Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-4019-2021
https://doi.org/10.5194/gmd-14-4019-2021
Model description paper
 | 
29 Jun 2021
Model description paper |  | 29 Jun 2021

MSDM v1.0: A machine learning model for precipitation nowcasting over eastern China using multisource data

Dawei Li, Yudi Liu, and Chaohui Chen

Related subject area

Atmospheric sciences
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025,https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024,https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024,https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024,https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024,https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary

Cited articles

Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J.: Machine Learning for Precipitation Nowcasting from Radar Images [cs, stat], arXiv [preprint], arXiv:1912.12132, December 2019. 
Ayzel, G., Heistermann, M., and Winterrath, T.: Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1), Geosci. Model Dev., 12, 1387–1402, https://doi.org/10.5194/gmd-12-1387-2019, 2019. 
Adrianto, I., Trafalis, T. B., and Lakshmanan, V.: Support vector machines for spatiotemporal tornado prediction, Int. J. Gen. Syst., 38, 759–776, https://doi.org/10.1080/03081070601068629, 2009. 
Chandra, R. and Kapoor, A.: Bayesian neural multi-source transfer learning, Neurocomputing, 378, 54–64, https://doi.org/10.1016/j.neucom.2019.10.042, 2020. 
Chandra, R., Cripps, S., Butterworth, N., and Muller, R. D.: Precipitation reconstruction from climate-sensitive lithologies using Bayesian machine learning, Environ. Model. Softw., 139, 105002, https://doi.org/10.1016/j.envsoft.2021.105002, 2021. 
Download
Short summary
In the daily weather forecast business, numerical weather prediction is mainly used to forecast precipitation, but its performance for nowcasting tasks within 0–2 h is very poor. Hence, we hope to use machine learning to improve the accuracy and resolution of quantitative precipitation nowcasting (QPN) tasks. Previous works focused on the extrapolation of radar echo without using abundant meteorological data. Therefore, we designed a model using three kinds of data for QPN in eastern china.