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Abstract. Effective and accurate ocean and coastal wave
predictions are necessary for engineering, safety and recre-
ational purposes. Refining predictive capabilities is increas-
ingly critical to reduce the uncertainties faced with a chang-
ing global wave climatology. Simulating WAves in the
Nearshore (SWAN) is a widely used spectral wave modelling
tool employed by coastal engineers and scientists, including
for operational wave forecasting purposes. Fore- and hind-
casts can span hours to decades, and a detailed understand-
ing of the computational efficiencies is required to design
optimized operational protocols and hindcast scenarios. To
date, there exists limited knowledge on the relationship be-
tween the size of a SWAN computational domain and the
optimal amount of parallel computational threads/cores re-
quired to execute a simulation effectively. To test the scala-
bility, a hindcast cluster of 28 computational threads/cores
(1 node) was used to determine the computation efficien-
cies of a SWAN model configuration for southern Africa.
The model extent and resolution emulate the current op-
erational wave forecasting configuration developed by the
South African Weather Service (SAWS). We implemented
and compared both OpenMP and the Message Passing Inter-
face (MPI) distributing memory architectures. Three sequen-
tial simulations (corresponding to typical grid cell numbers)
were compared to various permutations of parallel compu-
tations using the speed-up ratio, time-saving ratio and effi-
ciency tests. Generally, a computational node configuration
of six threads/cores produced the most effective computa-
tional set-up based on wave hindcasts of 1-week duration.
The use of more than 20 threads/cores resulted in a decrease
in speed-up ratio for the smallest computation domain, owing
to the increased sub-domain communication times for lim-
ited domain sizes.

1 Introduction

The computational efficiency of metocean (meteorology and
oceanography) modelling has been the topic of ongoing de-
liberation for decades. The applications range from long-
term atmospheric and ocean hindcast simulations to the
fast-responding simulations related to operational forecast-
ing. Long-duration simulations are usually associated with
climate-change-related research, with simulation periods of
at least 30 years across multiple spatial and temporal reso-
lutions needed to capture key oscillations (Babatunde et al.,
2013). Such hindcasts are frequently used by coastal and off-
shore engineering consultancies for purposes such as those
related to infrastructure design (Kamphuis, 2020) or environ-
mental impact assessments (Frihy, 2001; Liu et al., 2013).

Operational (or forecasting) agencies are usually con-
cerned with achieving simulation speeds that would allow
them to accurately forewarn their stakeholders of immediate,
imminent and upcoming metocean hazards. The main stake-
holders are usually other governmental agencies (e.g. disas-
ter response or environmental affairs departments), commer-
cial entities, and the public. Both atmospheric and marine
forecasts share similar numerical schemes that solve the gov-
erning equations and thus share a similar need in computa-
tional efficiency. Fast simulation times are also required for
other forecasting fields such as hydrological dam-break mod-
els (e.g. Zhang et al., 2014). Significant advancement in op-
erational forecasting can be made by examining the way in
which the code interfaces with the computation nodes, and
how results are stored during simulation.

Numerous operational agencies (both private and public)
make use of Simulating Waves in the Nearshore (SWAN)
to predict nearshore wave dynamics (refer to Genseberger
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and Donners, 2020, for details regarding the SWAN nu-
merical code and solution schemes). These agencies include
the South African Weather Service (e.g. Rautenbach et al.,
2020), MetOcean Solutions (a division of the MetService of
New Zealand) (e.g. de Souza et al., 2020), the United King-
dom Met Office (e.g. O’Neill et al., 2016) and the Norwe-
gian Meteorological Institute (e.g. Jeuring et al., 2019). In
general, these agencies have substantial computational fa-
cilities but nonetheless still face the challenge of optimiz-
ing the use of their computational clusters between vari-
ous models (being executed simultaneously). These models
may include atmospheric models (e.g. the Weather Research
and Forecasting (WRF) model), Hydrodynamic models (e.g.
Regional Ocean Modeling System (ROMS) and the Semi-
implicit Cross-scale Hydroscience Integrated System Model
(SCHISM)) and spectral wave models (e.g. Wave Watch III
(WW3) and SWAN; Holthuijsen, 2007; The SWAN team,
2006, 2019b, a). Holthuijsen (2007) presents a theoretical
background to the spectral wave equations, wave measure-
ment techniques and statistics as well as a concluding chap-
ter on the theoretical analysis of the SWAN numerical model.
There must also be a balance between hindcast and forecast
priorities and client needs. Some of these agencies use a reg-
ular grid (instead of irregular grids, e.g. Zhang et al., 2016),
with nested domains in many of their operational and hind-
cast projects. Here, we focus only on the computational per-
formance of a structured regular grid (typically implemented
for spectral wave models). Kerr et al. (2013) performed
an inter-model comparison of computational efficiencies by
comparing SWAN, coupled with ADCIRC, and the NOAA
official storm surge forecasting model, Sea, Lake, and Over-
land Surges from Hurricanes (SLOSH); however, they did
not investigate the optimal thread usage of a single model.
Other examples of coupled wave and storm surge model
computational benchmarking experiments include Tanaka et
al. (2011) and Dietrich et al. (2012), who used a unstruc-
tured meshes to simulate waves during Hurricanes Katrina,
Rita, Gustav and Ike in the Gulf of Mexico. Results from
these models were presented on a log–log scale, and their
experimental design tested computational thread numbers
not easily obtainable by smaller agencies and companies.
The latter rather require sequential versus paralleled com-
putational efficiencies using smaller-scale efficiency metrics.
Genseberger and Donners (2015) explored the scalability of
SWAN using a case study focused on the Wadden Sea in
the Netherlands. By investigating the efficiency of both the
OpenMP (OMP) and MPI version of the then current SWAN,
they found that the OpenMP was more efficient on a single
node. They also proposed a hybrid version of SWAN, to com-
bine the strengths of both implementations of SWAN: using
OpenMP to more optimally share memory and MPI to dis-
tribute memory over the computational nodes.

Here we build on the case study of Genseberger and
Donners using results produced in the present study for
southern Africa, to answer the following research questions:

(1) when using SWAN, is it always better to have as many
threads/cores as possible available to solve the problem at
hand? (2) What is the speed-up relationship between num-
ber of threads/cores and computational grid size? (3) At
what point (number of threads/cores) do the domain sub-
communications start to make the whole computation less
effective? (4) What is the scalability of a rectangular compu-
tational grid in a typical SWAN set-up?

2 Methodology and background

Details of the model configuration can be found in Rauten-
bach et al. (2020a, b). The computational domain (refer to
Fig. 1) and physics used here were the same as presented in
those studies.

All computations were performed on Intel Xeon Gold
E5-2670 with 2.3 GHz computational nodes. A total of 28
threads/cores each with 96 GB RAM was used with 1 Gbyte
inter-thread communication speed. Given that the present
study was performed using a single computational node,
inter-node communication speeds are not considered. Thus,
given a computational node with similar processing speed,
the present study should be reproducible. In general, these
node specifications are reasonably standard, and therefore the
present study is an acceptable representation of the SWAN
scalability parameters.

SWAN 40.91 was implemented with the Van der West-
huysen whitecapping formulation (van der Westhuysen et al.,
2007) and Collins bottom friction correlation (Collins, 1972)
with a coefficient value of 0.015. Fully spectral wave bound-
ary conditions were extracted from a global Wave Watch III
model at 0.5 geographical degree resolution.

Here, the main aim was not the validation of the model
but rather to quantify the relative computational scalabilities,
as described at the end of the previous section. However, it
should be noted that no nested domains were employed dur-
ing the present study. Only the parent domain was used as
a measure for scalability. The computational extent given in
Rautenbach et al. (2020a, b) contains numerous non-wet grid
cells that are not included in the computational expense of
the current study. In Table 1, the size of the computational
domain and resolution together with the labelling conven-
tion is given. For clarity, we define the resolutions as low,
medium and high, denoted L, M and H, respectively, in the
present study (noting that given the domain size, these res-
olutions would be classified as intermediate to high regional
resolution for operational purposes).

The test for scalability ability of a model used here was
the ability to respond to an increased number of computa-
tions with an increasing amount of resources. In the present
study these resources are computational threads/cores. Com-
putations were performed for an arbitrary week to assess
model performance. Model spin-up was done via a single
stationary computation. The rest of the computation was per-
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Figure 1. SWAN model extent and associated bathymetry. The location of all the major coastal towns are also provided via acronyms as
follows: Port Nolloth (PN), Saldanha Bay (SB), Cape Town (CT), Mossel Bay (MB), Port Elizabeth (PE), East London (EL), Durban (DN)
and Richards Bay (RB).

Table 1. SWAN grid resolution, grid cell numbers and reference
labels.

Label SWAN grid Computational grid
resolution cell number

L 0.1000 31 500
M 0.0625 91 392
H 0.0500 142 800

formed using a non-stationary computation using an hourly
time step, which implied wind-wave generation within the
model occurred on the timescale of the wind forcing reso-
lution. The grid resolutions used in the present study corre-
sponded to 0.1, 0.0625 and 0.05 geographical degrees. Local
bathymetric features were typically resolved through down-
scaled, rotated, rectangular grids, following the methodol-
ogy employed by Rautenbach et al. (2020a). A nested res-
olution increase of more than 5 times is also not recom-
mended (given that the regional model is nested in the global
Wave Watch III output at 0.5 geographical degree resolution,
(Rautenbach et al., 2020a). Given these constraints, these res-
olutions represent a realistic and typical SWAN model set-
up, for both operational and hindcast scenarios.

The three main metrics for estimating computational ef-
ficiency are the speed-up, time-saving and efficiency ratios.
A fourth parameter, and arguably the most important, is the
scalability and is estimated using the other three parameters
as metrics.

The speed-up ratio is given as

Sp = T1/Tp, (1)

where T1 is the time in seconds it takes for a sequential com-
putation on one thread and Tp is the time a simulation takes
with p computational threads/cores (Zhang et al., 2014).

The time-saving ratio is given by

T1Sp = (T1− Tp)/T1, (2)

and the efficiency ratio is defined as

Ep = Sp/p. (3)

The scalability of SWAN was tested based on the speed-up
ratios for the grid resolutions in Table 1.

Zafari et al. (2019) recently presented some of the first
results investigating the effect of different compilers on the
scalability of a shallow water equation solver. Their experi-
ments compared a model compiled with GNU Compiler Col-
lection (gcc) 7.2.0 and linked with OpenMPI and Intel C++
compilers with Intel MPI for relatively small computational
problems. Their numerical computation considered models
with 600, 300 and 150 K grid cell sizes (what they called
matrix size). These computational grid sizes were deemed
“small”, but they still acknowledged the significant compu-
tational resources required to execute geographical models
of this size due to the large number of time steps undertaken
to solve these problems.

From a practical point of view, regular SWAN grids will
rarely be used in dimensions exceeding the resolutions pre-
sented in the previous section. The reason for this statement
is twofold: (1) to downscale a spectral wave model from a
global resolution to a regional resolution should not exceed a
5-fold refinement factor and (2) when reasonably high reso-
lutions are required in the nearshore (to take complex bathy-
metric features into account), nested domains are preferred.
The reasoning will be different for an unstructured grid ap-
proach (Dietrich et al., 2012). Given these limitations with
the widely used structured SWAN grid approach, SWAN
grids will almost exclusively be deemed as a low spatial com-
putational demand model. Small tasks create a sharp drop in
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performance via the Intel C++ compiler due to the “work
stealing” algorithm, aimed at balancing out the computa-
tional load between threads/cores (Zafari et al., 2019). In this
scenario, the threads/cores compete against each other result-
ing in an unproductive simulation. In our experiments, each
task performed via Intel was approximately 13 times faster
but the overall performance was 16 times slower than the
equivalent gcc version of the compiled shallow water model
presented by Zafari et al. (2019).

3 Results

In Fig. 2, the computational scalability of SWAN is given
as a function of number of computational threads/cores. Fig-
ure 2a shows the computational time in seconds and here the
model resolutions grouped together with not much differen-
tiation between them. These results also highlight the need
for performance metrics, as described in the previous sec-
tion. From Fig. 2b the MPI version of SWAN is more effi-
cient for all the computational domain sizes. There is also a
clear grouping between OMP and MPI. Figure 2c presents
the speed-up ratios and clearly indicates that the MPI ver-
sion of SWAN outperforms the OMP version. The closer the
results are to the 1 : 1 line, the better the scalability.

Near-linear speed-up is observed for a small number of
computational threads/cores. This result agrees with those re-
ported by Zafari et al. (2019). In Fig. 2d the results are ex-
pressed via the time-saving ratio. In this case, the curves start
to asymptote with thread counts larger than approximately 6.

4 Discussion

The behaviour noted in the results is similar to the
dam-breaking computational results reported by Zhang et
al. (2014). Genseberger and Donners (2020) present the lat-
est finding on the scalability and benchmarking of SWAN.
However, their focus was quantifying the performance of
their new hybrid version of SWAN. In their benchmark-
ing experiments (for the Wadden Sea, in the Netherlands),
they obtained different results to Fig. 2a, with OMP gener-
ally producing faster wall-clock computational times. They
also considered the physical distances between computa-
tional threads/cores and found that this parameter has a negli-
gible effect compared to differences between OMP and MPI,
over an increasing number of threads/cores. Their bench-
marking also differed from the results presented here as they
only provided results as a function of node number. Each one
of their nodes consisted of 24 threads/cores. In the present
study, the benchmarking of a single node (28 threads/cores)
is evaluated compared with a serial computation on a sin-
gle thread. For benchmarking, without performance metrics,
they found that the wall clock times, for the iterations and
not a full simulation, reached a minimum (for large compu-
tational domains) at 16 nodes (16× 24 threads/cores) for the

MPI SWAN and 64 nodes (64× 24 threads/cores) for the hy-
brid SWAN. These results were based on using the Cartesius
2690 v3 (Genseberger and Donners, 2020). With the hybrid
SWAN, the optimal wall-clock time turn point, for iterations,
increased with an increased number of computational cells.
All of the reported turn points (optimal points) occurred at
node counts well above 4 nodes (4× 24 threads/cores). The
wall-clock performance estimation of Genseberger and Don-
ners (2015) did, however, indicate similar results to those
presented in Fig. 2a, with OMP running faster than MPI
for small thread/core counts. For larger thread/core counts
MPI performs better in the present study. This difference
in performance is probably related to the particular hard-
ware configuration (Genseberger and Donners, 2015). It must
still be noted that with an increased number of nodes, and
thus threads/cores, the total computational time should con-
tinue to decrease up until the point where the internal do-
main decomposition, communication efficiencies, starts to
outweigh the gaining of computational power. Based on re-
sults of Genseberger and Donners (2020), we can estimate
that, for our node configuration and region of interest, the
communication inefficiencies will become dominant at ap-
proximately 16 nodes (16× 24 threads/cores). One of the
possible explanations for the non-perfect speed-up observed
in Fig. 2c is related to the computational domain partition
methods used, and the wet and dry (or active and inac-
tive) point definitions in the model. In the present study the
dry points were the bathymetry or topography values above
mean sea level (MSL). The employed partition method is
currently stripwise because of the underlying parallel tech-
nique, namely the wavefront method (Genseberger and Don-
ners, 2015; Zijlema, 2005). The stripwise partition is thus po-
tentially not the most effective method to optimize speed-up.
In the present study this partition leads to an optimal point
around six threads/cores without losing too much parallel ef-
ficiency. In general, increasing the number of threads/cores
will still produce results faster, but in an increasingly ineffi-
cient manner. This trend is clear from Fig. 2c and d where
the total computational time (speed-up ratio, time-saving ra-
tio) does not scale linearly with the increasing number of
threads/cores. The ideal scenario (linear scalability) would be
if the computational results followed the 1 : 1 line in Fig. 2c.
In Fig. 2d the non-linear flattening of the time-saving ratio is
also evident, although the ratio still slightly increases beyond
six threads/cores. This result implies the total computational
time will marginally decrease with an increasing number of
threads/cores. This marginal decrease in computational time
could, however, still make significant differences in the to-
tal simulation times when extensive simulation periods are
considered.
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Figure 2. Model performance as a function of the number of computational threads/cores. (a) Computing time in seconds, (b) efficiency
(Eq. 3), (c) speed-up ratio (Eq. 1) and (d) the time-saving ratio (Eq. 2).

5 Conclusions

The present study investigated the scalability of SWAN, a
widely used spectral wave model. Three typical wave model
resolutions were used for these purposes. Both the OpenMP
(OMP) and the Message Passing Interface (MPI) implemen-
tations of SWAN were tested. The scalability is presented
via three performance metrics: the efficiency, speed-up ratio
and the timesaving ratio. The MPI version of SWAN outper-
formed the OMP version based on all three metrics. The MPI
version of SWAN performed best with the largest computa-
tional domain resolution, resulting in the highest speed-up
ratios. The time-saving ratio indicated a decrease after ap-
proximately six computational threads/cores. This result sug-
gests that six threads/cores are the most effective configura-
tion for executing SWAN. The largest increases in speed-up
and efficiency were observed with small thread counts. Ac-
cording to Genseberger and Donners (2020), computational
times decrease up to ∼ 16 nodes (16× 24 threads/cores), in-
dicating the wall-clock optimal computational time for their
case study. This result suggests that multiple nodes will be
required to reach the optimal wall-clock computational time
– even though this turn point might not be the most efficient

computational configuration. Ultimately, the efficiencies rec-
ommended here can improve operational performance sub-
stantially, particularly when implemented over the range of
modelling software needed to produce useful metocean fore-
casts. Future studies might consider investigating the scala-
bility employing a gcc compiler.

Code and data availability. The open-source version of SWAN
was run for the purposes of the present study. SWAN may
be downloaded from http://swanmodel.sourceforge.net/ (SWAN,
2020). To ensure a compatible version of SWAN remains
available, the current, latest version of SWAN is permanently
archived at https://hdl.handle.net/10289/14269 (SWAN, 2021). The
bathymetry used for the present study may be downloaded from
https://www.gebco.net/ (GEBCO, 2020), and the wind forcing
may be found from https://climatedataguide.ucar.edu/climate-data/
climate-forecast-system-reanalysis-cfsr (National Center for At-
mospheric Research Staff, 2017).
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