Articles | Volume 14, issue 6
Geosci. Model Dev., 14, 4019–4034, 2021
https://doi.org/10.5194/gmd-14-4019-2021
Geosci. Model Dev., 14, 4019–4034, 2021
https://doi.org/10.5194/gmd-14-4019-2021

Model description paper 29 Jun 2021

Model description paper | 29 Jun 2021

MSDM v1.0: A machine learning model for precipitation nowcasting over eastern China using multisource data

Dawei Li et al.

Related subject area

Atmospheric sciences
Evaluation of the offline-coupled GFSv15–FV3–CMAQv5.0.2 in support of the next-generation National Air Quality Forecast Capability over the contiguous United States
Xiaoyang Chen, Yang Zhang, Kai Wang, Daniel Tong, Pius Lee, Youhua Tang, Jianping Huang, Patrick C. Campbell, Jeff Mcqueen, Havala O. T. Pye, Benjamin N. Murphy, and Daiwen Kang
Geosci. Model Dev., 14, 3969–3993, https://doi.org/10.5194/gmd-14-3969-2021,https://doi.org/10.5194/gmd-14-3969-2021, 2021
Short summary
A climatology of tropical wind shear produced by clustering wind profiles from the Met Office Unified Model (GA7.0)
Mark R. Muetzelfeldt, Robert S. Plant, Peter A. Clark, Alison J. Stirling, and Steven J. Woolnough
Geosci. Model Dev., 14, 4035–4049, https://doi.org/10.5194/gmd-14-4035-2021,https://doi.org/10.5194/gmd-14-4035-2021, 2021
Short summary
Surface representation impacts on turbulent heat fluxes in the Weather Research and Forecasting (WRF) model (v.4.1.3)
Carlos Román-Cascón, Marie Lothon, Fabienne Lohou, Oscar Hartogensis, Jordi Vila-Guerau de Arellano, David Pino, Carlos Yagüe, and Eric R. Pardyjak
Geosci. Model Dev., 14, 3939–3967, https://doi.org/10.5194/gmd-14-3939-2021,https://doi.org/10.5194/gmd-14-3939-2021, 2021
Short summary
Effects of heterogeneous reactions on tropospheric chemistry: a global simulation with the chemistry–climate model CHASER V4.0
Phuc T. M. Ha, Ryoki Matsuda, Yugo Kanaya, Fumikazu Taketani, and Kengo Sudo
Geosci. Model Dev., 14, 3813–3841, https://doi.org/10.5194/gmd-14-3813-2021,https://doi.org/10.5194/gmd-14-3813-2021, 2021
Short summary
Development of a large-eddy simulation subgrid model based on artificial neural networks: a case study of turbulent channel flow
Robin Stoffer, Caspar M. van Leeuwen, Damian Podareanu, Valeriu Codreanu, Menno A. Veerman, Martin Janssens, Oscar K. Hartogensis, and Chiel C. van Heerwaarden
Geosci. Model Dev., 14, 3769–3788, https://doi.org/10.5194/gmd-14-3769-2021,https://doi.org/10.5194/gmd-14-3769-2021, 2021
Short summary

Cited articles

Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J.: Machine Learning for Precipitation Nowcasting from Radar Images [cs, stat], arXiv [preprint], arXiv:1912.12132, December 2019. 
Ayzel, G., Heistermann, M., and Winterrath, T.: Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1), Geosci. Model Dev., 12, 1387–1402, https://doi.org/10.5194/gmd-12-1387-2019, 2019. 
Adrianto, I., Trafalis, T. B., and Lakshmanan, V.: Support vector machines for spatiotemporal tornado prediction, Int. J. Gen. Syst., 38, 759–776, https://doi.org/10.1080/03081070601068629, 2009. 
Chandra, R. and Kapoor, A.: Bayesian neural multi-source transfer learning, Neurocomputing, 378, 54–64, https://doi.org/10.1016/j.neucom.2019.10.042, 2020. 
Chandra, R., Cripps, S., Butterworth, N., and Muller, R. D.: Precipitation reconstruction from climate-sensitive lithologies using Bayesian machine learning, Environ. Model. Softw., 139, 105002, https://doi.org/10.1016/j.envsoft.2021.105002, 2021. 
Download
Short summary
In the daily weather forecast business, numerical weather prediction is mainly used to forecast precipitation, but its performance for nowcasting tasks within 0–2 h is very poor. Hence, we hope to use machine learning to improve the accuracy and resolution of quantitative precipitation nowcasting (QPN) tasks. Previous works focused on the extrapolation of radar echo without using abundant meteorological data. Therefore, we designed a model using three kinds of data for QPN in eastern china.