Articles | Volume 14, issue 7
https://doi.org/10.5194/gmd-14-4241-2021
https://doi.org/10.5194/gmd-14-4241-2021
Development and technical paper
 | 
06 Jul 2021
Development and technical paper |  | 06 Jul 2021

Parallel computing efficiency of SWAN 40.91

Christo Rautenbach, Julia C. Mullarney, and Karin R. Bryan

Related authors

Wave forecast investigations on downscaling, source terms, and tides for Aotearoa New Zealand
Rafael Santana, Richard Gorman, Emily Lane, Stuart Moore, Cyprien Bosserelle, Glen Reeve, and Christo Rautenbach
Geosci. Model Dev., 18, 4877–4898, https://doi.org/10.5194/gmd-18-4877-2025,https://doi.org/10.5194/gmd-18-4877-2025, 2025
Short summary
Marine meteorological forecasts for coastal ocean users – perceptions, usability and uptake
Christo Rautenbach and Berill Blair
Geosci. Commun., 4, 361–381, https://doi.org/10.5194/gc-4-361-2021,https://doi.org/10.5194/gc-4-361-2021, 2021
Short summary

Related subject area

Oceanography
Wave forecast investigations on downscaling, source terms, and tides for Aotearoa New Zealand
Rafael Santana, Richard Gorman, Emily Lane, Stuart Moore, Cyprien Bosserelle, Glen Reeve, and Christo Rautenbach
Geosci. Model Dev., 18, 4877–4898, https://doi.org/10.5194/gmd-18-4877-2025,https://doi.org/10.5194/gmd-18-4877-2025, 2025
Short summary
Impacts of the CICE sea ice model and ERA atmosphere on an Antarctic MetROMS ocean model, MetROMS-UHel-v1.0
Cecilia Äijälä, Yafei Nie, Lucía Gutiérrez-Loza, Chiara De Falco, Siv Kari Lauvset, Bin Cheng, David Anthony Bailey, and Petteri Uotila
Geosci. Model Dev., 18, 4823–4853, https://doi.org/10.5194/gmd-18-4823-2025,https://doi.org/10.5194/gmd-18-4823-2025, 2025
Short summary
Comparing an idealized deterministic–stochastic model (SUP model, version 1) of the tide- and wind-driven sea surface currents in the Gulf of Trieste to high-frequency radar observations
Sofia Flora, Laura Ursella, and Achim Wirth
Geosci. Model Dev., 18, 4685–4712, https://doi.org/10.5194/gmd-18-4685-2025,https://doi.org/10.5194/gmd-18-4685-2025, 2025
Short summary
PIBM 1.0: an individual-based model for simulating phytoplankton acclimation, diversity, and evolution in the ocean
Iria Sala and Bingzhang Chen
Geosci. Model Dev., 18, 4155–4182, https://doi.org/10.5194/gmd-18-4155-2025,https://doi.org/10.5194/gmd-18-4155-2025, 2025
Short summary
An effective communication topology for performance optimization: a case study of the finite-volume wave modeling (FVWAM)
Renbo Pang, Fujiang Yu, Yuanyong Gao, Ye Yuan, Liang Yuan, and Zhiyi Gao
Geosci. Model Dev., 18, 4119–4136, https://doi.org/10.5194/gmd-18-4119-2025,https://doi.org/10.5194/gmd-18-4119-2025, 2025
Short summary

Cited articles

Babatunde, A., Pascale, B., Sin, C. C., William, C., Peter, C., Fatima, D., Seita, E., Veronika, E., Forest, C., Peter, G., Eric, G., Christian, J., Vladimir, K., Chris, R., and Markku, R.: Evaluation of Climate Models, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK, 2013. 
Collins, J. I.: Prediction of shallow-water spectra, J. Geophys. Res., 77, 2693–2707, https://doi.org/10.1029/JC077i015p02693, 1972. 
de Souza, J. M. A. C., Couto, P., Soutelino, R., and Roughan, M.: Evaluation of four global ocean reanalysis products for New Zealand waters – A guide for regional ocean modelling, New Zeal. J. Mar. Fresh., 55, 132–155, https://doi.org/10.1080/00288330.2020.1713179, 2020. 
Dietrich, J. C., Tanaka, S., Westerink, J. J., Dawson, C. N., Luettich, R. A., Zijlema, M., Holthuijsen, L. H., Smith, J. M., Westerink, L. G., and Westerink, H. J.: Performance of the Unstructured-Mesh, SWAN+ADCIRC Model in Computing Hurricane Waves and Surge, J. Sci. Comput., 52, 468–497, https://doi.org/10.1007/s10915-011-9555-6, 2012. 
Frihy, O. E.: The necessity of environmental impact assessment (EIA) in implementing coastal projects: lessons learned from the Egyptian Mediterranean Coast, Ocean Coast. Manage., 44, 489–516, https://doi.org/10.1016/S0964-5691(01)00062-X, 2001. 
Download
Short summary
The simulation of ocean waves is important for various reasons, e.g. ship route safety and coastal vulnerability assessments. SWAN is a popular tool with which ocean waves may be predicted. Simulations using this tool can be computationally expensive. The present study thus aimed to understand which typical parallel-computing SWAN model set-up will be most effective. There thus do exist configurations where these simulations are most time-saving and effective.
Share