOAA Global
Monitoring Laboratory, 2020b). The synthetic CO2 fluxes
not only include biospheric fluxes but also anthropogenic and
biomass burning emissions. The synthetic observations also
include noise (ε) that is added to simulate measurement and
atmospheric modeling errors. For the summer case studies
here, these errors have a variance of (2 ppm)2 (as in Miller
et al., 2020). We include error covariances to account for
spatial correlation among these errors. We use the decor-
relation length from Kulawik et al. (2019), who quantified
errors in OCO-2 observations and estimated a decorrelation
parameter of 0.3◦ using an exponential variogram model. In
the winter case study, we use a slightly smaller error vari-
ance of (1.5 ppm)2 because there is less regional variabil-
ity in atmospheric CO2 in winter. Note that we only include
land nadir and land glint observations in the case studies and
exclude ocean glint observations because those observations
have known biases (O’Dell et al., 2018).

4 Results and discussion

4.1 Spatial properties of the OCO-2 observations

We estimate correlation lengths that are generally longer
in winter when biospheric fluxes are small than in sum-

mer when there are large spatial and temporal variations in
biospheric fluxes. Figure 1 displays the estimated correla-
tion lengths along the OCO-2 flight tracks for the summer
(Fig. 1a) and winter (Fig. 1b) synthetic case studies. Most
of the estimated correlation lengths range from ∼ 250 to
1000 km. Note that there are likely multiple different scales
of variability in the OCO-2 observations: fine-scale vari-
ability due to retrieval errors (e.g., Kulawik et al., 2019;
O’Dell et al., 2018), small-scale variability due to variations
in mesoscale meteorology (e.g., Torres et al., 2019), and
broad variability due to synoptic meteorology and regional
patterns in CO2 fluxes. We specifically focus on quantify-
ing synoptic-scale variability in Fig. 1 because the objective
of the case studies is to estimate broad, regional patterns in
CO2 fluxes across an entire continent.

The analysis in Fig. 1 also indicates substantial hetero-
geneity in the correlation lengths. Correlation lengths are of-
ten similar along a single flight track but vary among differ-
ent tracks. These differences between flight tracks are most
likely due to a combination of variations in synoptic me-
teorology and variability in the underlying CO2 fluxes. In-
deed, several studies have shown that meteorological vari-
ability can explain a substantial fraction of variability in
XCO2 across different spatial scales (e.g., Parazoo et al.,
2008; Keppel-Aleks et al., 2011; Torres et al., 2019).

Two flight tracks that cross California, Oregon, and Wash-
ington illustrate the likely impacts of fluxes and meteorology
on heterogeneity in the synthetic OCO-2 observations. One
track, on 16 July 2015, exhibits relatively little variability
in XCO2, and we estimate an average correlation length of
794 km along the track with a standard deviation of 266 km.
By contrast, another nearby track from 21 July exhibits far
more XCO2 variability, and we estimate a shorter mean cor-
relation length of 221 km with a standard deviation of 53 km
along the track. These large differences likely reflect differ-
ences in the underlying CO2 fluxes and in meteorology on
the respective days. The 16 July track passes through east-
ern California, Nevada, eastern Oregon, and eastern Wash-
ington desert regions with little heterogeneity in CO2 fluxes.
By contrast, the track from 21 July passes over the Sierra
Nevada mountains and over multiple heterogeneous biome
types (e.g., desert and temperate rainforest). Furthermore,
weather maps indicate that a cold front passed through the
Pacific Northwest on 21 July with variable winds on either
side of the front (NOAA National Centers for Environmental
Prediction Weather Prediction Center, 2020). These differ-
ences in transport and surface fluxes likely yield very differ-
ent patterns of variability in two satellite flight tracks that are
geographically close to one another. These results also imply
that it is important to calculate correlation lengths for each
individual flight track and not apply correlation length esti-
mates from one track to another track or from one month/year
to another month/year. Meteorology can easily vary from one
day to another. Hence, we advise against pre-computing the
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Figure 1. Correlation lengths estimated along OCO-2 flight tracks for (a) the summer synthetic case study and (b) the winter synthetic case
study. The estimated correlation lengths are typically shorter in summer when biospheric fluxes exhibit high spatiotemporal variability and
longer in winter when biospheric fluxes are small.

Figure 2. A schematic of the approach to data reduction proposed
here. We estimate XCO2 at one location per fraction of a correla-
tion length along the satellite flight track, where the specific frac-
tion must be chosen by the user. We subsequently estimate XCO2
at each chosen location using ordinary kriging with a moving neigh-
borhood.

correlation lengths for an individual track or an individual
year and applying them to other tracks or other years.

4.2 Estimated CO2 fluxes using the reduced OCO-2
dataset

The data reduction approach proposed here yields flux esti-
mates that faithfully reproduce patterns in the synthetic CO2
observations. With that said, data reduction is always a com-
promise between the accuracy of the flux estimate and the
computational requirements of the inverse model. As such,
the accuracy of the flux estimate begins to degrade at high
levels of data reduction. Figures 3 and 4 summarize many of

these features and display maps of the time-averaged fluxes
from the summer and winter case studies, respectively. The
first panel (Figs. 3a and 4a) in each figure contains the Car-
bonTracker fluxes that were used to generate the synthetic
OCO-2 observations. The second panel (Figs. 3b and 4b)
shows the fluxes estimated using the full, synthetic OCO-2
dataset with no reduction; the estimated CO2 fluxes shown
in these panels do not have the same level of spatial defini-
tion as the original CarbonTracker fluxes (Figs. 3a and 4a),
but the estimates broadly reproduce the spatial patterns in
CarbonTracker. The inverse model in this study uses a non-
informative prior, so any patterns in panel (b) are solely in-
formed by the observations and not the result of prior flux
information. The patterns in Figs. 3b and 4b indicate that
the synthetic OCO-2 observations can be used to recover
continental-scale spatial features in the fluxes, but the ob-
servations and inverse model do not have the sensitivity or
information content to recover more detailed features. Sub-
sequent panels (Figs. 3c and 4c) display the fluxes estimated
using observations that have been reduced to a modest level –
one observation per 0.2l or an average of one observation per
100 km for the summer case study and 140 km for the winter
case study. The final panel in each figure displays a severe
level of reduction – one observation per 0.75l, an average of
one observation per 400 km for the summer case study and
540 km for the winter case study. In both the summer and
winter case studies, the modest level of data reduction (one
observation per 0.2l) reduces the total number of observa-
tions by ∼ 70 % and the severe data reduction (one observa-
tion per 0.75l) by ∼ 90 %. A data reduction of 70% or more
and the corresponding reduction in the number of STILT sim-
ulations would yield substantial computational savings given
the large computational cost required associated with STILT
(Sect. 1).

https://doi.org/10.5194/gmd-14-4683-2021 Geosci. Model Dev., 14, 4683–4696, 2021



4690 X. Liu et al.: Data reduction for inverse modeling

Figure 3. CO2 fluxes estimated for the summer 2015 synthetic
case study, averaged across the 6-week study window: (a) the syn-
thetic CO2 fluxes from NOAA’s CarbonTracker estimate, (b) fluxes
estimated from XCO2 data with no reduction (6799 data points),
(c) fluxes estimated from data reduced to one point per 0.2l (2263
data points), and (d) fluxes estimated from data reduced to one point
per 0.75l (755 data points). The estimate with no reduction (b) and
a reduction of 0.2l (c) reproduce broad, continental-scale spatial
patterns in the synthetic fluxes (a), while the estimate with 0.75l re-
duction has lost spatial definition. Note that the inverse model here
uses a non-informative prior, so any patterns in the flux estimates
are informed by the observations and not by any prior flux informa-
tion.

In each case, the fluxes using the 0.2l data (Figs. 3c and 4c)
reproduce spatial patterns in the fluxes estimated with no re-
duction (Figs. 3b and 4b). By contrast, the fluxes estimated
using the 0.75l data lack spatial definition and are therefore
not an ideal estimate of the synthetic fluxes (Figs. 3a and 4a).
Note that we also conducted a real data case study for sum-
mer 2015. Those results have broadly similar characteristics
to the synthetic data case study and are discussed in detail in
the Supplement.

In both of the case studies, the data reduction approach
proposed here yields more accurate flux estimates than bin-
ning and averaging the observations. We reduce the data
using both averaging and the geostatistical approach pro-
posed in this study. We subsequently estimate fluxes using
the reduced datasets and compare the results against the
fluxes estimated using the full dataset without any data re-
duction. Figure 5 displays the results of this analysis: the root
mean squared error (RMSE) of the grid-scale and 3-hourly
estimated fluxes relative to fluxes calculated from the full
dataset. In both the winter and summer case studies and at al-
most all levels of data reduction, the geostatistical approach
produces fluxes with a lower RMSE.

Note that all results in Fig. 5 display a clear inflection
point: the RMSE is relatively low at low levels of data re-
duction and increases rapidly at high levels of reduction. The
chosen level of data reduction should be at or below this in-
flection point or else the inverse model will yield an inaccu-
rate flux estimate. The inflection point for the geostatistical
approach occurs at a higher level of data reduction than for
data averaging. In other words, the RMSE for the geostatis-
tical approach remains low at a greater degree of data reduc-
tion than for averaging.

The RMSE, however, may not be the only criterion to con-
sider when deciding on a level of data reduction. Specifically,
the spatial patterns in the fluxes begin to degrade at a lower
level of data reduction than the RMSE. For example, in both
the winter, summer, and real data case studies, the monthly
averaged fluxes begin to lose spatial definition at data reduc-
tion levels greater than 0.15l to 0.2l (an average of one obser-
vation per 80–100 km for the summer case study and one ob-
servation per 100–140 km for the winter case study). Hence,
it may be advisable to balance multiple criteria when decid-
ing on an optimal level of data reduction depending upon the
goals of the inverse modeling study.

4.3 Determining an optimal level of data reduction

In the previous section (Sect. 4.2), we evaluate the data re-
duction by comparing the resulting estimates of CO2 fluxes.
However, this approach may not work well if the inverse
model is time-consuming and/or computationally intensive,
as is often the case for satellite-based inverse modeling. For
example, in Fig. 5 we run the inverse model 20 times for each
case study to estimate the fluxes using different levels of data
reduction and evaluate the results against fluxes estimated us-
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Figure 4. CO2 fluxes estimated for the winter case study, analo-
gous to Fig. 3. The fluxes estimated with modest data reduction
(c; 1098 data points) reproduce the patterns in the flux estimate with
no reduction (b; 4183 data points). By contrast, large data reduction
(d; 251 data points) yields fluxes with little spatial variability.

ing the original, synthetic OCO-2 data. An inverse model can
take days to run using large satellite datasets, so it may not
be feasible or desirable to run the inverse model numerous
times. Furthermore, one may want to decide on an optimal
level of data reduction before running back-trajectory sim-
ulations using a model like STILT. We therefore propose an
approach to evaluate the data reduction in a way that does not
require running the inverse model or an atmospheric model
like STILT (Sect. 2.3). This approach is based upon the vari-
ance of the original data between each of the reduced data
points; this variance is a measure of the variability in the data
that is lost through the process of data reduction.

In each of the OCO-2 case studies, this metric provides
a reasonable and informative means to decide on an appro-
priate level of data reduction. Figure 6 displays this metric
calculated for the summer (panel a) and winter (panel b)
case studies at multiple different levels of data reduction. The
variance lost through the process of data reduction is lowest
at small levels of data reduction and increases nonlinearly
at higher levels of data reduction. The summer case study
(panel a) is highly nonlinear and reaches a very clear inflec-
tion point. By contrast, the winter case study (panel b) does
not have as clear of an inflection point, but the variance does
increase more quickly at higher levels of data reduction.

This metric also mirrors many of the patterns in the flux
maps (Figs. 3 and 4) and RMSE calculations (Fig. 5). For ex-
ample, fluxes in the summer case study lose spatial definition
at data reduction levels greater than 0.2l (equivalent to 2263
data points). Indeed, the variances in Fig. 6a begin to increase
more rapidly after data reduction levels greater than 0.2l. By
contrast, the fluxes in the winter case study progressively lose
spatial definition, but that loss is particularly notable at high
levels of reduction. That pattern is similar to the pattern in
the variances in Fig. 6b. Furthermore, the patterns in Fig. 6
also mirror many of the patterns in the RMSE (Fig. 5). Both
the RMSE and variances for the summer case study reach
an inflection point between 2000 and 1000 observations, at
which point both begin to increase rapidly. The RMSE and
variance plots for the winter case study do not look identi-
cal (Figs. 5b and 6b). With that said, the pattern in the winter
case study looks qualitatively more akin to the degradation of
spatial patterns in the plotted fluxes than it does to the RMSE
in Fig. 5b.

At the end of the day, it is arguably difficult to identify a
single metric for deciding on an appropriate level of data re-
duction, and the right metric may depend upon the goal of
the inverse model (e.g., identifying spatial patterns, temporal
patterns, and/or flux totals). With that said, the metric pro-
posed in this section is a computationally efficient option that
summarizes many of the features of data reduction described
in the previous sections (e.g., Sect. 4.2).
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Figure 5. Root mean squared error (RMSE) of the fluxes estimated using data reduction relative to the fluxes estimated without data reduction.
The figure displays results for the summer (a) and winter (b) case studies. Fluxes estimated using the data reduction approach proposed here
have a lower RMSE relative to those estimated using the binning and averaging approach to data reduction.

Figure 6. The amount of variance in the data that is lost through the process of data reduction for the summer (a) and winter (b) case studies.
These plots provide a metric to help decide on an appropriate level of reduction and do not require costly runs of the inverse model to be
generated.

4.4 Computational costs

We find that the computational costs of the data reduction
algorithm are reasonable for the case studies explored here
and are far less than the computing time associated with gen-
erating atmospheric model simulations. Both the variogram
analysis (Sect. 2.1) and kriging (Sect. 2.2) are implemented
using a moving neighborhood, thereby limiting the number
of observations included in any given variogram or kriging
calculation and reducing computing time. For example, we
use a moving neighborhood with a radius of 2000 km for the
case studies (as in Hammerling et al., 2012a), approximately
half the width of the continental United States. Each empir-
ical variogram required an average of 0.05 s to calculate us-
ing the R programming language, and each kriging estimate
required an average of 0.02 s. By contrast, a single STILT
model simulation corresponding to a single OCO-2 observa-
tion required far more computing time (see Sect. 1).

Furthermore, one can distribute the variogram and kriging
calculations across multiple computing cores and nodes, re-
ducing the required computing time. Specifically, the calcu-
lation of each decorrelation length and each kriging estimate
is independent of every other calculation or location, so these
individual calculations can be spread across as many cores or
nodes as desired. There is also some flexibility in the imple-
mentation of this algorithm and therefore in its computational
cost. We calculate the variogram every 2 s along the OCO-2
flight track, but one could calculate the variogram at less-
frequent intervals. For example, Hammerling et al. (2012a)
implement moving neighborhood kriging for synthetic OCO-
2 observations and calculate variogram parameters for each
location on a 1◦ latitude by 1.25◦ longitude grid. One can
also define the moving neighborhood differently with com-
putational considerations in mind. For example, Tadić et al.
(2015, 2017) limit the moving neighborhood to 500 XCO2
observations. Instead of including all observations within a
given radius, they choose observations to include in the mov-
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ing neighborhood using a randomized algorithm, and the al-
gorithm preferentially chooses observations that are closer to
the estimation location over observations that are far away.
That strategy yields accurate variogram parameters and krig-
ing estimates while ensuring that the number of observations
within a moving neighborhood is not so large as to pose a
computational burden.

5 Conclusions

In many instances, new satellite datasets are simply too large
to assimilate in an inverse model given the current compu-
tational limitations of existing atmospheric models. In an
ideal world, it would be possible to assimilate all available
GHG observations to exploit the full information content of
these massive new satellite datasets. However, that ideal is
not computationally feasible in many instances, and model-
ers often need a strategy to reduce the size of these datasets.
At minimum, this strategy should reduce the computational
demands of inverse modeling while yielding flux estimates
that accurately reproduce key information on the magnitude
and distribution of surface fluxes. A complicating factor is
that satellite observations often exhibit very different vari-
ability in different regions and/or on different days, depend-
ing on factors like regional variability in GHG fluxes and
variations in meteorology. In this work, we argue that a data
reduction strategy should account for this variability and that
doing so typically yields a more accurate flux estimate.

One could develop a strategy for data reduction using
many different statistical and mathematical tools, and we
specifically develop a strategy using geostatistics because it
provides a convenient way to quantify and account for the
spatial variability in the satellite observations. In the case
studies presented here based on NASA’s OCO-2 satellite, this
strategy outperforms data averaging, a common and straight-
forward approach to data reduction but one that does not
account for the variable spatial properties of the observa-
tions. The specific implementation of this strategy will likely
vary depending upon the satellite dataset in question and the
specifics of the atmospheric model. To that end, we also
develop and evaluate a computationally efficient metric to
help choose an appropriate level of data reduction – a metric
that does not require re-running the inverse model numerous
times.

Future computational improvements to atmospheric mod-
els and increased access to high performance computing re-
sources will hopefully make it possible to implement inverse
modeling with larger and larger atmospheric datasets while
minimizing the need for data reduction. With that said, forth-
coming satellites like NASA’s GeoCarb mission promise to
collect unprecedented numbers of atmospheric GHG obser-
vations, and these new missions may make data reduction
more necessary than ever.
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