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Abstract. Eastern China is one of the most economically de-
veloped and densely populated areas in the world. Due to
its special geographical location and climate, eastern China
is affected by different weather systems, such as monsoons,
shear lines, typhoons, and extratropical cyclones. In the near
future, the rainfall rate becomes difficult to predict precisely
due to these systems. Traditional physics-based methods
such as numerical weather prediction (NWP) tend to perform
poorly on nowcasting problems due to the spin-up issue.
Moreover, various meteorological stations are distributed in
this region, generating a large amount of observation data
every day, which have great potential for application to data-
driven methods. Thus, it is important to train a data-driven
model from scratch that is suitable for the specific weather
situation of eastern China. However, due to the high de-
grees of freedom and nonlinearity of machine learning al-
gorithms, it is difficult to add physical constraints. There-
fore, with the intention of using various kinds of data as a
proxy for physical constraints, we collected three kinds of
data (radar, satellite, and precipitation data) in the flood sea-
son from 2017 to 2018 in this area and preprocessed them
into tensors (256× 256) that cover eastern China with a do-
main of 12.8×12.8◦. The developed multisource data model
(MSDM) combines the optical flow, random forest, and con-
volutional neural network (CNN) algorithms. It treats the
precipitation nowcasting task as an image-to-image prob-
lem, which takes radar and satellite data with an interval of
30 min as inputs and predicts radar echo intensity with a lead
time of 30 min. To reduce the smoothing caused by convo-
lutions, we use the optical flow algorithm to predict satellite
data in the following 120 min. The predicted radar echoes
from the MSDM together with satellite data from the optical
flow algorithm are recursively implemented in the MSDM

to achieve a 120 min lead time. The MSDM predictions are
comparable to those of other baseline models with a high
temporal resolution of 6 min. To solve blurry image prob-
lems, we applied a modified structural similarity (SSIM) in-
dex as a loss function. Furthermore, we use the random for-
est algorithm with predicted radar and satellite data to es-
timate the rainfall rate, and the results outperform those of
the traditional, nonlinear radar reflectivity factor and rainfall
rate (Z–R) relationships that use logarithmic functions. The
experiments confirm that machine learning with multisource
data provides more reasonable predictions and reveals a bet-
ter nonlinear relationship between radar echo and precipita-
tion rate. Apart from developing complicated machine learn-
ing algorithms, exploiting the potential of multisource data
will yield more improvements.

1 Introduction

In recent years, deep learning (DL) and machine learning
(ML) have achieved great advances with big data. Tremen-
dous meteorological data are produced every day, which
perfectly matches these novel data-driven artificial intelli-
gence (AI) approaches. Quantitative precipitation nowcast-
ing (QPN) using radar echo extrapolation (REE) has re-
cently become popular (Tran and Song, 2019). Precipitation
nowcasting predicts rainfall intensity in the following few
hours. Based on various data with high spatiotemporal reso-
lutions, AI precipitation prediction can be relatively accurate
compared to traditional numerical weather prediction (NWP)
methods. U-Net (Ronneberger et al., 2015) is a well-known
network designed for image segmentation, and its core is up-
sampling, downsampling, and skip connection. It can effi-
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ciently achieve high accuracy with a small number of sam-
ples. Agrawal et al. (2019) treated precipitation nowcasting
as an image-to-image problem. They employed U-Net (Ron-
neberger et al., 2015) to predict the change in radar echo for
QPN, which is superior to High-Resolution Rapid Refresh
(HRRR) numerical prediction from the National Oceanic and
Atmospheric Administration (NOAA) when the prediction
time is within 6 h. Sønderby et al. (2020) proposed a neu-
ral weather model (NWM) called MetNet that uses axis self-
attention (Ho et al., 2019) to discover weather patterns from
radar and satellite data. MetNet can predict the next 8 h of
precipitation in 2 min intervals with a resolution of 1 km.
Shi et al. (2015) treated precipitation nowcasting as a prob-
lem of predicting spatiotemporal sequences and modified the
fully connected long short-term memory (FC-LSTM) by re-
placing the Hadamard product with a convolution operation
in the input-to-state and state-to-state transitions. They be-
lieve that cloud movement is highly uniform in some ar-
eas, and convolutions can capture these local characteristics.
Therefore, the convolution operation in the input transforma-
tions and recurrent transformations of their proposed convo-
lutional LSTM (ConvLSTM) helps to handle the spatial cor-
relations. Furthermore, they apply the same modification to
the gated recurrent unit (GRU) and notice that convolution
is location-invariant and focuses on only a fixed location be-
cause its hyperparameters (kernel size, padding, dilation) are
fixed. However, in the QPN problem, a specific location of
cloud clusters continuously changes over time. Hence, Shi et
al. (2017) proposed a trajectory GRU (TrajGRU) that uses
a subnetwork to output a location-variant connection struc-
ture before state transitions. The dynamically changed con-
nections help TrajGRU capture the trajectory of cloud clus-
ters more accurately than previous methods. In the field of
video prediction, Wang et al. proposed various recurrent neu-
ral networks (RNNs) based on LSTM. For example, they de-
signed PredRNN++ (Wang et al., 2018) with a cascaded
dual-memory structure and gradient highway unit, which
strengthens the power for modeling short-term dynamics and
alleviates the vanishing gradient problem, respectively. In
addition, to capture spatial characteristics through recurrent
state transitions, Wang et al. (2019a) integrated 3D convo-
lutions inside LSTM units and proposed Eidetic 3D LSTM
(E3D-LSTM). Moreover, Wang et al. (2019b) designed the
memory-in-memory (MIM) network to handle higher-order
nonstationarity of spatiotemporal data. By using differen-
tial signals, MIM can model the nonstationary properties be-
tween adjacent recurrent states. However, their work is based
on a slight modification of existing techniques that demand
massive computing resources for model training and has not
been applied to big meteorological data.

Computer vision techniques have long been used in object
detection, video prediction, and human motion prediction.
Tran and Song (2019) used image quality assessment tech-
niques as a new loss function instead of the common mean
squared error (MSE), which misled the process of training

and generated blurry images. Ayzel et al. (2019) designed
an advanced model based on the multiple optical flow algo-
rithm for QPN, but it still performs poorly in the prediction of
the onset and decay of precipitation systems because optical
flow methods simply calculate the position and velocity of
the radar echo with a constant velocity rather than consider
the changing intensity of radar echo.

On the one hand, the current massive amounts of data are
underutilized. On the other hand, scientists in the field of ma-
chine learning focus on pursuing high accuracy by increasing
the complexity of models based on a single source of data.
Given this background, from the perspective of atmospheric
science, we build a multisource data model (MSDM) with the
aim of fully using multisource observation data (for example,
radar reflectivity, infrared satellite data, and rain gauge data)
and find suitable machine learning algorithms (for example,
deep neural network, optical flow, and random forest algo-
rithms) for each type of data that can ensure accuracy while
saving computing resources. In addition, due to the high de-
grees of freedom and nonlinearity of neural networks, it is
difficult to apply physical constraints to these machine learn-
ing models. Hence, we hope that multisource data will func-
tion as a proxy for physical constraints to guide the model
during the training process. The main advantage of MSDM
lies in its transferability: any machine learning model and ob-
servation data can be incorporated into the model. For exam-
ple, wind speed data can be a proxy for dynamic constraints,
and temperature data can function as a proxy for thermody-
namic constraints. Due to the limit of computing resources,
the aim of this paper is not to achieve a higher resolution or
prediction accuracy but to propose a method combining ma-
chine learning and deep learning with radar echo data, satel-
lite data, and automatic ground observation data to achieve
physically reasonable QPN.

Section 2 introduces the related work about the use of ma-
chine learning and deep-learning models for radar and pre-
cipitation. The dataset, models, and methods used in this
study are described in Sect. 3. Section 4 shows the results.
Section 5 draws conclusions and discusses some possible fu-
ture work.

2 Related work

2.1 Machine learning

There is a large volume of published studies describing the
use of ML for radar and precipitation. Logistic regression,
as one of the simple ML algorithms, has been used to im-
prove the forecast of precipitation probability (Vislocky and
Young, 1989). Kuligowski and Barros (1998) use neural net-
works to postprocess NWP output and forecast precipitation
in the next 6 h. Lakshmanan et al. (2014) use neural net-
works to improve quality control of weather radar data. K-
means clustering is a form of unsupervised learning, which
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is used for the classification of precipitation (Yang and Deng,
2010). Hwang et al. (2019) modify this kind of clustering
algorithm and train two nonlinear regression models to im-
prove the subseasonal forecast of temperature and precipita-
tion. Support vector machine (SVM) uses kernels to trans-
form data to the nonlinear space, which has been applied to
forecast tornadoes (Adrianto et al., 2009), predict precipita-
tion in tropical cyclones (Wei, 2012), and train precipitation
estimation models (Huang et al., 2015). Decision tree algo-
rithms are widely used in classification and regression tasks.
Gagne et al. (2009) use the decision tree to classify storm
types based on radar observations. Loken et al. (2019) cali-
brate the ensemble precipitation forecast via random forest.
Hill et al. (2020) use random forests to predict the proba-
bility of severe weather across the United States. Mao and
Sorteberg (2020) use random forest to train a binary model
to improve the accuracy of radar-based precipitation now-
casts. Bayesian techniques are an important branch of ML.
Todini (2001) use them to improve the radar precipitation
estimation. Fox and Wikle (2005) propose a quantitative pre-
cipitation nowcast scheme based on a Bayesian hierarchical
model. Chandra et al. (2021) use Bayesian machine learn-
ing to reconstruct annual precipitation from climate-sensitive
lithologies and improve the predictive accuracy of global cir-
culation models (GCM) at a low computational cost.

2.2 Deep learning

Deep learning (DL; LeCun et al., 2015) has gained popularity
in meteorology recently. The existing literature on the appli-
cation of DL to radar and precipitation is extensive. Foresti et
al. (2019) train artificial neural networks (ANN) on a 10-year
archive of radar images in Switzerland to nowcast the growth
and decay of precipitation. Sadeghi et al. (2019) apply con-
volutional neural networks (CNNs) together with the same
kind of data to estimate precipitation, which shows great im-
provement compared with baseline models. Yan et al. (2021)
introduce a flow-deformation network (FDNet) that captures
the motion of the optical flow field and the deformation of
radar echoes at the same time. The ML community tends to
treat nowcasting problems as the prediction of spatiotempo-
ral sequences. Chen et al. (2020) use ConvLSTM for now-
casting and early warning of heavy rainfall. Ran et al. (2021)
use Faster-RCNN (Ren et al., 2016) to identify precipitation
clouds for Doppler weather radar. The deep neural networks
have also been applied to reduce the bias and false alarms of
satellite-based precipitation products (Tao et al., 2016). Tao
et al. (2017) design two DL models that incorporate satel-
lite data from infrared and water vapor channels to iden-
tify the precipitation that significantly outperform the oper-
ational product. Yo et al. (2020) propose a volume-to-point
framework for radar-based quantitative precipitation estima-
tion (QPE), which can automatically detect the movement
and evolution of precipitation systems. Ravuri et al. (2021)
present a deep generative model to eliminate the blurry now-

cast at longer lead times. As for data fusion, Chandra and
Kapoor (2020) design a Bayesian transfer learning frame-
work to provide an approach for handling multiple sources
of data. Veillette et al. (2020) use satellite data, radar images,
and lightning flash data to synthetic weather radar. Miao et
al. (2020) deem the nowcasting problem as a computer vision
task and propose a multimodal graph framework to model
different data jointly.

3 Materials and methods

3.1 Dataset

The spatial and temporal distribution characteristics of pre-
cipitation are related to many factors, such as the terrain,
atmospheric circulation, and climatic conditions. To train a
deep-learning model that can capture the precipitation char-
acteristics of eastern China, we collected multisource obser-
vation data of the flood season (May to September) for a total
of 306 d from 2017 to 2018. Due to the missing radar data
from 1 to 9 May and 26 to 30 September 2018, there are only
292 d of radar data in total. The missing data are obtained
by interpolating the data from adjacent moments. Among the
data, the precipitation data of regional automatic weather sta-
tions (AWSs) in eastern China with a time interval of 10 min
are shown in Fig. 1.

The weather radar data (resolution of 0.5◦× 0.5◦) have
been preprocessed into the combined reflectivity: the lati-
tude range is from 21.0 to 36.0◦ N, the longitude range is
from 112.0 to 125.9◦ E, and the data were available every
6 min (Fig. 2a). The Himawari 8 satellite brightness tempera-
ture data (resolution 0.5◦×0.5◦) for channels 07–16 are used
with a latitude range of 19–37◦ N, a longitude range of 110–
127◦ E, and a time interval of 30 min (Fig. 2b). The links for
the datasets are as follows.

– Radar data can be found at the following link: http:
//data.cma.cn/data/detail/dataCode/J.0012.0003.html
(last access: 27 December 2019).

– AWS data can be found at the following link: http:
//data.cma.cn/data/detail/dataCode/A.0012.0001.html
(last access: 27 December 2019).

– Himawari 8 satellite data can be found at the follow-
ing link: http://www.cr.chiba-u.jp/databases/GEO/H8_
9/FD/index.html (last access: 27 December 2019).

3.2 Model description

3.2.1 Model architecture

To incorporate multisource data, we designed an MSDM
with three parts: deep learning, optical flow, and random for-
est (Fig. 3). The deep-learning part of the MSDM is inspired
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Figure 1. Distribution of the automatic ground stations in eastern China.

Figure 2. Combined reflectivity (dBZ) in eastern China (a), and Himawari 8 satellite brightness temperature data (◦C) of channel 07 (b) on
1 May 2017.

by the state-of-the-art U-Net (Ronneberger et al., 2015)
designed for image segmentation. It follows the encoder–
decoder structure that encoder has eight downsample blocks
and decoder has seven upsample blocks. Each downsampling
block in the encoder consists of Conv2D, batch normaliza-
tion, and leaky rectified linear unit (LeakyReLU) activation
layers. Each upsampling block in the decoder includes trans-
posed convolutional, batch normalization, dropout of 0.5 (ap-
plied to the first three blocks), and ReLU activation layers.
In each convolutional layer, the step size parameter (stride)
is set to 2, and padding is set to “same”. The kernel size
varies between 4× 4 and 2× 2 to extract the spatial charac-
teristics at different scales. The batch normalization layer ef-
fectively avoids the gradient disappearance problem and im-

proves the convergence speed. We use dropout to randomly
discard some information with a probability of 50 % to pre-
vent overfitting. The activation function adds nonlinearity to
each block and allows the model to better learn the nonlinear
relationship between the input and target. Transposed convo-
lutional layers are introduced to substitute upsampling layers
in U-Net to increase the resolution of the images. As in U-
Net, there are skip connections between the encoder and de-
coder to solve the problem of gradient explosion and gradient
disappearance during training.

The primary reason that we use transposed convolutional
layers to replace upsampling layers is that both layers are
used for upsampling images. Upsampling layers use an in-
terpolation method (for example, nearest-neighbor interpo-
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Figure 3. Structure of the MSDM.

lation, bilinear interpolation, and bicubic interpolation) to
rescale the input image to a desired size with a higher res-
olution. These interpolation methods are preset, so there is
little room for the network to learn. The deconvolution op-
eration is not a predefined interpolation method, and it has
some learnable parameters to convert the output to the orig-
inal image resolution. Through the training of the model, it
will learn an optimal upsampling method instead of a preset
method.

In the deep-learning part, the MSDM takes the array with
a shape of 256×256×2, which represents the height, width,
and channel of the image. Radar and satellite grid point data

are at different channels. The output of this part is a predicted
radar image 30 min later with a shape of 256× 256× 1. The
optical flow part takes five consecutive satellite frames as in-
put to extrapolate the satellite image in the following 2 h.
Subsequently, the predicted radar image and satellite image
will be used in two parts. First, it will flow into the random
forest part to estimate the precipitation rate. Second, it will
be recursively used as the input of the deep-learning part to
achieve a lead time of 2 h.

The reasons why we do not predict precipitation directly
using deep learning are as follows: (1) the precipitation data
we collected are irregular site data, which are distributed only
on land and do not include precipitation on the sea (Fig. 1).
The combined radar reflectivity (Fig. 2a) and Himawari 8
satellite data (Fig. 2b) are regular grid point data and include
sea data. The spatial distributions of these three types of data
are inconsistent, so it is impossible to make a feature–label
correspondence to directly predict precipitation. (2) The use
of shapefiles to extract radar echo or satellite data on land
will cause the edge of the echo to be limited to the land,
which loses the meaning of extrapolation. (3) We hope to
improve the transferability of MSDMs that can integrate dif-
ferent kinds of data except grid point data. Therefore, the
method of processing precipitation data can be used on other
observation site data in daily operation. (4) We believe that
deep learning efficiently extracts the long-period trend in pre-
cipitation, but it cannot capture the transient characteristics
of precipitation. Therefore, for each rainfall event, we use
random forest to model the nonlinear relationship between
multisource data to capture its unique characteristics.

3.2.2 Reference models

Optical flow method

We first employed rainy motion v1, an optical flow model
proposed by Ayzel et al. (2019), to evaluate the performance
of the optical flow algorithm for tracking and extrapolating
radar echoes by our dataset. It performs poorly on the radar
echo data when the lead time is up to 60 min. However, it
performs better on satellite data, which are recorded every
30 min. We believe that cloud layer motion is dominated by
air advection transportation; thus, the optical flow method
can better simulate its motion characteristics. Additionally,
the temporal resolution of satellite data is coarser (30 min), so
we can directly obtain the sequence of four frames of the fol-
lowing 2 h through one prediction rather than iterative predic-
tion. Optical flow can predict such short sequences quickly
and shows great advantages in saving computing resources
and avoiding error accumulation. In addition, the main draw-
back of the convolution operation is that it smooths the
characteristics of the image, and the level of smoothness
increases when applying convolutions recursively in deep-
learning models. Therefore, to ease the smoothing of radar
echoes and preserve more details of precipitation systems,
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we decide to use the results of satellite data predicted by the
optical flow component of our model.

ConvLSTM

ConvLSTM (Shi et al., 2015) is a traditional model for the
QPN problem. Hence, we compare our model with ConvL-
STM to see whether the model with multisource data per-
forms well when we simply formulate QPN as an image-to-
image problem rather than a spatiotemporal sequence prob-
lem (Eq. 1).

X̃t+1. . .X̃t+5 =

p(Xt+1, . . .,Xt+5 |Xt−5+1,Xt−5+2, . . .,Xt ) (1)

Tensor Xt represents the radar echo map in the shape of
256× 256 at time t , and tensor X̃t+1 represents the model
prediction result.

U-Net

U-Net (Ronneberger et al., 2015) was employed by Agrawal
et al. (2019) for QPN. They treat the problem as an image-
to-image problem (Eq. 2) to forecast the precipitation in the
next hour.

X̃t+5 = p(Xt+5 |Xt ) (2)

TensorXt and X̃t are the same as in Eq. (1); we use the U-Net
architecture to predict the radar image 30 min later in com-
parison to the MSDM to demonstrate that the combination of
multisource data is better than single-source data.

3.3 Training and evaluation method of the MSDM

The model that we designed is a modified U-Net model
(Fig. 3). We use the radar and satellite data as inputs, and
the output is the intensity of the radar echo after 0.5 h (Eq. 3).
The two kinds of data were fed into the encoder and then con-
catenated by skip connections and flowed into the decoder
and transposed convolutional layer (Fig. 3).

X̃t+5 = p(Xt+5 |Xt ,Yt ) (3)

The MSDM uses weather radar echo data Xt and Himawari
8 satellite brightness temperature data Yt to predict the radar
echo map at time t + 5. After the first round of prediction,
we combined X̃t+5 from our model and the predictions of
Ỹt+5 from optical flow for further prediction. During pre-
processing, the weather radar data and Himawari 8 satellite
brightness temperature data are extracted, which cover the
area of 23.0–35.8◦ N, 113.0–125.8◦ E with a 256× 256 win-
dow. Then, the values of these data Z are transformed into
pixels P by Eq. (4):

P =
Z−min{Z}

max{Z}−min{Z}
. (4)

To improve the image quality, we apply a modified structural
similarity index (SSIM) (Wang et al., 2004) as the loss func-
tion, which is helpful to solve blurry image problems. The
loss function for the predicted image and ground truth is de-
fined by Eq. (5):

Loss=−1×SSIM(ypredytrue)

=−1×

(
2µypredµytrue +C1

)(
2σypredytrue +C2

)(
µ2
ypred
+µ2

ytrue
+C1

)(
σ 2
ypred
+ σ 2

ytrue
+C2

) ,
(5)

where ypred is the predicted image, ytrue is the ground truth,
and µypred and µytrue are the average values of ypred and ytrue,
respectively. σ 2

ypred
and σ 2

ytrue
are the variances of ypred and

ytrue, respectively. σypredytrue is the cross-correlation of ypred
and ytrue. C1 and C2 are small positive constants. In each cal-
culation, a window of 3×3 is taken from the image, and then
the window is continuously sliding for calculation. Finally,
the average value is taken as the global SSIM.

To evaluate our model, a comparison was made between
the optical flow method, ConvLSTM, and U-Net methods.
Due to limits on computational resources, we use a few
frames to predict the results for 0.5 h. Following this, the
output results are used to iteratively predict the radar echo
in the next 0.5 h to achieve a lead time of 2 h (Fig. 4). For
the baseline sequence-to-sequence models (ConvLSTM, op-
tical flow), we use the first five frames (T−4–T0) to predict
a sequence of the next five frames (T1–T5) and use this re-
sult to iteratively predict the remaining three sequences (T6–
T10, T11–T15, T16–T20). For image-to-image models (U-Net,
MSDM), we use frame T0 to predict frame T5 and use this
prediction as input to iteratively predict the following frames
(T10, T15, T20).

3.4 Performance evaluation

The MSDM is trained with our dataset on Google Colab Pro
with TensorFlow-GPU-2.2.0 and executed on an NVIDIA
Tesla P100 GPU (16 GB). In total, 240 d of data are used
for training, 26 d are used for validation, and 26 d are used
for testing. All the models are compiled with the Adam op-
timizer, and the learning rate is set at 0.001. To avoid over-
fitting, we apply the early stopping strategy to monitor the
loss in the validation set. We use several metrics to evalu-
ate the model’s performance on the test set, i.e., the critical
success index (CSI, Eq. 6), Heide skill score (HSS, Eq. 7),
false alarm ratio (FAR, Eq. 8) (Woo and Wong, 2017), and
root-mean-square errors (RMSEs), and we used the SSIM to
evaluate the structural similarity between the generated im-
age and target image.

CSI=
hits

hits+misses+ falsealarms
, (6)
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Figure 4. The time sequences of the optical flow, ConvLSTM, U-Net, and MSDM.

HSS=
2(hit · correct negative−miss · false alarm)

miss2
+ false alarm2

+ 2 · hit · correct negative

+ (miss+ false alarm)(hit+ correct negative), (7)

FAR=
false alarm

hit+ false alarm
, (8)

where the correct negatives, hits, misses, and false alarms are
determined by the threshold value. Woo and Wong (2017)
provide more details about these metrics. We applied six
thresholds of 0.1, 1, 5, 10, 25, and 40 dBZ to calculate
the CSI, HSS, and FAR. To stress the importance of areas
with large radar reflectivity, we assign a weight w(threshold)
(Eq. 9) to different thresholds and calculate the weighted CSI
and HSS (the larger the better).

w(threshold)=



1, threshold= 0.1
1, threshold= 1
2, threshold= 5
3, threshold= 10
5, threshold= 25
8, threshold= 40

(9)

We set all the weights to 1 for the FAR (the smaller the bet-
ter) because we believe that the influence of false alarms of
every threshold is the same. The RMSE is used to evaluate
the global error of the predicted radar image. For the SSIM,

we set the Gaussian filter size to 3×3 and the width to 1.5 to
evaluate the local structural similarity between the generated
image and target image.

4 Results

4.1 REE

In the region we selected over eastern China, the radar echo
and precipitating cloud system change little between two ad-
jacent frames (6 min). Therefore, the results of all the models
are shown every 30 min (Fig. 5). The input of optical flow
and ConvLSTM is a sequence of five frames before time 0,
and the output is a sequence of five frames in the following
0.5 h. The input of U-Net is a single frame of the radar echo
data at time 0, and the input of the MSDM includes a frame
of satellite data and a frame of the radar echo data. When the
output of the first 30 min is obtained, we take it as the input
to replace the real data for further prediction. After the first
step of prediction, the satellite data are input into the MSDM
for QPN by the optical flow algorithm. Because cloud move-
ments are dominated by advective motion, the optical flow
method is used.

We present the comparison of four models trained with dif-
ferent loss functions. Figure 5 shows that the models trained
with the modified SSIM predict many large-value areas of
radar echo because the SSIM can extract the local structural
similarity through the training process. In contrast, Fig. 6
shows that models trained with the MSE tend to smooth the
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Figure 5. Illustrations of the observed radar echo, the radar echo simulated by the optical flow, ConvLSTM, U-Net, and MSDM. For the
optical flow and ConvLSTM, we select one frame every 0.5 h for comparison with other models. Each model was trained with the modified
SSIM. The date and time are set to 7 September 2018, 00:00 UTC.

details of radar echo and seldom predict large radar echo val-
ues because the large-value area is only a small part of the
entire echo, and the MSE will ignore these areas when it op-
timizes errors on a global scale. Hence, the modified SSIM
shows its advantage when compared with the conventional
loss function in the REE task.

The radar echoes predicted by the ConvLSTM, U-Net, and
MSDM decay in the following 2 h, while those predicted by
the optical flow method remain stable. Thus, the optical flow
method can perfectly predict the edge and shape of the radar
echo, which is the reason why it obtains the highest aver-
age weighted CSI at a lead time of 30 min (Table 1) on the
testing set. However, the fatal weakness of the optical flow
method is that it simply predicts radar echo movement from
previous images without predicting radar echo decay and ini-
tiation, which causes its accuracy to decrease over time (Ta-
ble 1), and thus the FAR keeps increasing (Table 3). In addi-
tion, it employs an algorithm called a corner detector (Ayzel
et al., 2019) to identify special points from previous frames

and track the movement of these points. When it extrapolates
the tail of the radar echo, it cannot find corresponding points
from previous images because the tail of the radar echo at
this moment was in a position outside the radar image of pre-
vious frames. Consequently, unreasonable shapes exist in the
tail of the predicted radar echo. In Fig. 5, we find that Con-
vLSTM performs the best for the strong echoes, but it cannot
maintain the shape of the echo. Additionally, there exists a
phenomenon in which only the strong-echo area is increas-
ing, while the weak-echo area is continuously decreasing,
which is contradictory according to fluid continuity theory.
The ConvLSTM captures the temporal features from pre-
vious frames, which strengthens the intensity, but it cannot
properly predict the initiation and decay of the whole sys-
tem, because it predicts lower values for weak-echo areas and
makes fewer false alarms in these areas, which comprise the
majority of radar echoes. This could explain why it obtains
the lowest FAR in the last hour (Table 3).
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Figure 6. Illustrations of the observed radar echo, the radar echo simulated by the optical flow, ConvLSTM, U-Net, and MSDM. For the
optical flow and ConvLSTM, we select one frame every 0.5 h for comparison with other models. Each model was trained with the MSE. The
date and time are set to 7 September 2018, 00:00 UTC.

ConvLSTM is prone to error accumulation due to itera-
tive training and requires massive computing resources (Yu
et al., 2018). Therefore, we use a convolutional neural net-
work (CNN) as a substitute to treat REE as an image-to-
image problem. U-Net, along with our MSDM, can gener-
ally simulate the motion of the radar echo while maintain-
ing its outline, but the MSDM with satellite data can avoid
radar echo decay through iterations. The MSDM has com-
parable performance with baseline models and outperforms
other models in the short-term period (Tables 1 and 2). We
believe it retains the merits of the optical flow method, which
can maintain the shape of the radar echo, and it has the abil-
ity to predict the strong-echo area from U-Net. The MSDM
performs poorly when the lead time is longer than 90 min
because the cumulative error from the two kinds of data was
larger than either of them individually. In addition, satellite
data may provide more details that the radar echo may not
contain, for example, data over the sea; instead, these details

may be treated as noise or false alarms, and thus the accuracy
will decrease.

Tables 1 and 2 show the weighted average CSI and HSS
on the test set with different thresholds (0.1, 1, 5, 10, 25, 40;
unit: dBZ). The two metrics are used to evaluate the perfor-
mance of each model (the higher the better). From Table 1,
we notice that optical flow method achieves the best score
when the lead time is 30 min, which shows its great advan-
tage in short-term forecasting. However, its long-term pre-
dictions are not accurate due to a lack of simulation of the
radar echo evolution. ConvLSTM performs poorly because
it only increases the strong echo and neglects the prediction
of low-value areas. Hence, even though it obtains high scores
on large reflectivity areas, its weighted CSI and HSS are still
lower than those of the other models. U-Net also performs
poorly due to its inability to handle temporal correlations
and the absence of key spatial information. The MSDMs
with different loss functions (MSE and SSIM) perform well
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Table 1. Weighted average CSI on the test set with different thresh-
olds (0.1, 1, 5, 10, 25, 40; unit: dBZ). The best scores are high-
lighted in bold. The second-best score is underscored (the larger the
better).

Model 30 min 60 min 90 min 120 min

Optical flow 0.414 0.303 0.209 0.205
ConvLSTM 0.399 0.269 0.211 0.157
U-Net 0.348 0.259 0.216 0.184
MSDM_mse 0.362 0.286 0.245 0.218
MSDM_ssim 0.405 0.317 0.258 0.217

Table 2. Weighted average HSS on the test set with different thresh-
olds (0.1, 1, 5, 10, 25, 40; unit: dBZ). The best scores are high-
lighted in bold. The second-best score is underscored (the larger the
better).

Model 30 min 60 min 90 min 120 min

Optical flow 0.512 0.409 0.34 0.304
ConvLSTM 0.487 0.311 0.246 0.18
U-Net 0423 0.307 0.25 0.209
MSDM_mse 0.437 0.341 0.29 0.255
MSDM_ssim 0.514 0.413 0.343 0.291

in long-term forecasting. The SSIM can capture the struc-
tural similarities of radar images, while the MSE can calcu-
late the global errors. However, SSIM is prone to error accu-
mulation through iterative prediction. Therefore, in Table 1,
MSDM_ssim ranks best for lead times of 60 and 90 min,
while MSDM_mse ranks best for other lead times. Satellite
data add more spatial information for the MSDM to learn and
set physical constraints on it. Therefore, the MSDM scores
best in the first three moments of the weighted HSS. Regard-
ing the FAR, the MSDM still performs best in the first two
moments due to its reasonable prediction of the shape and in-
tensity of the radar echoes. ConvLSTM ranks best in the last
two moments because it forecasts only strong echoes of a few
areas, which greatly reduces the probability of false alarms.

We calculate the SSIM and RMSE between the predicted
radar echoes of the four models and the ground truth on the
test set (Fig. 7). The optical flow model achieves the lowest
SSIM (Fig. 7a), which means that it has the worst SSIM to
the ground truth. MSDM_ssim obtains the highest score on
the SSIM but the worst performance on the RMSE because
it focuses on only local features but ignores the minimiza-
tion of the global error. ConvLSTM, U-Net, and MSDM_mse
are trained on the MSE loss function, which achieve a lower
RMSE. We believe that when the SSIM is used as the loss
function, the model will generate more reasonable predic-
tions with proper shapes, but it will lead to poor performance
on global evaluation metrics such as the mean absolute error
(MAE) and RMSE. Moreover, we notice that the ConvLSTM
model produces larger errors in the first frame of each se-

Table 3. Average FAR on the test set with different thresholds (0.1,
1, 5, 10, 25, 40; unit: dBZ). The best scores are highlighted in bold.
The second-best score is underscored (the smaller the better).

Model 30 min 60 min 90 min 120 min

Optical flow 0.316 0.391 0.439 0.474
ConvLSTM 0.265 0.295 0.242 0.246
U-Net 0.293 0.309 0.313 0.309
MSDM_mse 0.329 0.364 0.387 0.399
MSDM_ssim 0.237 0.27 0.303 0.335

quence than other models. This phenomenon can result from
the deficiency of LSTM that cannot handle accumulative er-
ror, which is magnified by iterative prediction.

4.2 QPN

Previous works seem to pay little attention to QPN after
they achieve good performance on REE tasks. Researchers
tend to use an empirical formula to calculate the precipita-
tion rate based on the prediction of radar echo from mod-
els. Shi et al. (2015) employed the Z–R relationship (Z =
10loga+ 10b logR) to calculate the rainfall, where Z rep-
resents the radar echo (dBZ), R represents the rainfall rate
(mm h−1), and a and b are two constants that are calculated
based on the statistical data of specific regions. We believe
that this empirical formulation cannot describe the nonlinear
relationship between the radar echo intensity and the rain-
fall rate. Therefore, random forest machine learning regres-
sion techniques are used to describe this relationship. The
weather radar data and precipitation data 1 h before the pre-
diction time are used for training. The method we take is as
follows. First, an automatic station is identified. Then, the
radar and satellite data for these grid points as well as the cor-
responding rainfall rate from site points are applied to train
the random forest model. Finally, the learned nonlinear rela-
tionship is used to predict the rainfall rate an hour later.

Figure 8 shows the results of the Z–R relationship and
random forest model. Since the precipitation data on the grid
points are obtained by interpolation and might have errors,
we did not make a quantitative comparison for the whole
dataset. However, this example shows that the Z–R relation-
ship tends to overestimate the rain intensity. For example,
the Z–R relationship predicts many areas with precipitation
rates larger than 15 mm h−1, but there are few areas that reach
the value on the ground truth. Figure 9 shows the RMSEs of
480 QPN samples using different methods and data. When
we use the radar and satellite data as input, the random forest
model shows its superiority for the QPN task. Its RMSEs are
lower than those of the Z–R relationship in most of the sam-
ples. Therefore, we believe that multisource data have great
potential to make the results more precise.
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Figure 7. (a) SSIM of the five models. (b) RMSE of the five models (dBZ).

Figure 8. (a) Ground truth interpolated from site points (mm h−1). (b) Rainfall rate calculated by the Z–R relationship (mm h−1). (c)
Rainfall rate calculated by the random forest model (mm h−1).

5 Conclusions and discussion

5.1 Discussion

In Table 4, we evaluate four models in terms of 12 perfor-
mance indictors (amount of data required for training, time
needed for training the model, false alarm rate, cumulative
system error, ability to capture spatial and temporal charac-
teristics, ability to predict the radar echo initiation and de-
cay, 0–1 h forecast accuracy, 1–2 h forecast accuracy, abil-
ity to maintain the radar echo shape, clarity of the radar im-
age, conformation to the laws of physics). We use the mark
“↓” to represent where scores are judged via the principle of
“the lower the better” and the mark “↑” to represent where
scores are judged via “the higher the better”. Subsequently,

we discuss and summarize the advantages and limitations of
the models and their combinations.

Here, the smaller the first four indictors values are (amount
of data required for training, time needed for training the
model, false alarm rate, cumulative system error), the better
the model performance is, and the larger the last eight indic-
tors values are (ability to capture spatial and temporal char-
acteristics, ability to predict the radar echo initiation and de-
cay, 0–1 h forecast accuracy, 1–2 h forecast accuracy, ability
to maintain the radar echo shape, clarity of the radar image,
conformation to the laws of physics), the better the model
performance is. From Table 4 we can see that all of them have
advantages and disadvantages. We are now going to discuss
the strong points and weak points of the methods.
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Figure 9. RMSE of 480 QPN samples predicted by the two methods

Table 4. Evaluation on four models with the performance indictors.

Amount of data Time needed for False alarm Cumulative
required for training ↓ training the model ↓ rate ↓ system error ↓

Optical flow 1 1 2 1
ConvLSTM 4 4 3 2
U-Net 2 2 4 2
MSDM 3 3 1 4

Ability to capture Ability to capture Ability to predict radar 0–1 h forecast
spatial characteristics ↑ temporal characteristics ↑ echo initiation and decay ↑ accuracy ↑

Optical flow 1 3 1 3
ConvLSTM 2 4 2 1
U-Net 3 1 3 2
MSDM 4 1 4 4

1–2 h forecast Ability to maintain the Clarity of the Conforming to the laws
accuracy ↑ radar echo shape ↑ radar image ↑ of physics ↑

Optical flow 1 4 4 4
ConvLSTM 4 1 1 1
U-Net 3 2 2 2
MSDM 2 3 3 3

5.1.1 Optical flow

The advantages of the optical flow algorithm are as follows:
(1) it has the fewest parameters and takes the least time to
train; (2) the amount of data required for training the model
is small, and at least two radar images can be used to extrap-
olate the radar echo; (3) it maintains the shape of the radar
echo very well, and the prediction result is closest to the real
echo. (therefore, its MSE is the smallest); and (4) it is suit-
able for the extrapolation of advection precipitation from 0
to 1 h in the future.

The disadvantages of the optical flow algorithm are as fol-
lows: (1) it cannot extract features of the evolution process
of the radar echo; (2) except the advective precipitation, it
performs poorly in other precipitation situations (e.g., con-
vective precipitation and typhoon precipitation) in which the
radar reflectivity changes rapidly in a short period of time,
and for the large-value area of radar echo, it basically has no
forecasting ability; and (3) the tail of the echo cannot be ex-
trapolated due to the lack of previous data. As a result, the
longer the lead time, the more irregular the shape of the echo
at the tail.
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5.1.2 ConvLSTM

The advantages of ConvLSTM are as follows: (1) it can ex-
tract the spatial characteristics of echoes while capturing the
time characteristics efficiently; (2) it can simulate the initi-
ation and decay of radar echo better than optical flow; and
(3) it is the best for the prediction of long time periods and
large-value areas of radar echo.

The disadvantages of ConvLSTM are as follows: (1) there
are many parameters, many matrix operations, and various
gating structures in ConvLSTM, and thus its training speed is
the slowest among the four models; (2) it overestimated (un-
derestimated) the large-value (low-value) radar echo, which
does not conform to the fluid continuity theory; and (3) it
predicts the worst shape of the echo in that there is no tran-
sition between the large echo area and the non-echo area,
which is far away from the true echo and has no guidance
for operational forecasting. For example, we cannot issue an
early warning of heavy precipitation in one place, and at the
same time it cannot forecast whether there will be no rain in
neighboring areas.

5.1.3 U-Net

The advantages of U-Net are as follows: (1) it is an efficient
CNN that has relatively few parameters and can achieve high
accuracy with a small amount of data; (2) it is capable of
capturing the spatial characteristics of radar echoes and pre-
dicting the evolution of echoes; and (3) the forecasting effect
is very good for the next one or two frames.

The disadvantages of U-Net are as follows: (1) it is unable
to extract the temporal characteristics of changes in the radar
echo; (2) the convolution operation will smooth the charac-
teristics of the radar echo so that the shape of the predicted
echo will change and deviate from the true one; and (3) the
error accumulates through iterative training and prediction.

5.2 Conclusions

As a conventional QPN method, the optical flow method has
played a certain role in the forecasting of advective precipi-
tation. However, it performs poorly in the prediction of ad-
vective precipitation due to the simplicity of its algorithm
and the lack of use of existing big data (Woo and Wong,
2017). Moreover, deep learning shows great advantages in
processing vast amounts of data. By using convolution and
LSTM structures, deep-learning algorithms are better at cap-
turing spatiotemporal correlations. Nevertheless, recurrent
networks (represented by ConvLSTM) for predicting spa-
tiotemporal sequences are widely known to be difficult to
train and are computationally expensive (Yu et al., 2018).
Compared with traditional spatiotemporal sequence tasks in
the field of machine learning, such as moving Modified Na-
tional Institute of Standards and Technology (MNIST) pre-
diction, human position prediction, and traffic flow predic-

tion, the REE task has specific background and physical con-
straints. Therefore, merely obtaining predictions with higher
scores does not reflect the quality of the results. Wang et
al. (2018, 2019a, b) designed state-of-the-art models to cap-
ture comprehensive correlations between spatiotemporal se-
quences. However, when we apply them to the physics-based
tasks represented by REE and QPN, we must evaluate their
prediction from the perspective of atmospheric science. The
prediction is of reference significance only when it is physi-
cally reasonable rather than having high scores. However, it
is difficult to apply physical constraints to neural networks
due to their high degree of freedom and nonlinearity. Hence,
we input more kinds of data as features into the network with
the intention that it can obtain more information through fea-
ture interaction. Therefore, we collect multisource data and
design an MSDM. In a situation in which the model becomes
incorrect and tries to predict low radar reflectivity, the incor-
porated satellite data will balance it out. We hope the mul-
tisource data function as another form of model constraint.
Solving the sequence-to-sequence problem is computation-
ally expensive, so we treat the QPN as an image-to-image
problem and design the MSDM based on a CNN (U-Net)
with high efficiency and few parameters. The main advan-
tage of the MSDM is its transferability. Apart from satel-
lite data, any other data (wind speed, pressure, temperature,
etc.) can be used as input into the model in the future. Wind
speed data could add dynamic constraints, and temperature
data could add thermodynamic constraints. To further save
computational resources, we use optical flow to predict the
sequence of satellite data with the assumption that the cloud
cluster is dominated by convective movement. This approach
is adopted by an operational nowcasting system to estimate
convective cloud movement (Shi et al., 2017). Subsequently,
we use the satellite data predicted by optical flow and radar
reflectivity predicted by the MSDM as input for iterative pre-
diction to achieve a lead time of 2 h. After predicting the
radar echo, we replace the empirical formula (Z–R relation-
ships) with a random forest model to estimate the rainfall
rate. We believe that deep-learning models capture the long-
term trend in precipitation. There should be an algorithm that
captures real-time dynamic characteristics, and random for-
est regression is very suitable for short-term prediction with
small samples. Therefore, we trained a random forest regres-
sor using radar and precipitation data from 1 h prior. Subse-
quently, the learned nonlinear relationships were applied to
estimate the precipitation rate from radar reflectivity.

In conclusion, the MSDM combines the merits of opti-
cal flow and U-Net, maintains the pattern of the radar echo,
and predicts their initiation and decay. The results predicted
by the MSDM also contain more details that U-Net cannot
produce. Given the background that ConvLSTM overesti-
mates the strong echo and underestimates the weak echo,
the MSDM shows great potential in predicting areas of both
strong and weak radar echo. We conducted an experiment
by using random forest for QPN, which obtained relatively
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better results than those obtained by the Z–R relationship.
This finding suggests that the empirical formula is not suit-
able for all areas. We believe that by the combination of mul-
tisource data, the radar echoes predicted by the MSDM can
provide more details and have more physical constraints than
those predicted by single-observation data. It not only learns
the long-term trend through deep learning but also incorpo-
rates real-time dynamic characteristics captured by the op-
tical flow and random forest models. Hence, the prediction
from the MSDM is more physically reasonable and of refer-
ence significance.

Currently, methods still exist to estimate the precipitation
rate more precisely. For example, Wu et al. (2020) used a
graph convolutional regression network to produce more spa-
tial characteristics of precipitation. For future work, we be-
lieve that the predictions could be more accurate with RNNs
and GRUs. Additionally, the precipitation rate should con-
sider the influence of the terrain and different scales. In fact,
we will perform further experiments on these factors.

Code and data availability. The source code and pretrained model
of MSDM are available at https://doi.org/10.5281/zenodo.4749183
(Li, 2021).

For more information about the underlying datasets, see Sect.
3.1.
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